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Accelerating zkSNARKs on Modern Architectures

Maxim Vezenov

May 6, 2022

Abstract

Zero-knowledge proofs (ZKPs) enable a prover to convince a ver-

ifier that a given statement is true without revealing anymore infor-

mation other than the fact the statement is true. Although this high-

level description makes it sound simple, zero-knowledge proofs open

up multiple use cases with regards to private transactions, verifiable

outsourced computation, and much more. zkSNARKs are a partic-

ularly useful ZKP construction as the proof is very small and very

fast to verify no matter the problem size. The cost of constructing the

proof itself remains a massive bottleneck and current implementations

of zkSNARKs are lacking in their ability to meet mainstream demand

of this technology. However, the processes necessary to construct a zk-

SNARK proof, number theoretic transformations (NTT) and multi-

scalar multiplication (MSM), are both highly parallel. CUDA pro-

gramming on NVIDIA GPUs is inherently tuned to the type of pro-

gramming zkSNARK proof require. In this thesis we explore tech-

niques for how zkSNARKs are created and methods for accelerating

zkSNARK creation on the GPU.
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1 Introduction

Zero-knowledge proofs (ZKPs) are a cryptography primitive that allows for a

party (the prover) to prove to another party (the verifier) that a given state-

ment is true without revealing any more information. This concept can be

more formally defined by stating that given a function F , an input x known

to both parties, and a secret input w, the prover can show that F (x,w) = y

without revealing w to the verifier [1]. With the proliferation of blockchain

technology in recent years, ZKPs have been gaining more attention as prac-

tical applications have started utilizing ZK protocols. Zcash [2] was one of

the first examples of ZKPs being used for privacy preserving cryptocurrency

transactions, where all transaction data is encrypted, but the validity of

the results can still be confirmed. Aside from privacy-preserving cryptocur-

rencies, ZKPs can enable multiple use cases such as verifiable outsourced

computation [3], anonymous credentials [4], efficient light client verification

[5], and many more enterprise applications.

zkRollups such as Loopring [6] have been deployed on Ethereum as a

method of scaling the Ethereum blockchain. A zkRollup allows batches of

transactions to be executed off-chain and verified on-chain through state

transitions of a Merkle tree and a ZK proof. The idea of a zkRollup can be

generalized to verifiable outsourced computation, which can allow for a weak

client to request heavy computational loads while still being able to verify

the validity of the output in a lightweight manner. Largely due to zkRollups,
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the demand for ZK applications has been increasing significantly in recent

years. However, our ability to verify a ZKP is still bound by the overhead of

generating a proof.

In order to be able to prove anything about a given program, it has to

first be transformed into a constraint system. This constraint system is a set

of arithmetic gates that a prover must then operate over to construct a proof.

These constraint systems can be quite large as they represent the most basic

logical steps of a program. Current ZK protocols operating in production

have constraint sizes in the millions. To provide a more specific example,

Loopring requires about 64 million constraints to prove 1,024 trades, and

that takes about 1 minute and 30 seconds to prove [7]. A Loopring trade

is a relatively simple program and the disparity between the time for the

underlying computation and the time to prove that computation is already

drastic. The complexity and size of the applications to be proven is likely to

only increase over time. More complex systems in the future are expected to

have constraint sizes that reach the billions and even trillions [8]. Currently,

the overhead of a prover makes a ZK system of such complexity infeasible

and keeps ZKPs away from large-scale adoption. Luckily, the most compu-

tationally heavy processes required to generate a ZKP are highly parallel.

These processes performed by the prover are number theoretic transforms

(NTTs) and multi-scalar multiplication (MSM), which are elaborated on in

Section 3.
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1.1 Contribution

GPUs and FPGAs are the two top choices for executing the highly parallel

computations required for ZK proof construction. FPGAs are the much more

energy efficient option, but GPUs remain popular as they are much more

programmable and a common consumer product. GPUs are becomingly an

increasingly popular hardware choice for massively parallel clusters such as

training machine learning models [9] and reading and writing to databases

[10]. GPU programming allows developers to program in C++ with superior

tooling to FPGA programming. This tooling on the GPU includes access to

other innovative technologies like Remote Direct Memory Access (RDMA).

RDMA allows a machine to access the main memory from a remote host

without involving the remote machine’s CPU. Further details can be found

in Section 3.4. This technology is especially useful for parallel computations

that require extremely high memory loads. ZKP construction requires a

massive amount of memory.

Later, we will show how drastically memory requirements grow with in-

creasingly complex programs and that a large part of the overhead for speed-

ing up a prover on the GPU can be attributed to the size of the problem in

memory. This paper will then walk through the changes implemented that

enable a ZKP to interface with the GPU and RDMA.
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2 Preliminaries

2.1 zkSNARKs Overview

A ZK protocol operates in three main steps, the setup, the prover, and the

verifier.

• Setup(R, secret λ) → Common Reference String (pk, vk)

R is a representation of the program for which proof statements are

going to be generated. The details of this representation can be found

in Section 2.3. The common reference string (CRS) contains a prover

key pk and a verifier key vk. The λ represents secret random variables

that are selected in order to construct the CRS. These variables are

toxic waste and they must be destroyed to maintain the integrity of

the system. If a malicious actor were to gain access to these secret

variables, they could then produce false proofs. Techniques such as the

powers of tau multi-party computation ceremony [11] help reduce the

trust assumption that would otherwise have to be made.

• Prove(pk, input, witness) - π

The prover accepts the proving key, the input for the relation R, and

the witness for R that remains secret to the verifier. The witness

represents a solution that satisfies R when provided with the program

input. The proof π that is outputted states that R(input, witness) =

true without revealing the witness to the verifier.
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• V erify(vk, input, π) - True or False

The verifier takes in the verifier key, the input for the relation R, and

the proof π. If the proof holds, the verifier returns true, otherwise it

returns false.

zkSNARKs are one of the most popular ZKP constructions. zkSNARK

stands for Zero-Knowledge Succinct Non-interactive ARgument of Knowl-

edge. The name is representative of a zkSNARK’s key properties.

• Completeness - Given a statement and a witness, the prover can con-

vince the verifier that they know the witness.

• Knowledge Soundness - A malicious prover cannot convince the verifier

of a false statement. This property combined with completeness prop-

erty is the ARgument of Knowledge part of the zkSNARK acronym.

• Zero-Knowledge - The proof does not reveal anything to the verifier but

the truth of the statement, in particular it does not reveal the prover’s

witness.

• Succinctness - The size of the proof is small and fast to verify.

2.2 Groups and Bilinear Maps

All the prover calculations take place within a finite field of prime order p

that we will label Fp. Fp is a field of integers modulus p, represented by the
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number 0, 1, ..., p − 1. The final major computation required by zkSNARK

protocol is the multi-scalar multiplication operation over large bit elliptic

curve groups whose elements are in Fp. A group is a set of elements under

a binary operation, where performing the operation on two elements in the

group will produce another element in the group. We are only looking at

cyclic groups of prime order p. Cyclic groups are groups where given a

generator g, all elements in the group can be generated by taking a power

of g like g0, g1, g2, ..., etc. More formally we can define a cyclic prime order

group G = {g, g2, ..., gp−1 = 1} [12].

An elliptic curve is a set of points (x, y) which satisfy an equation of the

form y2 = x3 + ax2 + bx + c where the roots are distinct [12]. The elliptic

curve used in a zkSNARK will be defined over Fp, and the elliptic curve itself

will represent a cyclic group prime order group. This means it is possible to

use elliptic curves for a bilinear map that acts as a trapdoor. We can define

a bilinear map as the pairing e where given groups G1, G2, and GT of prime

order p, G1×G2 → GT . This means given g1 and g2 that generate G1 and G2

respectively, for every nonzero p, q ∈ Fp we will have e(gp1, g
q
2) = e(g1, g2)

pq.

This is how our system hides information. We are hiding p with gp1 and q

with gq2 yet it can still be verified that p ∗ q using the pairing just mentioned

in the previous paragraph [13][14]. This phenomenon where it is possible

to operate over encrypted values is also known as homomorphic encryption.

Granted we are using a large enough prime order, it is computationally hard

to reverse this pairing.
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In the setup phase of a zkSNARK random elements from Fp are selected

to be the exponents of two generators for the groups G1 and G2 that will then

form the prover key and verifier key. These are the secret variables mentioned

in Section 2.1. Our ZK system will also have a pairing-friendly elliptic curve

that lies in GT on which pairings will be calculated. Knowing that bilinear

maps enable homomorphic encryption, the prover will then use the encodings

created during the setup to construct a final proof made up of elliptic curve

points that is verified by performing the respective pairings. The final step

of the prover is performing multi-scalar multiplications against points of an

elliptic curve where the final elliptic curve points will be generated. This is

necessary to create the final bilinear encoding that will be verified. This is

expanded upon in Section 3.2.

2.3 Rank-1 Constraint Systems

The first step in constructing a ZKP is transforming our program into the

correct form. Under the hood, a ZKP will prove the solution to a set of

algebraic equations. This is possible by representing the initial program

as an arithmetic circuit. An arithmetic circuit breaks down the logic of a

program into discrete steps of basic arithmetic operations. The program

whose solution a ZKP is proving will often be referred to as a circuit.

Each circuit is then represented as a Rank-1 Constraint System (R1CS).

A R1CS is a sequence of groups of 3 vectors A, B, and C, where if given

another vector s (the witness), the vector s must satisfy (A · s) ∗ (B · s) −
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(C · s) = 0. The length of the sequence is the number of constraints n. An

individual constraint is a single group of (A,B,C) vectors. In order to satisfy

the equation, the size of each A, B, and C vector must match the size of s

which is the number of m variables in the circuit. The number of variables

m is made up of a dummy variable s0 = 1 at the first index, the inputs

to the circuit, and all the intermediate variables created from the R1CS

representation. Due to these intermediate variables, m is often the number

of constraints plus s0 and a final output variable. The witness vector that

satisfies the R1CS will contain all the inputs to the problem as well as all

intermediate variables created by the constraint system.

The circuit represented by the R1CS is often very sparse. The n vectors

must be satisfied by a witness of size m. Thus, most vector elements will be

0 as a constraint corresponds to a singular gate in the circuit and not every

variable in the system. For a matrix of n × m we will see at most n + m

non-zero entities [14].

An R1CS can be represented as a relation. Given s0 = 1 and s1...sm ∈ Fp,

where Fp is a finite field of prime order, Ai,n, Bi,n, and Ci,n corresponds to

the ith variable in the nth constraint [13].

m∑
i=1

Ai,nsi ∗
m∑
i=1

Bi,nsi =
m∑
i=1

Ci,nsi (1)
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2.4 Quadratic Arithmetic Program

Even with the Rank-1 Constraint System, there is still one more transfor-

mation to perform. We can check that every constraint is satisfied at the

same time by transforming the R1CS into a Quadratic Arithmetic Program

(QAP).

A QAP is the R1CS in polynomial form. Given a system with n con-

straints and m witness variables, our sequence of A, B, and C vectors will

be reformulated into three n − 1 degree polynomials A(x), B(x), and C(x)

[15]. For n constraints, the degree of these polynomials is n − 1. These

polynomials will then be combined into a single H(x) polynomial with the

same equality used to solve the R1CS, A(x) ∗B(x)−C(x) = H(x). Using a

QAP, the system can check every constraint at the same time by using the

dot product of the polynomials. The H(x) polynomial is then represented as

a vector of n coefficients, Hn. Hn is the vector used in the final steps of proof

construction that uses multi-scalar multiplication. Each of the polynomials

can be deconstructed as below.

A(x) = A1(x) + A2(x)...Am(x)

B(x) = B1(x) +B2(x)...Bm(x)

C(x) = C1(x) + C2(x)...Cm(x)

(2)

Evaluating each of the m sub-polynomials at a given x where x ≤ the
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number of constraints n, will yield the respective n-th constraint specified by

x from the R1CS.

The resulting polynomial of A(x) * B(x) - C(x) = H(x) may not neces-

sarily evaluate to zero at every point, as there are points on the polynomial

that do not correspond to a constraint. To work around this, we need to

check whether H(x) evaluates to zero at all the arithmetic gates set by the

circuit. This can be done by generating another divisor polynomial to check

H(x) against. For m equations we pick distinct r1...rm ∈ Fp and define

t(x) =
∏m

i=1(x−ri). Put another way, t(x) is the simplest polynomial that is

equal to zero at all values that correspond to a constraint. Any polynomial

that evaluates to zero at all values of x in t(x) must be a multiple of t(x).

This allows us to verify the correctness of H(x) by performing H(x)/t(x)

[15]. As we formally defined the R1CS before, we can also similarly define

the QAP. However, the vectors previously used have now been replaced by

polynomial evaluations and we must add in t(x) for the correctness check of

the relation.

m∑
i=1

Ai(X)si ∗
m∑
i=1

Bi(X)si =
m∑
i=1

Ci(X)si +H(X)t(X) (3)

In a practical implementation, the final n− 1 degree polynomials will be

represented as a vector of coefficients in memory. Upon completion of the

set-up phase the prover will receive three vectors An, Bn, Cn in order to

compute Hn. The methods used to perform these operations are discussed
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further in Section 3.1.

2.5 Groth16

There are several new zkSNARK constructions that have been specified over

the past few years. Over this same time, Groth16 has remained among the

state-of-the-art for zkSNARKs. Of the newly proposed zkSNARK construc-

tions, PLONK [16] provided the most practical benefits, such as its universal

trusted setup, meaning that a setup is not necessary for every predicate to be

proven. In PLONK, after one setup any program can use the system. Since

being first announced, it has seen adoption by multiple teams in the ZK in-

dustry [17][18]. As PLONK is newer though, Groth16 has seen much more

implementation work surrounding it. Groth16 implementations provided a

better starting point that could potentially later allow for an RDMA integra-

tion. A Groth16 proof consists of 3 group elements, which are only about a

few hundred bytes and take only 2 milliseconds to verify. It remains a funda-

mental ZK system and has seen a good amount of work done in an attempt

to accelerate the prover. The Mina Protocol, previously the Coda Protocol,

held a challenge to speed up libsnark [19], the industry standard C++ li-

brary for creating Groth16 proofs, using GPUs. This preliminary work on

the prover provides a useful starting reference for any Groth16 GPU prover.

For these reasons and for reasons highlighted in Section 3.4 and Section 3.5,

libsnark was chosen as the focus for GPU acceleration.
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3 Methods for Accelerating Proofs

Recall from Section 2 that a program must be converted to a R1CS instance,

which will then be converted to a QAP. There are two key algorithmic oper-

ations used to perform these transformations, number theoretic transforms

(NTTs) and multi-scalar multiplication (MSMs).

3.1 Number Theoretic Transforms

The R1CS is transformed into the polynomials A(x), B(x), and C(x) by

performing a sum of Lagrange interpolations. A Lagrange interpolation given

a set of n points (xi, yi)...(xn, yn) where x is unique, will produce a polynomial

of degree ≤ n − 1 [20]. However, computing a Lagrange interpolation takes

O(n2) time. Due to this inefficiency novel techniques such as the Number

Theoretic Transform (NTT) are employed instead. The Number Theoretic

Transform (NTT) is also used for polynomial arithmetic to generate the

Hn vector used in the MSM process. The NTT is very similar to a fast

Fourier Transform, except due to ZKPs employment of elliptic curves, the

algorithm must be executed over finite fields. NTTs replace the normal

twiddle factors seen in an FFT with a new finite primitive root of unity

w, where w is the nth root of unity if wn = 1 modulo some large prime

number [21]. Formally we can define an NTT as given two N-sized arrays

a and q where q[i] =
∑N−1

j=0 a[j]wij
N . Then at every stage i, two elements

with a 2n−i stride perform a butterfly operation. The inverse can then be
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given as a[j] = N−1
∑N−1

i=0 q[i]w−ij
N [22]. Both the forward NTT and the

inverse are necessary for polynomial evaluation as we must use NTTs to

convert polynomials to point-value form and perform the convolution, then

the inverse NTT will be used to return back to polynomial form.

3.2 Multi-Scalar Multiplication

A multi-scalar multiplication (MSM) can be defined as given group elements

G1, ..., Gn in a group G in a finite field F and scalars a1, ..., an in between 0

and |G|, find a1 ∗ G1 + ... + an ∗ Gn. The order |G| has λ bit length. Each

pair a1 ∗G1 is a point scalar multiplication and MSM adds up these products

to get one final group element. The MSM in zkSNARKs is performed on the

polynomial (Hn) and the witness (sm) against previously chosen elliptic curve

points. All the coordinate point values lie in Fp or an extension field of Fp.

This operation is essentially a map-reduce, but using group operations. The

map-reduce operation heavily lends itself to parallelism as it can be easily

split. Parallelism can be further exploited by splitting the scalars themselves

into windows [22]. The most popular algorithm for fast MSMs are versions

of the Pippenger algorithm [23], sometimes referred to as the bucket method,

which is detailed in the steps below.

1. Divide the λ-bit scalar into λ/b chunks with b bits each, where b is the

given window size.

2. The group elements to be multiplied against the scalar are mapped into
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a bucket, Bi, based on the value of the chunk that is to be multiplied

against. For example, for every chunk of bits translating to the value

“5”, the respective group element is placed into the “5” bucket. The

sum of this bucket is then found. The number of buckets is bound by

the maximum possible value of a chunk.

3. Take every bucket and find Gi =
∑2b−1

j=0 j ∗Bi

4. Sum up 2ixbGi to arrive at the final point

This process allows substitution of a large number of the point multipli-

cations needed for a MSM with point additions. In my contribution detailed

in Section 3.5, I work with the map-reduce method as my focus was on mem-

ory requirements rather than algorithmic efficiency. However, the Pippenger

method is still important to note as the prime method for accelerating MSM.

3.3 Hardware for Acceleration

The current state-of-the-art prover is an ASIC implementation [22], that for

large applications achieves about 5x speedup over previous parallel imple-

mentations using the CPU and GPU. Although ASIC and FPGAs are very

promising for accelerating ZK proof construction, ZK prover acceleration ef-

forts on the GPU should not stall as a result. Another parallel Groth16

system, DIZK, uses Apache Spark to parallelize a ZK proof across many

distributed nodes [14]. PipeZK mentions that their hardware acceleration

is a complementary technology as it focuses on accelerating the individual
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node. Unlike an ASIC or FPGA, the GPU is an architecture organized for

parallel computation while also still being a consumer product. A fast and

well-distributed GPU prover would allow for many more individuals to par-

ticipate in a ZK proving network without having to purchase specialized

hardware.

GPU programming naturally lends itself to the structures constructed

in a zkSNARK. NVIDIA’s GPU programming library, CUDA, has a thread

hierarchy where threads can be indexed inside thread blocks up to three

dimensions [24]. This feature allows for programmers to write code that

inherently spans the domains of the vectors and matrices it is operating over.

If we are to expect future innovations in zkSNARK design, those zkSNARK

protocols will be more easily programmed and update-able on GPUs than

ASICs or FPGAs, especially if the prover is within a massively distributed

system as mentioned above.

GPUs have continued to see improvements in the amount of parallelism

possible as more cores have continued to be added with each next-generation

chip. In 2022, the best NVIDIA GPUs are beginning to reach over 5 thou-

sand CUDA cores. Just back in 2015, chips were being released with 512

CUDA cores [25]. GPUs are very capable at executing parallel processes,

and seemingly we should be able to speed up as much as needed with more

GPUs. Parallel execution on the GPU chip itself is not the true bottleneck

when it comes to large programs such as Groth16, but rather the time it

takes to synchronize the massive memory transfers required by a ZK prover
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to the GPU and back to the host.

Remember that in a zkSNARK, for a constraint size of n withm variables,

to create a bilinear map, the MSM must be performed against a vector of

elements from groups G1 and G2. In the preprocessing step, each constraint

matrix is encoded into a vector of m elements in either G1 or G2. A Groth16

program with a λ-size of 768 bits and 220 constraints will require over 24 GB

for just its multi-scalar multiplication operations. For 225 constraints, the

G1 elements are about 200 GB and the G2 elements are about 400 GB. For

some perspective on how these numbers translate to real programs, a 10MB

SHA2 compression is represented by 230 constraints [8] and as mentioned in

Section 1, Loopring’s largest trade circuit is 225 constraints [7].

No matter the hardware architecture, a ZK prover must account for these

memory requirements in its design. This means a careful memory pipeline

that can bring values into main memory as computations on past values

are running. Knowing that the top-of-the-line NVIDIA GPUs only support

80GB of on-chip memory [26], it becomes even more obvious that synchro-

nizing memory transfers in a high-bandwidth pipeline is critical to speeding

up the prover.

3.4 GPUDirect

Past ZK provers have taken steps to mitigate against the massive memory

requirements of running a ZK prover. Loopring performed compression tech-

niques on the prover data and precomputed multiple inputs to cut down on
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MSMs [7], PipeZK focused on optimizing off-chip memory bandwidth with

a highly optimized algorithm, while DIZK split computation over many dis-

tributed nodes. Multiple zkRollup industry leaders have plans for decentral-

izing the proving process in their systems. Creating an efficient GPU prover

will require a mechanism that allows for fast memory bandwidth on a singu-

lar node and also over multiple nodes. GPUs have an advantage in solving

this issue due to modern tooling that ASICs and FPGAs do not possess, or

for which sufficient tooling is missing, such as Remote Direct Memory Access

(RDMA). RDMA allows for accessing the main memory of a remote machine

without involving the remote host’s CPU. This grants access to much more

storage without having to read from disk, thus resulting in greater speed

when accessing memory that must be brought onto the GPU.

GPUDirect is a tool that uses RDMA to create a path for data exchange

between a GPU and a remote host using PCI Express [27]. This is extremely

powerful as a GPU program can access remote memory at close to the same

speed as accessing its own host memory.

3.5 Stream Ordered Pipeline

The current best implementation of a libsnark GPU prover [19] uses CUDA

Unified Memory [28] for loading memory onto the GPU. Unified Memory

is a useful programming tool that provides a universal address space seen

by both the CPU and GPU. This greatly simplifies GPU programming as

explicit memory transfers between the host and device do not need to be
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specified. However, CUDA Unified Memory is not directly supported for

integration with GPUDirect RDMA [27]. If we are to experience the potential

benefits of a multi-GPU RDMA cluster moving away from Unified Memory

is necessary based on the current state of the tooling.

This introduces its own challenges, because, as mentioned previously,

zkSNARK provers have massive memory requirements. All tests have been

run on a NVIDIA P100 GPU with 12GB of memory. Once the problem

size starts to reach 219 or 220 constraints, the memory needed is greater

than what is available on chip. To mitigate this restriction, we added a

static partition. After loading the ZKP parameters and inputs from file the

memory available on the GPU is fetched and the partition for chunking the

data is determined by finding (total size of data to be put on chip)

/ (free device memory) + 1.

Splitting up our computation far from solves our problem. Now we must

coordinate memory transfers and accesses for our newly split up problem.

It is not a simple task to synchronize such large memory transfers and still

maintain a high level of speedup. Even memory transfers between disk and

the host’s main memory must be considered, and not just transfers between

the host’s main memory and the GPU. Our prover uses CUDA streams to

enable concurrency between our multi-scalar multiplication kernels. To make

these streams concurrent with the host, we must “pin” the memory for the

GPU to access it. This pinned memory is moved from disk to main memory.

As the constraint sizes grow it becomes obvious that a ZK program must not
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only sync from the host memory to the GPU, but rather must sync from disk

to host memory to GPU memory. In a system with 220 constraint using 3

chunks, freeing the pinned G1 multiples on the host takes about 30 seconds

each time. This almost completely eliminates any speedup, resulting in about

the same execution time as the parallel CPU version. Minimizing the amount

of these allocations and frees is critical for achieving speedup, especially as

more chunks are needed for larger constraint sizes. CUDA streams help us

by providing a way to asynchronously perform tasks that would otherwise

block execution.

A CUDA stream is simply a queue for work on the GPU, where operations

within a stream cannot overlap but operations between separate streams can

overlap. The outputs of the MSMs do not depend on one another until they

need to be combined with the H coefficients. Our prover has a stream for

each MSM operation being performed and then a default stream that runs on

the CPU. Creating a stream-ordered system is necessary as it allows for our

MSM calculations to run concurrently to each other on the GPU itself while

also running concurrently to the CPU. The CPU can then run the NTTs

at the same time that the GPU is working on the MSMs. Ideally, the NTT

would also be brought onto the GPU; however, the MSM has not seen enough

speed up so that the NTT is bottle-necking the process. Our prover for a

constraint size of 220 currently speeds up a parallel CPU implementation by

about 1.5x from 180 seconds to 120 seconds. The MSM calculations remain

as the majority of the computation.
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The MSM operation for the libsnark prover is now in a state where it can

be better split across multiple GPUs within a distributed system utilizing

RDMA. The previous state of the prover utilizing Unified Memory had the

ability to be distributed across multiple nodes, however, if we are to utilize

RDMA, the prover needs to use the traditional CUDA allocation strategies.

4 Conclusion

Zero knowledge proofs are one of the biggest breakthroughs in cryptography,

with a multitude of use cases. The potential for this technology to be adopted

in the mainstream is currently impeded by the ability to construct ZK proofs

in a fast and cost effective manner. However, the primary obstacle is not a

lack of computational power. GPUs are an extremely parallel architecture

that has been successfully applied to similar problems such as machine learn-

ing. In this paper we present a libsnark GPU prover that can split up its

MSM computation in a statically partitioned pipeline. We moved away from

using Unified Memory in order to enable distributing the computation across

a RDMA cluster. Further optimizations that are mentioned in Section 4.1

can be applied to account for the memory requirements needed by the ZK

proving process. Any prover running on a GPU must focus on memory band-

width between the GPU, the CPU, and disk memory. We can always split

up our GPU problem onto more machines, however, precisely synchronizing

the GPU will remain necessary for any ZK construction looking to scale.
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4.1 Future directions

The libsnark GPU prover has a lot of room to be heavily tuned with regards

to memory transfers, numerical algorithms, and compression.

For exceptionally large problems, the data we are pinning for the stream

ordered pipeline overtakes what is available in main memory. I created an

implementation that allowed for problems of any memory size, however, the

speedup is reduced by the costs associated with large allocations and frees.

Synchronizing accesses between the disk, CPU, and GPU will be necessary in

order to meaningfully speed up the largest ZK circuits. It is always possible

to further parallelize a problem with more hardware, however, all the data

must still be brought onto every GPU and returned to a singular source for

the final result. RDMA would probably be most helpful here as any ZK proof

that will exceed the host memory of a given machine could have other remote

machines access that memory as if it was local memory. I foresee work here

being the most promising as a distributed RDMA prover could split work in

the fastest manner possible for a GPU cluster.

Aside from optimizing memory accesses, changes in the numerical algo-

rithms used would be beneficial, such as Pippenger for MSM. The current

prover uses a map-reduce operation with precomputed group elements. Pre-

computation essentially replaces computation with extra memory that must

be brought onto the GPU. It is not entirely clear whether precomputation

actually negates the cost of transferring data back and forth. Benchmarking

work should be done to test whether precomputing these group elements is
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actually beneficial to speed up. Although the current prover’s MSM oper-

ation remains the main system bottleneck, GPU algorithms that accelerate

NTTs still would be beneficial once MSM calculations are improved.

As mentioned in Section 2.3, the constraint system and thus polynomial

evaluation formed consists of sparse vectors. Further optimizations could be

made to better align any parallelism with the sparsity of the constraint sys-

tem. It is important to note that sparsity is different in every system, and

for zkSNARKs while some rows in the evaluated QAP are sparse, some are

dense [14]. This is because one variable could be used in multiple constraints.

Any algorithm taking advantage of sparsity should also have a system for

identifying sparse vectors. This identification can either be precomputed or

on-the-fly and should be benchmarked just like the group elements precom-

putation. Compression techniques could also take advantage of this sparsity

to help reduce the amount of memory that must be read and copied in the

first place. Due to the memory required for compiling a zkSNARK circuit,

compression would be useful even when not considering sparsity. It will be

especially important to consider compression when the system becomes dis-

tributed. Although RDMA can bring fast remote memory access, reducing

the amount of memory that needs to be sent across a network will always be

beneficial, especially for any fallback network that does not use RDMA.
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