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Abstract

Both transparency and privacy are important properties in most any information-management applica-
tion, yet they are in many ways inherently opposed to each other. The tradeoff between these two goals is
typically intermediated by a trusted system or organization. The resulting tradeoff is only as meaningful
as the level of trust in the intermediary. Blockchains provide a decentralized single source of truth that
allows for the reduction or elimination of the need for trust. This paper explores the options in trading
off transparency and privacy in a blockchain database. It also considers the closely-related concepts of
accountability and auditability and explores how cryptographic techniques allow the disclosures needed
for regulatable information systems while preserving a high degree of privacy.

1 Transparency Versus Privacy and the Role of Trust

In a traditional enterprise information system, the database is the final source of truth. The data in the database
are closely guarded by access controls and integrity checking. Privacy regulations often apply to the use of
data (examples include the U.S. HIPPA and FERPA regulations for health and education records respectively).
Transparency regulations are exemplified by requirements that enterprises provide financial statements at specific
intervals with specific content and by requirements that enterprises disclose to each customer what data they hold
on that customer. Despite these requirements, the entire process depends on a strong degree of trust in enterprises
to provide consistent and truthful disclosures. Ensuring truthfulness requires an audit of enterprise data that, in
turn, mandates further disclosures at least to the auditors. Increasing data disclosure can compromise privacy.

The blockchain properties of irrefutability, immutability, and anonymity [18] offer useful tools in managing
the tradeoffs among privacy, transparency, and trust. However, much depends on how those tools are used. A
simple move to a blockchain database presents a variety of challenges. A public blockchain is public to all.
The only secret is the mapping between blockchain IDs and the identity of the corresponding real-world person
or organization. That mapping can often be determined by correlation of on-chain and off-chain activity. The
primary value of a blockchain in a transparent, privacy-preserving information system is its role as a trusted
source of truth. The “truth” stored on that blockchain can take a variety of forms. From a database standpoint,
the most important stored data are cryptographic commitments to protected data (using Merkle trees [16]) whose
contents can be disclosed in part or in aggregate with a proof of the correctness of such disclosures. In such
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a system, the blockchain holds mainly commitments. Data themselves are stored off-chain at much lower cost
than on-chain storage.1

Disclosure of data is not the only trust consideration. When the disclosure is some function computed over
the actual full dataset, one must trust the agent who did the computation. A flawed computation from correct
data is of no more use than inaccurate data. Thus, beyond data, one must consider the provenance of data, that
is, what data were used in the computation and what code was used to do the computation. Provenance in data
has been studied at length for well over a decade [7]. Zero-knowledge proofs[2] (henceforth, ZK-proofs) are a
cryptographic method for allowing a verifier to validate the correctness of an execution without having to know
the actual data on which the execution operated. This makes it possible to prove that the disclosed result was
produced by a specific program running on the same dataset to which a commitment was made. No information
need be revealed about the data other than the result itself. The combination of provenance management and
ZK-proofs of execution enable transparent trust not only in data but also in how those data were generated.

Our discussion of blockchain and database transparency is thus largely focused on trust. The ability of a
blockchain to move the focus of trust from centralized authorities to a decentralized consensus creates trust in a
process rather than in an opaque institution. This re-focusing of trust can revolutionize virtually all information-
driven applications. A few examples follow:

• Supply chain: Businesses enter into supply-chain agreements via a legally binding contract. Traditional
day-to-day tracking of those relationships either depends on a trusted member of the chain storing data or
on a collection of separately managed repositories. A blockchain-based supply-chain information system
replaces that with cryptographic signatures[8] for irrefutability, and verifiable, distributed updates for
immutability. Trust in the final-product producer is limited only to that firm admitting the right set of
users to the system. The blockchain is a single source of supply information that enables fast, effective
product recalls with no “finger pointing” among suppliers trying to blame each other for supplying a
defective component.

• Real assets: Governments maintain trusted records of asset ownership (real estate, vehicles, etc.). These
systems require trust not only in government but also in the controls implemented by government on
their databases. Each transaction becomes a complex process of validation of identity – of the parties
involved and of the asset involved. In a blockchain-based system, the only function the government needs
to provide is a single, permanent mapping between the real asset and a unique blockchain token (that is,
a non-fungible token, or NFT2). Transactions regarding asset ownership then become simple blockchain
transactions requiring no central intermediation by government. The amount of trust left to a central
institution is limited to maintaining the physical-asset-to-NFT mapping.

• Market making: The creation of markets for trading stocks, exchanging currencies, etc. is a large,
slow, high-overhead business. Most New York Stock Exchange trades take two business days to settle.
International funds transfer via the SWIFT system may be anything but what that name suggests. The
SWIFT system is a messaging system among correspondent banks, with funds transfers following the
messaging. The process can still take days.

In contrast, competing blockchain systems in this space take seconds (e.g., Stellar[13] and Ripple). Au-
tomated market-makers adjust prices with each trade. Automated arbitrageurs maintain price-equivalence
across markets. No institution needs to be trusted; trust is in only publicly readable code.

1On-chain storage costs vary. On the Ethereum chain, based on gas price and ETH prices at the time this paper was written, storing
1MB of data on-chain would have cost about 30000 US dollars. Decentralized storage services like Filecoin employ cryptographically-
secured off-chain storage.

2To be clear, our focus here is about assets like houses and cars, not cryptokitties, cyberpunks, bored apes, or something similar.
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• Lending: Much like market-making, an automated system can manage real-time interest rates both for
lenders and borrowers. Liquidators earn a fee for managing loans that become under-collateralized and
doing so in an automated manner.

The list could go on. In each case, there is a gain in speed from taking humans out of the transaction path,
and a gain in trustlessness by removing or reducing the need to trust institutions whose operation is opaque.
Open-source security replaces institutional trust and “security by obscurity.”

In what follows, we explore the implications of blockchain technology on traditional information-based
applications from the standpoints of transparency, privacy, and trust.

2 Hiding Information in Public View

Implementing personal and business interactions require selective, limited disclosure of information. Disclo-
sures may be limited in content and scope for a variety of sound reasons. For example, one does not publish
one’s salary, net worth, or medical history on one’s web site, yet there are cases where certain disclosures are re-
quired. The technology and mathematics that has come together in blockchain systems enables separate, limited
disclosures. Furthermore, these capabilities allow one to prove independent disclosures to be consistent with
each other.

2.1 Securing Data Using a Merkle Tree

One key to information hiding is cryptographic hash functions, which have the property that although it is
relatively easy to compute H(x), given a value y, it is infeasible, given y, to find an x such that H(x) = y.
Here, “infeasible” means that is strong evidence that there is no better algorithm to find x than guessing. Standard
cryptographic hash functions have ranges on the order of 256-bit integers, meaning the likelihood of a successful
guess is virtually zero. Blockchains use this to include in each block the hash of the prior block, making it
infeasible to modify a block without modifying subsequent blocks. Merkle trees[16] create a tree structure of
nodes that contain hashes of their children, down to leaves that hold actual data. The root of a Merkle tree
(referred to as a “Merkle root”) is thus a hash of the full dataset. The tree structure and the associated algorithms
allow one to to prove the a single data item is, or is not, a member of the dataset, without disclosing anything
more about the overall data in the dataset.

Placing a Merkle root in a transaction on a public blockchain creates a signed, public commitment by a user
to a dataset without revealing anything about the dataset. Subsequently, that user can reveal specific data items
(say to a tax authority) and show that those items are in the dataset to which a public commitment had been
made. A future disclosure, if needed, can be proved similarly to be from that same base dataset. The result of
this combination of Merkle trees and blockchain allows for a framework for selective information disclosure
while ensuring privacy of associated data.

2.2 Proving Execution of Code Using Zero Knowledge

The selective-disclosure capability enabled by Merkle trees does not address transparency fully. Oftentimes,
what is desired is aggregate reporting regarding a dataset rather than just disclosure of a few specific elements
of that dataset. A Merkle tree alone cannot prove anything about an aggregation of data unless one is willing to
disclose every data item that went into that aggregation. A better compromise between privacy and transparency
would be achieved if one could show that an aggregate report was generated from a base dataset to which a
public cryptographic commitment had been made, without actually disclosing any members of the underlying
dataset. To state that precisely, let D be a dataset stored privately but with a Merkle root M published on a public
blockchain. Let P be a program computing an aggregate report, and let R = P (D) be the report generated when
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running P on dataset D. Using a ZK-proof, it is possible to prove that report R was generated, using program
P , from a dataset for which M is the Merkle root. The result of this is that the user has disclosed only the
actual report R, the report-generating software P, and the Merkle root M of the input. Neither the input data
themselves (D) nor the details of this particular execution of P are disclosed, only the ZK-proof. It is relatively
easy computationally to verify a ZK-proof, meaning that it is practical to verify aggregate reports based on a
standard reporting methodology without the need to know anything about the underlying data. If there is a future
need to audit that report, specific data from the underlying dataset can be revealed on demand without needing
to reveal anything more than the minimum requested.

2.3 Transparent Provenance of Data

Generalizing from the above observations, one can consider a sequence of actions that lead to an action or to
the generation of certain data items. Beyond just the certification of a single aggregate report, one can certify
a sequence of events and prove in a publicly verifiable manner how the end result was obtained. The result is
that transparency is not only about the current state of the database but also about the means through which
the current state was generated. Such transparency can result in trustworthy information versus information
based on trust in a centralized information provider. This high degree of transparency underlies the concept of
Web 3, in which users control their own data and their exchange of data, based on an underlying blockchain
infrastructure. The Web 3 vision stands in contrast to most current web-based interactions (referred to as Web 2)
in which centrally managed search engines, social networks, and information providers serve as intermediaries
controlling user access to and interpretation of data.

This level of transparency allows for a public proof of how products are sourced. With a blockchain, rather
than a corporation or government, serving as the central source of truth, one can provide a public proof that
an end product being sold to a consumer arrived on the shelf via a validated supply chain in which the work-
ers involved in producing the product were paid a fair wage. Starting from wages paid on a blockchain via
cryptocurrency, through transfers in a supply chain documented in signed blockchain transactions, to the end
consumer’s purchase, there can be a public verification of the provenance of the product and the data related
to it. There are many technical issues in getting to this point (including identity, which we discuss below in
Section 4), and a variety of prototype projects underway, including one involving Lehigh Blockchain students,
a local blockchain firm, and a Central American coffee producer with the goal of certifying fair-trade coffee on
a blockchain.

A publicly verifiable proof of provenance is critical component of transparency. Given that transparency, the
next problem is the evaluation of that provenance to determine whether it meets standards of correctness in the
flow of data and work. This may seem not to be a major concern in the report-generation examples we have seen
so far, but can be a larger problem in other cases, depending on the application.

2.4 Challenges

The above discussion of the possibilities of an apparently ideal mix of privacy and transparency does have its
limitations. First, the viability of using a Merkle tree depends on agreed-upon and strict data formats. Changing
even a bit in a data value changes its hash unpredictably. Adherence to such a specific, detailed degree of
standardization may be challenging in practice. To test the practicality of the requisite standarization, we are
currently prototyping a design of such a framework to automate major parts of accounting and audit.[11]

Another serious limitation is the difficulty in generating ZK-proofs efficiently. To generate a proof, one
must compile the program into a low-level language, typically one consisting of simple arithmetic circuits (of
the form A op B = result). An execution is represented as a polynomial over the program variables and tem-
porary variables in the compiled code. Each statement in the execution defines a constraint on that polynomial.
Finding these high-degree polynomials subject to the massive number of constraints is a huge computational
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problem. Production zero-knowledge systems have constraint sizes in the tens of millions. Billions (or more)
are envisioned in future applications. Fortunately, the computations are parallelizable. In [24], a parallelized,
ASIC-based approach is presented. As ZK-proofs become a widely used tool, not only for the transparency and
privacy issues we discuss here, but also for blockchain performance acceleration, commodity parallel hardware
such as GPUs are a promising tool for ZK-proof generation. ZK-proof computation moves from a numerical
computation challenge to a database-style challenge when one considers the sheer volume of constraint systems.
GPU parallelization alone is unable to overcome the performance impact of secondary-storage bottlenecks of
large constraint systems. An alternative approach of nested parallelism using multiple GPUs and data sharing
via RDMA is needed to exploit the parallelism of this database-scale problem[19].

3 Digital Currency

Although most modern financial transactions are processed digitally, physical cash and checks still are in wide
use. Taking the last steps in a full transition to digital currency presents a variety of data management challenges
and opportunities. One of the most notable opportunities is making bank-like service available to vast number
of unbanked individuals.3 We explore first data issues in a government-sponsored digital currency, referred to
as a central-bank digital currency(CBDC). Next, we explore stablecoins, private currencies that aim to track the
value of a government-backed fiat currency.

In both cases of digital currency, we face tradeoffs among transparency, privacy, regulatability, and perfor-
mance.

3.1 CBDCs

The concept of a digital currency issued by a government central bank is gaining global attention[17]. The
finance and policy details are beyond the scope of this paper, but the technical options available in CBDC
applications serve to illustrate the tradeoffs among transparency, privacy, and regulatability.

At one end of the spectrum is the approach taken by the People’s Republic of China[9], in which cur-
rency management is structured in a manner closer to a centrally administered database than to a decentralized
blockchain. There, techniques associated with blockchains, such as digital signatures, are employed instead
towards the goals of centralization. Other national central banks are studying digital currencies, many from a
more decentralized standpoint. Of note is a recent statement by the U.S. central bank, the Federal Reserve[4],
and the possibilities of achieving the benefits of some degree of decentralization similar to the current cash-
based system[10]. Private currencies have launched as well, most notably Libra, which began with the backing
of major financial (and other) firms, but quickly lost favor (despite its technical strengths – see, e.g.[22]) due
to opposition from central banks, government leaders, and others. A key lesson from the Libra debacle is the
need for digital currency solutions not only to be technically sound but also to provide policy makers with the
politically desired degree of oversight and policy options.

Underlying all of these developments are database-centric issues of transparency and privacy. Regulation
aimed at avoiding money laundering, “know-your-customer” rules aimed at avoiding funding illicit organiza-
tions, etc., require some level of disclosure of financial transactions. However, people generally seek to have
a strong degree of privacy in their personal finances. The technical challenge here is to generate the requisite
reporting and oversight while limiting not only the amount of personal data disclosed but also to whom those
disclosures are made. Here, again, we see the concept of selective, limited disclosure that we discussed in
Section 2.

3World Bank[20] data indicates that roughly 1.7 billion people globally are unbanked. While most are in the underdeveloped world,
the problem is widespread. In the U.S., about 6% of the population is unbanked.
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Beyond the use of Merkle trees and ZK-proofs for reporting and disclosure, one must consider the ownership
of the underlying data pertaining to digital-currency transactions. Centralized data ownership mandates a total
trust in that central data owner. Most national financial systems have decentralized data ownership of financial
data (e.g. credit-card companies, payment systems, and banks) with specific personal data available externally
only in aggregate or via subpoena. A consequence of decentralized data ownership is decentralized control over
transaction commit. That suggests use of a blockchain, since decentralized data ownership and decentralized
control are foundations of blockchain systems. Translating those blockchain strengths to a database-scale frame-
work like a digital-currency system is hard. Given the high transaction rates of a global-scale digital currency,
consensus performance needs to be much greater than that of a typical blockchain. Parallelism and concurrency
offer hopes for increased performance, but concurrency leads to further contention and performance impact.
Decentralization of ownership and control was studied in the database research community in the 1980s and
1990s in the context of federated databases, or multidatabases[15, 23], that were assumed to be managed by in-
dependent semi-autonomous organizations. The results of that research present some important insights into the
challenges of partially decentralized digital currencies. Tasks that are relatively simple in centrally administered
distributed systems become hard. Global transaction commit via two-phase commit conflicts with autonomy,
leading to relaxed notions of atomicity[12] including optimistic commit, and semantic correctness as an al-
ternative to serializability. Approximate consistency, however, is not acceptable in a financial system beyond
discrepancies that are deemed “non-material.” Any non-material inconsistencies in a financial system must be
safe from systemic exploitation that generates material inconsistencies.

Offline transactions are an important component of digital currency that presents a largely new problem to
the database community. In the early days of mobile computing, there was discussion of a model of computing
that included “frequent, foreseeable disconnection,”[1] but that concern quickly evaporated with the advent
of virtually ubiquitous connectivity. In the world of personal financial transactions, the demand for offline
transactions is likely to persist. Offline transactions could, admittedly, be for illicit purposes, but they also serve
an important role for personal privacy and convenience. The argument that one should not fear any loss of
privacy ( “if you have nothing to hide...”) would require trust in the government not to implement a surveillance
state. For a currency with global aspirations, it is not reasonable to expect that level of trust to hold throughout
the world. This observation is the key reason why the offline transaction problem is of great importance. The
nation-state competition emerging to unseat the dollar as the global currency is likely to be influenced heavily
the the ease of use of that currency in offline transactions around the world.

Offline transactions are a special case of the well-known issue of network partitioning. The CAP theorem[3]
provides a strong formal statement of the issues in meeting the real-world requirement for offline transactions.
The programmable-money concept[10] provides a model of storing information for subsequent reconciliation.
The solution to this problem relies on a proper abstraction of the provenance of offline payments that allows for
their eventual reconciliation with online data. Stated differently, we seek a form of eventual consistency with
transaction properties that are more ACID-like and less BASE-like.4

While much has been written about the policy and geopolitical issues around digital currency, much remains
to be done in turning the vision into reality. The database community can offer useful insight here not only in
algorithms and systems, but also in providing a conceptual framework to allow policy-makers to make the levels
of privacy and transparency, and concepts supporting data consistency explainable to the public.

3.2 Stablecoins

A stablecoin is a cryptocurrency not issued by a government, but one that comes with a promise that its value
will track a government fiat currency (typically the U.S. Dollar). That “promise” may be based on transparency,
trust, of some combination thereof. Stablecoin implementation can be split into two categories: reserve-backed

4The BASE properties are an analog to the well-known ACID properties of database transactions: Basically Available, Soft state,
Eventually consistent.
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and algorithmic. In a reserve-backed stablecoin, there is a promise that the stablecoin is backed by safe, secure
assets in the underlying fiat currency (bank deposits, government-issued debt, and other assets generally accepted
as low risk). Trust in a reserve-backed stablecoin rests on trust in the promised asset backing. An algorithmic
stablecoin is backed not by fiat currency reserves, but rather an automated system that maintains the fiat-currency
peg by automated trades and/or incenting certain actions by arbitrageurs. Trust in an algorithmic stablecoin rests
on trust in its code and the mathematical model that the code implements.

Assessment of the backing of a reserve-backed stablecoin requires a high-degree of transparency regarding
the holdings of the backer of the stablecoin. While such transparency is desirable, there is a substantial degree of
opacity in the nature of the backing of certain present-day stablecoins. As stablecoins become more systemically
important to the financial system, calls are emerging for bank-like regulation of stablecoins. An alternative
model to traditional regulation is a highly-automated, globally verifiable audit system based on the concepts
of Section 2. Such a model can provide complete transparency for the reserve, with frequent updates to the
audit possible. As stablecoins come under closer public scrutiny, innovative approaches to transparent, publicly
verifiable accounting and audit of stablecoin reserves are likely to become important research topics.

Algorithmic stablecoins do not have a reserve in the underlying fiat currency. Instead the stablecoin is
paired with a second cryptocurrency that serves as a backing to the actual stablecoin. Algorithmically-enabled
exchanges between these two cryptocurrencies aim to keep the stablecoin very close to its fiat peg. This was the
structure of the recently failed TerraUSD UST stablecoin.

MakerDAO and the associated DAI stablecoin is backed by non-fiat overcollateralization and is run by an
automated system implemented in a smart contract as a decentralized autonomous organization (DAO). The
collateral provides a degree of security, but since that collateral is not in the associated fiat currency, there are
risks that are algorithmically mitigated, e.g., by a liquidation mechanism. Such currencies’ transparency is
largely beyond the scope of databases, since the operation is algorithmically driven and thus backed by code
rather than data.

3.3 Security of a High-Value Digital-Currency Database

Our discussion of digital currency has focused on routine transactions and the supporting database. Unlike
enterprise databases (such as those of banks), digital currencies are directly open to the public with little or
no intermediation. This creates a wide range of security vulnerabilities beyond those typically considered in a
database setting. Whereas an enterprise database is private and thus secured by not only database authorization
but also by the operating system’s security and the enterprise network firewalls, a public blockchain is truly
public. Anyone can join. Anyone can submit a transaction. This openness enables not only a high level of
transparency but also a high-level of risk. In a controlled-access database environment, one need not worry
about a denial-of-service attack because there are other mechanisms external to the database to control that. A
digital-currency database is, by its nature, necessarily open and public, yet it presents a high-value target of
attack, for example, by an enemy nation-state.

While it is beyond our scope here to go into the details of security, it is worthwhile to consider the tradeoff
between transparency, privacy, and security for a digital currency. The virtues of a transparent, open digital
currency including global use and banking for the unbanked, create potential openings for a malicious user or
set of users to launch an attack. A permissioned blockchain, as is typical of an enterprise setting, can expel a
malicious member because of the centralization of membership control. Applying that concept to an open digital
currency results in some central authority granting (and, subsequently enforcing) the right of access. Designing
such an authority in a way that makes it highly permissive yet secure requires careful real-time analysis of the
behavior of anonymous users both individually and collectively. This is a hard data-analytics problem in its
own right, but becomes a deep research challenge when coupled with the real-time performance constraints of a
digital currency.

7



3.4 Quis custodiet ipsos custodes?

This famous quote (“who will guard the guards themselves?”) from the Roman poet Juvenal is highly relevant
in a large-scale financial system. A node that processes digital-currency transactions may have sufficient knowl-
edge of the overall set of transactions to allow that node to reorder the sequence of events to another correct order
more to that node’s financial advantage. Thus, governance of the system’s consensus mechanism is required to
ensure that not only is consensus reached on a syntactically correct execution, but also that the agreed-upon
execution satisfies broader constraints. Enforcement of global data consistency constraints of this sort was not a
major focus in early blockchain design, and gaps in those constraints have been exploited[6]. Prevention, detec-
tion, and mitigation of such concerns is a further component of the design of consensus mechanisms in financial
systems[5].

4 Identity Management

Identity is perhaps the single largest challenge in blockchain systems that interact with the physical world.
Blockchain IDs identify the submitters of transactions and owners of crypto-assets, but ownership of physical-
world assets must be enforced in the real-world. That requires some level of authority to map physical assets to
blockchain assets (NFTs) and map blockchain identities to actual people or enterprises.

The permanence and universality of blockchain IDs creates an extreme transparency at the potential price
of privacy. Once the mapping between a blockchain ID and an individual is established, that individual’s entire
transactional history becomes public. In the off-chain world, the ubiquity of a government-issued ID (e.g., U.S.
social-security numbers), presents an even greater threat since disclosure of such an ID not only can violate
privacy but also enable identity theft. Matters are less dire in the blockchain world since disclosure of who
owns a blockchain ID does not enable computation of the corresponding private key. Thus the disclosure of the
mapping between blockchain identity and real-world identity impact “only” privacy without enabling forging
of transactions. Nevertheless, the potential of one’s ID being disclosed is a substantial and unrepairable privacy
threat.

The W3C verifiable credentials data model[21] provides a means of creating digital credentials that can be
submitted as proof that the bearer has certain properties or qualifications (e.g., is over 21, is a licensed driver,
holds a specific academic degree). A digital verifiable credential differs from traditional credentials in its use
of cryptographic signatures and zero-knowledge. An issuer can provide a verifiable credential to an individual
and sign it. The individual may then also sign it and present it for whatever purpose. The value of the verifiable
credential rests in its ability to be verified digitally using the public key of each signer. Under such a scheme,
a purchaser of alcoholic beverages could prove age without having to reveal other information (such as driver’s
license number). This verification scheme allows transparent proof that certain regulations, rules, etc. are being
followed without disclosure of personal identifiers.

In the enterprise-blockchain environment, Hyperledger Aries (one of several projects under the Hyperledger
umbrella – Hyperledger Fabric is the most widely known) is a toolkit for the use of verifiable credentials. It is
gaining use in a variety of applications, especially supply chains in which a collection of firms cooperate with
some degree of trust, but not absolute trust.

The ability to infer full provenance of data and the possibility of matching blockchain identity with real-
world identity presents challenges beyond credentials. Consider an employee whose salary is paid in cryptocur-
rency. Each “paycheck” is public on that blockchain, creating the possibility that the employee’s salary could
become public. While salary information is revealed routinely to tax authorities, credit providers, etc., most
individuals would not be comfortable publishing their salaries to the world. This legitimate desire of finan-
cial privacy runs counter to the transparency requirements of regulators seeking to prevent money laundering,
funding of terrorism, etc.
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In the traditional pre-blockchain world, identity management and protection is intermediated by a trusted
provider. For the paycheck example, a bank or other financial institution accepts the payment and credits the
funds to a database it owns and manages. The employees can spend income from that paycheck without there
being any public connection between the paycheck and the spending pattern; only the trusted bank knows.
Blockchains achieve a similar level of privacy by hiding the identity of a party to a transaction. Continuing the
paycheck example, the employee would use one ID to receive pay, then have that ID send the funds through a
transaction privacy tool to several other IDs owned by that same employee. Those latter IDs would be used for
expenditures.

The above example may initially appear perfectly legitimate, but it could be used by a malicious actor
for money laundering. If we assume that our example employee is not a money launderer, but rather just an
individual who does not believe personal finances should be public, we then need a means of allowing that
individual to provide proof of the propriety of transactions to authorities without needed to provide a full public
disclosure. This is yet another example of the need for privacy with selective transparency. Using techniques
similar to those we discussed in Section 2, Tornado Cash (tornado.cash) provides a tool for private transactions
not visible to the public. Tornado Cash offers what it calls a “compliance tool” for a user to obtain a publicly
verifiable proof of the source of specific funds. The user can then (presumably in a private, secure manner)
submit that proof to authorities of the user’s choice. Where this mechanism differs from the use of a traditional
bank is that here, the intermediary (Tornado Cash) obtains no identity information from it users. All it certifies
is a flow of funds among IDs. In our example, the user would have to prove ownership of the IDs to authorities,
which can be done through the verifiable credentials approach discussed earlier.

5 Conclusion

Blockchain-driven information systems provide a foundation for a trust-free or trust-minimized environment for
users to manage the inherent conflicts among transparency, privacy, and regulation/audit. The use of a blockchain
is a necessary but not sufficient feature of such environments. A blockchain provides a crowd-certified source of
truth (and thus trust), but the management of information itself requires further use of blockchain technologies
from the realm of cryptography, including Merkle trees and zero-knowledge.

Initial blockchain applications have been able to succeed with modest transaction performance levels and
modest data volumes. However, enterprise applications are bringing the scale of enterprise databases into the
realm of blockchain-centric transparency/privacy tradeoffs. Similarly, the rise of digital currencies, especially
CBDCs, are soon to generate transactions rates well beyond those of current database applications.

The technical challenges of scaling blockchains to database levels are made greater by the more open, thus
attack-prone, setting of public blockchains. Finding the right tradeoff between the controls of a private, permis-
sioned blockchain, and the social benefits of open access to a financial system is a challenge spanning computer
science and public policy. Blockchain databases present a challenge to the database community to revisit tra-
ditional research issues in a different framework: different computational model, different data structures, and
different target applications.
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