
Combating Front-running in the Blockchain Ecosystem

by

Jack Byers

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Computer Science

Lehigh University

January 2022

Copyright

Jack Byers

ii

This thesis is accepted and approved in partial fulfillment of the require-

ments for the Master of Science.

Jack Byers

Combating Front-running in the Blockchain Ecosystem

Date

Thesis Advisor

Chairperson of Department

iii

Acknowledgements

I would first like to thank the members of the Computer Science & Engi-

neering department at Lehigh who guided me through my life as a graduate

student. Thank you to the members of the Scalable Systems & Software

Research Group, I truly appreciate the opportunity to work and learn with

you all. A particularly special thanks to Dr. Korth for his role as my advisor

for the past five years, I would not be the student I am today without your

guidance and knowledge.

Thank you to my family and friends, who supported me throughout my

time at Lehigh. To my parents, I am endlessly grateful for everything you’ve

done. Your encouragement and belief in me was unwavering and it inspires

me every day.

iv

Contents

1 Introduction 2

2 Background 3

3 Purpose 8

4 Solutions 10

4.1 Exchange-Level Solutions . 10

4.2 Transaction-Level Solutions 11

4.3 Consensus-Level Solutions . 13

5 Contribution 14

5.1 Motivation . 14

5.2 Key Concepts . 15

5.3 System Structure . 16

5.4 Concerns . 17

6 Future Work 18

7 Conclusion 19

8 References 21

9 Vita 26

v

Combating Front-running in the Blockchain Ecosystem

Jack Byers

December 5, 2021

Abstract

Front-running is generally defined as trading upon advance knowl-

edge of some large transaction that will influence the value of an under-

lying security [1]. Due to the centralized nature of traditional financial

markets, it is widely prohibited and its use eliminated by the threat

of legal action. In the decentralized, trustless context of a blockchain,

however, this approach is not available. This work seeks to general-

ize and quantify the problem of front-running, evaluate a number of

proposed solutions, and contribute a framework for creating a front-

running resilient blockchain system. Solutions are evaluated with par-

ticular respect to the principles and guiding goals of decentralized

blockchain communities, and thus Bitcoin [2] and Ethereum [3] are

used largely as examples throughout.

1

1 Introduction

The cryptocurrency industry has experienced drastic growth in recent

years. At the time of writing, cryptocurrency exchanges handle upwards

of $200 billion USD in daily volume, primarily concentrated in centralized

exchanges [4]. These centralized exchanges largely do not have to contend

with the issue of front-running, as they function using conventional order-

book based settlement. This settlement is done privately, and transactions

are submitted to centralized off-chain authorities such that front-running

them is infeasible. While there are clear advantages towards centralized

systems (transaction throughput, settlement time), they are generally seen

as antithetical to the core values of decentralized blockchain communities.

These centralized exchanges require trust that funds will be handled properly,

and there are numerous examples of fraud, mismanagement, and collapse [5].

However, an alternative exists, and there is a growing movement towards

decentralized exchanges, or DEXes. These DEXes are non-custodial by na-

ture, and users are never required to give up control of their funds. Oper-

ational logic is written in smart contracts, whose code is public and whose

execution can be publicly verified and audited. DEXes are largely transpar-

ent, atomic, and trustless. The downside, however, is that on-chain execution

for most blockchains is slow. With settlement latency measured in dozens of

seconds, malicious traders have ample time to analyze and execute complex

transaction schemes to extract profit, leaving naive users damaged and the

2

network-at-large negatively impacted [6]. This is generally how the problem

of front-running presents itself in the context of a blockchain ecosystem. Note

that this work assumes the reader has a general familiarity with blockchain

concepts as described in [7].

2 Background

Defined below are a number of concepts that are useful in understanding

front-running in the blockchain ecosystem.

Decentralized Finance (DeFi) Decentralized finance generally refers to

the collection of decentralized financial platforms that look to replicate

the function of their centralized counterparts. This includes loaning

services, exchanges, leveraging services, etc.

Decentralized Exchanges (DEXes) Decentralized exchanges such as Uniswap

[8] and Sushiswap [9] are non-custodial platforms that facilitate trades

directly between users. As opposed to a centralized exchange, where de-

positors must trust the platform to hold their funds safely, decentralized

exchanges are entirely trustless. On Ethereum, decentralized exchanges

are deployed as smart contracts and thus are inherently transparent and

auditable.

Automated Market Maker (AMM) An automated market maker is the

autonomous business logic used by DEXes to facilitate the pricing of

3

assets without the use of an order book. For centralized exchanges,

the use of an order book to match buy and sell orders is logical, as the

parties involved have already agreed to deposit their assets with the

exchange. In a decentralized context, however, AMMs allow users to

deposit assets into a “pool”, from which they are logically guaranteed to

be able to withdraw at any time. This pool usually consists of a pairing

of two assets, such as USDC (a stablecoin whose value is pegged to the

US Dollar) and ETH. Price is then determined by the ratio between

those two assets in the pool. A user looking to exchange between the

two assets can deposit one and withdraw an equivalent amount of the

other (based on the resulting ratio) in a single atomic transaction.

Smart Contracts Smart contracts are programs whose compiled bytecode

is stored on the blockchain. Execution of smart contract code is done

as part of the consensus process, and thus the validity of their results

is guaranteed by the network [10]. They can read and write to the

state of the blockchain, and are fully public and immutable. Smart

contracts have a number of applications including smart wallets, voting

applications, exchanges, virtual casinos, video games, and more.

Transactions A transaction in the blockchain context is a set of instructions

to translate the state of the system from one point to another. In the

case of Bitcoin, these instructions are limited, and thus transactions

are limited to debit/credit operations to move funds from one account

4

to another. However, on Ethereum and many other modern networks,

transactions can invoke a broader range of actions by allowing data

to be submitted. This data can then be processed on-chain by smart

contracts, which enables complicated business logic to be executed in

a trustless environment. Naturally, this entails a more complicated fee

system, which in the case of Ethereum is addressed by Gas.

Gas Gas is the fee that is paid to execute a transaction on the ethereum

network. Each computational operation has an equivalent cost in units

of gas, and each user determines how much they are willing to pay

per unit. Miners, in turn, prefer transactions that have the highest gas

prices, and an economy is created in which users pay a network-average

gas price per unit of computation for their transaction when submit-

ting. The purpose of this system is to provide a bound on the amount

of work that can be done by a single transaction, or be done in a single

block. This way, scenarios like infinite loops or computationally inten-

sive operations are prevented from slowing the network down. Unlike

Ethereum, Bitcoin does not provide a Turing complete platform, there-

fore this is not a consideration for that network. A side effect of this

system, however, is that users can roughly control the ordering of their

transaction in a block by strategically setting their gas price below or

above another transaction.

Front-running As defined in the abstract, front-running is trading upon ad-

5

vance knowledge of some large transaction that will influence the value

of an underlying security [1]. In the specific context of the blockchain

ecosystem, front-running entails monitoring the public transaction pool

for transactions that either generate value for their submitter directly,

or can be used to generate value (most commonly via arbitrage). When

such a transaction is found, a front-runner will attempt to submit trans-

actions that either duplicate or profit off of the target transaction.

By carefully manipulating placement within the final ordering through

transaction fee auctions [11] or network spam, the front-runner can

guarantee themselves profit.

Back-running Back-running specifically refers to an adversarial attack strat-

egy where a transaction is placed directly behind another. This can

involve packing a block with transactions at a gas price just lower than

the target transaction. For example, when a price oracle publishes

a price update to the network, it will affect the pricing on many ex-

changes. Miners make seek to back-run this transaction so they are the

first to act on its information.

Flash Loans Flash loans are atomic loans that can be withdrawn from the

decentralized lending service, and paid back within the same block.

Since this transaction happens atomically, the value of the loan is only

limited only by the holdings of the lending service. This allows traders to

leverage the massive (and constantly growing) amount of value staked

6

in these lending services. While not inherently a malicious tool, it

effectively lowers the barrier of entry to many attack types. This means

that a user can open a flash loan, use it to manipulate the price of a

currency and create an arbitrage opportunity, then execute on that

opportunity, pocket the profit, and return the loan all in a single block.

The effect and capability of flash loans is difficult to predict, and has

gone largely unstudied [12].

Miner Extractable Value (MEV) Miner Extractable Value is the value

miners get, on top of block rewards, as a result of front-running and

gas price auctions [13]. This value is received from users in the form

of inflated gas fees, which are a result of transaction ordering auctions

plaguing the ethereum network. MEV is largely advantageous for the

miners but it poses a threat to blockchain security. Particularly of con-

cern is the possibility for miners to be financially incentivized to reor-

ganize the blockchain and claim previous blocks’ MEV. As the rewards

could potentially be higher than the slashing penalty, this is a serious

security concern. Researchers have started using the term Blockchain

Extractable Value (BEV) instead of MEV to include the value taken by

other entities such as trading bots. It is important to note that miners

have ultimate control over the placement and ordering of transactions

within a block. Miners can harvest a large amount of value by running

specialized clients that optimize for this opportunity. If mass adoption

of such a strategy occurs, it could disrupt fundamental economic as-

7

sumptions of these networks, and potentially impact their safety from

rewriting past blockchain events [14], [15].

3 Purpose

The effects of front-running activity are felt throughout the network. In the

case of Ethereum, transaction ordering in a block is impacted by the gas fee

one is willing to pay a miner per unit of work done. This fee is controlled

by the transaction submitter, and thus transaction order can be influenced

through manipulation of this fee. A reasonable miner who is not optimizing

transactions for themselves will order transactions by the amount paid for

each unit of gas. When a valuable opportunity is discovered by users, it

will often result in real-time bidding wars for preferable transaction ordering

[13]. These MEV opportunities drive up gas costs for the entire network,

as computation becomes a premium. In times of severe volatility, arbitrage

becomes more prevalent, and gas fees rise drastically. This problem is not

unique to Ethereum, as all blockchain networks have had to contend with

what is fundamentally the issue of order fairness.

While consensus is largely concerned with the properties of consistency

and liveness, these networks are now contending with a third property: or-

dering [16]. The implications of transaction ordering in a blockchain context

extend beyond scenarios of front-running and arbitrage. These issues funda-

mentally represent a vulnerability in the consensus protocol of both Bitcoin

8

and Ethereum [14], [15]. As the economic value held by these ecosystems

grows, so does the incentive to exploit them for profit. It is estimated that

a massive portion of this MEV can be extracted simply by re-ordering past

transactions in the historical chain [13]. If a sufficient portion of mining

power recognizes this value, then a re-ordering could occur which violates

the immutability property for which public blockchains are considered valu-

able.

Additionally, not every impact of MEV is inherently harmful. In some

cases, the valuable opportunities a protocol generates incentivize users to

take actions that benefit the health of that protocol. For example, numer-

ous DEXes use an AMM-based strategy to value assets, and these trading

pools are kept in line through efficient and timely arbitrage. When one asset

is exchanged for another in a pool, the relative value of the original asset

is increased and an arbitrage opportunity is presented. These decentralized

exchanges rely on traders identifying this opportunity as quickly as possi-

ble, and executing trades such that the ratio of assets in the pool is in line

with other exchanges. In this case, the ecosystem is relying on the pres-

ence of public information and the behavior it encourages. Note that this

explicitly does not include the aspects of MEV that threaten the chain with

re-organization, and only considers the situation from the perspective of a

DEX. At a larger scale, MEV opportunities across the entire protocol can

create value considerable enough to threaten the security of the network, and

thus the problem should be addressed with care.

9

4 Solutions

This section covers a number of proposed solutions to the front-running

problem, specifically on Ethereum. While Ethereum is by no means the only

blockchain ecosystem where front-running is prevalent, it has the largest DeFi

market and thus is the target of the majority of malicious activity. The smart

contract capability enables users to construct far more complex and powerful

trading strategies, and thus the opportunities for profit are more numerous

in this context. Accordingly, it is also the environment for which solution

development is most active.

To assist with the evaluation of these solutions, we propose three cate-

gories that solutions generally fall into: Exchange-Level, Transaction-Level,

and Consensus-Level solutions.

4.1 Exchange-Level Solutions

Exchange-level solutions are those that aim to address front-running at

the DEX level (or, as it is known in the Ethereum community, layer-2/L2).

These solutions are entire DeFi platforms that handle transactions in such

a way that their content is not revealed until after they have been commit-

ted to the chain. Obviously, this does not address front-running in such a

way as to eliminate it entirely, however, if front-running-resilient exchanges

grew in popularity it would likely have positive impacts on the health of the

ecosystem.

10

One example of such a platform is TEX - A Securely Scalable Trustless

Exchange [17]. TEX provides front-running resilience using a series of clever

cryptography techniques. Named the moonwalk proof, it is essentially a time-

lock puzzle combined with a zero-knowledge proof that the transaction is

syntactically valid. Therefore, the transaction can be accepted onto the

chain but is cryptographically guaranteed to not have its details revealed

until after the next block has been committed. If a user suspects that they

have been front-run, they can issue a challenge to the network, which will

evaluate whether or not the challenged party withheld information to break

the commit-reveal scheme. If this is the case, the transaction is reverted and

funds are returned.

There are two key downsides to this approach. The first is that the

burden of proving that front-running occurred is placed on the user. Each

user must monitor their own trades to ensure they haven’t been front-run,

and this creates a barrier to entry on the blockchain ecosystem. Second, this

process is cryptographically intensive, and would generate a large amount of

computational load in the form of transaction fees.

4.2 Transaction-Level Solutions

Transaction-level solutions are those that propose a generalized scheme

to submit transactions in such a way that they cannot be front-run. Typi-

cally, this either involves trusting an additional party, or incurring a consider-

able additional delay or cost. However, since they can generally apply to any

11

transaction, there is a greater scope of implied benefit from mass adoption

of such a strategy.

One example of such a solution is LibSubmarine, and their submarine-

send protocol. The strategy they employ is a smart contract that will reveal

the details of a transaction after it has been committed, once that smart

contract is provided with the appropriate private key. It is a simple encryp-

tion scheme, with a secondary transaction fee on top of the existing one. It

also requires DeFi applications to support sends through the submarine-send

protocol.

Another, more straightforward example is simply developing a relation-

ship with a group of miners you trust. While this may sound silly, it’s the

heart of the MEV-Auction Relay system that has recently gained some pop-

ular adoption [18]. Essentially, instead of submitting your transaction to the

public pool, where miners can reorder it at will, you submit it to a relay

network that bundles it with other transactions. This bundle is then passed

to a trusted list of miners who guarantee that it will be placed at the top of

a block. While you do need to include a tip for these miners to ensure it is

economically reasonable for them to place your transactions at the top, there

is guaranteed to be no gas-price-based bidding war, as the transactions are

bundled.

12

4.3 Consensus-Level Solutions

Consensus-level solutions are solutions that aim to address the front-

running problem from a fundamental consensus perspective. Such a solution

would change the underlying consensus process to avoid the issue of order

fairness altogether. However, this becomes a difficult task, since you need

to define fair. Should a user be able to pay to have their transaction placed

higher? If you choose to sort transactions by the average timestamp at which

they were received, then users with poor connection (perhaps, those in remote

areas of the world) will almost always be placed closer to the bottom of a

block. However, this isn’t necessarily an issue, as most users only care about

per-block ordering when attempting to front-run other transactions. Still,

determining what exactly is ”fair” is a difficult decision. It is the opinion

of the author that reaching consensus on an ordering of transactions, based

on their arrival time to the network, is the best possible solution. Networks

should encourage users to be as well-connected to other peers as they can be.

One example of a non-arrival-time based solution is a modified version

of the go-ethereum client released by the Flashbots team [19]. For each

block, this client runs an auction, where individual miners compete for the

right to order a block. This way, individual traders lose their ability to

control ordering in the block, and miners are instead compensated by reaping

the full value of available MEV. While Avalanche [20] reduces the effects of

front-running at the consensus level, they accomplish this by privatizing the

transaction pool to validators until the block is finalized. The result is a

13

system that, while transaction fees are not impacted, is still aggressively

exploited for MEV rewards.

5 Contribution

The following section provides clarification on the desirable qualities of

a solution to the front-running problem, along with contributing an approach

that could be used to combat front-running on the layer-1 level.

5.1 Motivation

The solutions covered in the previous section generally all compromise

the values of blockchains networks in some fundamental fashion. Those that

do not are typically too precise in scope and would fail to address the problem

in its entirety. Additionally, solutions like TEX [17] suffer from relying on an

exact definition of front-running that may prove insufficient over time. As

blockchain networks grow and adapt, they may change their core structure

in ways that open up capability to users that did not exist previously. Such

changes (like Eth2 [21]) may provide users with tools that exacerbate the

issue of front-running, as flash loans have done on Ethereum [12].

Thus, a need exists for a solution that does not have the shortcomings of

existing proposals. A more promising approach may be to use randomness

to reduce the probability that a user’s ability to take malicious action is

negligible. A number of popular blockchain networks (notably Algorand

14

[22]) have taken advantage of clever cryptographic tools to achieve desirable

network properties. The proposed system draws upon these tools to combat

front-running behavior by making it probabilistically non-viable.

5.2 Key Concepts

The core cryptographic concept at use in this system is the VRF, or

Verifiable Random Function [23]. Used extensively in Algorand, VRFs can

be used to map inputs to pseudorandom outputs (discussed in detail following

this passage). There exist similar tools in a number of blockchain systems,

such as RANDAO in Ethereum 2.0 [24].

Using the properties of VRFs, Algorand defines the notion of crypto-

graphic sortition, which is used to securely and randomly distribute staked

users into network roles. More importantly, this process can be done inde-

pendently and privately, with network verification following its completion.

Users calculate their input using a cryptographic key in addition to some

shared entropy (such as the previous block time) and submit this to a VRF.

If the output falls within a certain threshold, signifying a given role, they

can then reveal their input to the network to “prove” that they were chosen

for said role. There are a number of important considerations, such as the

Sybil attack [25], but they are well defined and addressed within the original

Algorand work [22]. Generally, weighting users’ odds of selection in sortition

by their amount of staked funds, in addition to slashing them for malicious

behavior, makes foul play economically infeasible.

15

Additionally, the proposed system draws heavily from the work of Chain-

link’s Fair Sequencing Service [26], and related works in Byzantine order

fairness (namely the Aequitas family of consensus protocols) [16]. The Fair

Sequencing Service (or FSS) provides an interesting framework at the layer-2

level for building quorums around given transaction ordering among nodes.

5.3 System Structure

The structure of this network is a strict modification of the Algorand

system as defined in its whitepaper. However, as validators in Algorand

validate transactions without considering their ordering within the block,

the concept of the orderer role is introduced. Staked users selected for this

role are not allowed to submit transactions for the given block, and are given

the explicit task of ordering a list of selected transactions, which are then

passed off to the validators.

At the beginning of a block, transactions are gossiped publicly between

all nodes on the network (including validators and orderers, however, they

are not aware of their role yet). At the end of the epoch, sortition is run

for staked users. Users submitting for the role of orderer must not have

any transactions in the pool, or they will be slashed. After orderers are

selected, they engage in quorum-building around ordered lists of transactions.

This ordered list is constructed following the process defined by FSS [26].

Orderers log the receipt of every transaction during the gossiping phase,

and transactions are then selected from that log of receipts. Then, using

16

a leaderless implementation of the Aequitas protocol, the network reaches

consensus with the property that if a majority n > 2/3 of nodes received txA

before txB, then txA will be placed before txB in the final ordering. Once a

quorum has been reached on a given ordering, it is passed off to validators,

which ensure that it is syntactically valid, otherwise the process repeats.

By separating the process of ordering from validation, the network prob-

abilistically eliminates users from manipulating ordering to their advantage.

Front-running in such a system would require collusion between a majority

number of transaction orderers, which is deemed non-probable by the same

economic guarantees and randomization that secure the validation process.

Additionally, the complexity of Aequitas could be removed from this sys-

tem and replaced with a threshold encryption scheme [27], as suggested by

Chainlink. In this case, an encryption scheme is developed wherein trans-

actions are encrypted before being distributed for gossip in the public pool.

Only after the close of the epoch and the completion of “ordering” are they

decrypted for validation. While such an approach would increase transac-

tion fees for the required computational cost of encryption, it prevents any

reordering based on transaction data, as it will not be visible until ordering

is finalized.

5.4 Concerns

One concern with the proposed system is that (particularly for the

threshold encryption approach) it incentivizes spamming the transaction pool

17

with multiple copies of the same transaction in the hopes that one lands in

a preferable place in the ordering. Considering the overhead from encryp-

tion, this may have adverse effects on the network if the economic rewards

from winning a good placement outweigh the cost spent in gas fees. Ideally,

the system should have the property that outside of how long it takes to

communicate their transaction to their peers, the user has no way of control-

ling (probabilistic or otherwise) a transaction’s placement within the block.

As the system does not natively address this concern, special consideration

should be taken to the implementation of transaction fees in the network,

perhaps exponentially increasing fees for successive transactions with the

same state translation.

Another point of concern is the computational intensity of the Aequitas

protocols. As discussed in the Chainlink 2.0 whitepaper [28], current im-

plementations introduce massive communication overhead to the network,

which makes its use in any practical BFT scenario doubtful. However, there

have already been proposed a number of more lightweight solutions, whose

performance may be suitable for a high-throughput environment [29].

6 Future Work

While this paper provides a foundation to further the discussion of compre-

hensive solutions to the front-running problem, there are a number of areas

in which it can be improved upon and extended.

18

Rollup-Based Exchanges As research progresses in the field of zero-knowledge,

a number of DeFi services have launched that use cryptographic tech-

niques like zksnarks to collect, prove, and submit layer-2 transactions

to the main chain in a non-interactive fashion [30]. One such example

is Loopring [31]. As Ethereum moves towards a sharded POS sys-

tem and attempts to incentivize the use of layer-1 as a data-availability

layer [32], it will be important to study how front-running targets these

rollup-based exchanges.

Algorand Implementation With Algorand’s open-source implementation

widely available via Github [33], it would be a valuable study to imple-

ment the orderer role on top of the existing Algorand network. This

way, various ordering consensus solutions could be benchmarked to de-

termine their effects on the cost of consensus.

7 Conclusion

This paper began by outlining the problem of front-running and the dan-

ger it poses to modern blockchain networks. This problem extends beyond

simple arbitrage opportunities, and is part of a larger classification of Miner-

Extractable Value, whose implications threaten the fundamental structure

and security guarantees of various protocols. This work provided a collec-

tion of background information to assist in better defining the issue, along

with a series of proposed categories that can be used to evaluate solutions.

19

Additionally, this paper covered a number of systems that aim to address

front-running and evaluated them on their ability to resolve the issue.

Finally, this paper outlined a system that could properly combat the issue

of ordering transactions, thus negating the effects of MEV and front-running.

This paper does not define complete network specifics for such a system, but

instead summarizes how such a system could be constructed using modern

tools from related works. Overall, the author hopes that the definition and

frameworks defined here can be used to further the conversation on finding a

proper, long-term solution to front-running and its impacts on the blockchain

ecosystem.

20

8 References

[1] Front-running; an Unethical Behavior, Sri Lanka SEC, Sep. 2012. [On-

line]. Available: http : / / www . cmic . sec . gov . lk / wp - content /

uploads/2012/09/Front-running.doc-an-Unethical-Behavior.

pdf.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Tech.

Rep., 2009. [Online]. Available: http://www.bitcoin.org/bitcoin.

pdf.

[3] V. Buterin, “Ethereum white paper: A next generation smart con-

tract & decentralized application platform,” 2013. [Online]. Available:

https://github.com/ethereum/wiki/wiki/White-Paper.

[4] “Cryptocurrency Global Charts,” CoinGecko. (2021), [Online]. Avail-

able: https://www.coingecko.com/en/global_charts.

[5] C. Doughtery and G. Huang, “Mt. Gox Seeks Bankruptcy After $480

Million Bitcoin Loss,” Feb. 2014. [Online]. Available: https://www.

bloomberg.com/news/articles/2014-02-28/mt-gox-exchange-

files-for-bankruptcy.

[6] “Ethereum Average Block Time,” Etherscan. (2021), [Online]. Avail-

able: https://etherscan.io/chart/blocktime.

[7] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Con-

cepts, 7th. McGraw Hill, 2020, ch. 26, Blockchain Databases.

21

[8] “Uniswap,” Uniswap. (2021), [Online]. Available: https://uniswap.

org/.

[9] “Sushiswap,” Sushiswap. (2021), [Online]. Available: https://sushi.

com/.

[10] N. Szabo, “Formalizing and Securing Relationships on Public Net-

works,” 2021. [Online]. Available: https://firstmonday.org/ojs/

index.php/fm/article/view/548/469.

[11] E. Felten, “Mev auctions considered harmful,” Medium, Tech. Rep.,

2020. [Online]. Available: https://medium.com/offchainlabs/mev-

auctions-considered-harmful-fa72f61a40ea.

[12] K. Qin, L. Zhou, B. Livshits, and A. Gervais, “Attacking the defi

ecosystem with flash loans for fun and profit,” CoRR, vol. abs/2003.03810,

2020. [Online]. Available: https://arxiv.org/abs/2003.03810.

[13] P. Daian, S. Goldfeder, T. Kell, et al., “Flash boys 2.0: Frontrunning,

transaction reordering, and consensus instability in decentralized ex-

changes,” CoRR, vol. abs/1904.05234, 2019. arXiv: 1904.05234. [On-

line]. Available: http://arxiv.org/abs/1904.05234.

[14] M. Carlsten, H. Kalodner, A. Narayanan, and S. M. Weinberg, “On the

instability of bitcoin without the block reward,” ACM CCS, pp. 154–

167, Oct. 2016.

22

[15] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is

vulnerable,” Cornell University, Tech. Rep., 2014. [Online]. Available:

https://arxiv.org/pdf/1311.0243.pdf.

[16] M. Kelkar, F. Zhang, S. Goldfeder, and A. Juels, “Order-fairness for

byzantine consensus,” Tech. Rep., 2020. [Online]. Available: https:

//ia.cr/2020/269.

[17] R. Khalil, A. Gervais, and G. Felley, “Tex - a securely scalable trustless

exchange,” IACR Cryptol. ePrint Arch., vol. 2019, p. 17, 2019. [Online].

Available: https://ia.cr/2019/265.

[18] “Flashbots relay.” (2021), [Online]. Available: https://docs.flashbots.

net/flashbots-protect/overview.

[19] “Flashbots auction.” (2021), [Online]. Available: https://docs.flashbots.

net/flashbots-auction/overview/.

[20] T. Rocket, M. Yin, K. Sekniqi, R. van Renesse, and E. G. Sirer, “Scal-

able and probabilistic leaderless BFT consensus through metastabil-

ity,” CoRR, vol. abs/1906.08936, 2019. [Online]. Available: http://

arxiv.org/abs/1906.08936.

[21] “Eth2 upgrades,” Ethereum. (2021), [Online]. Available: https : / /

ethereum.org/en/eth2/.

[22] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:

Scaling byzantine agreements for cryptocurrencies,” Shanghai, China,

23

Tech. Rep., 2017, pp. 51–68. doi: 10.1145/3132747.3132757. [Online].

Available: https://doi.org/10.1145/3132747.3132757.

[23] M. Silvio, R. Michael, and V. Salil, “Verifiable random functions,” In

Proceedings of the 40th Annual Symposium on the Foundations of Com-

puter Science (FOCS ‘99), 1999.

[24] Y. Qian, Randao, https://github.com/randao/randao, 2015.

[25] J. R. Douceur, “The sybil attack,” in IPTPS ’01: Revised Papers from

the First International Workshop on Peer-to-Peer Systems, London,

UK: Springer-Verlag, 2002, pp. 251–260, isbn: 3540441794. [Online].

Available: http://portal.acm.org/citation.cfm?id=687813.

[26] A. Juels, L. Breidenbach, and F. Tramèr, “Fair sequencing services:

Enabling a provably fair defi ecosystem,” Chainlink Blog, Tech. Rep.,

2020. [Online]. Available: https://blog.chain.link/chainlink-

fair-sequencing-services-enabling-a-provably-fair-defi-

ecosystem/.

[27] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and ef-

ficient asynchronous broadcast protocols,” in Advances in Cryptology

— CRYPTO 2001, J. Kilian, Ed., Berlin, Heidelberg: Springer Berlin

Heidelberg, 2001, pp. 524–541, isbn: 978-3-540-44647-7.

[28] L. Breidenbach, C. Cachin, B. Chan, et al., “Chainlink 2.0: Next steps

in the evolution of decentralized oracle networks,” Tech. Rep., 2021.

24

[Online]. Available: https://research.chain.link/whitepaper-

v2.pdf.

[29] K. Kursawe, “Wendy, the good little fairness widget,” CoRR, 2020.

[Online]. Available: https://arxiv.org/abs/2007.08303.

[30] “What are zk-snarks?” (2021), [Online]. Available: https://z.cash/

technology/zksnarks/.

[31] W. Daniel, Z. Jay, W. Alex, and F. Matthew, “Loopring: A decen-

tralized token exchange protocol,” 2018. [Online]. Available: https:

//loopring.org/resources/en_whitepaper.pdf.

[32] V. Buterin. “An incomplete guide to rollups,” vitalik.ca. (2021), [On-

line]. Available: https://vitalik.ca/general/2021/01/05/rollup.

html.

[33] “Algorand’s official implementation in go.” (2021), [Online]. Available:

https://github.com/algorand/go-algorand.

25

9 Vita

Jack Byers grew up in Newburyport, Massachusetts, where he lived with

his parents Tracy Byers and Brent Byers. Jack attended Lehigh University

as an undergraduate student, majoring in Computer Science and Business

and graduating with High Honors in January 2021. As an undergraduate

student, Jack worked as a Grader for various undergraduate Computer Sci-

ence courses, and was a P.C. Rossin Engineering Junior Fellow. In this role,

Jack participated in various leadership duties including community outreach

activities, attending panels to answer questions for prospective engineering

students, and giving campus tours. Jack was awarded the Presidential Schol-

arship from Lehigh, and subsequently enrolled in the Master of Science in

Computer Science program at Lehigh University. He began this program in

January 2021, and graduated a year later following the Fall 2021 semester.

As a graduate student, Jack worked as a Graduate Assistant for the CSE297:

Blockchain Algorithms & Systems course. Additionally, Jack worked in the

Scalable Systems & Software Research Group at Lehigh, studying under Pro-

fessor Hank Korth. Following graduating, Jack intends to work as a Software

Engineer in the distributed systems field.

26

