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Accelerating the Plonk zkSNARK Proving System using

GPU Architectures

Tal Derei

May 16, 2023

Abstract

Zero-knowledge proofs (ZKPs) are cryptographic primitives that

enable a prover to convince a verifier that a statement about some se-

cret is true without leaking information about the secret. The prover

ultimately does not reveal anything beyond the validity of the state-

ment itself to the verifier. In recent years, blockchains have been

leveraging the properties of zero-knowledge proofs for private trans-

actions and verifiable outsourced computation, leading to improved

privacy and scalability for various systems and applications. The spe-

cific problem is that the cost of generating proofs is a computationally

intensive task which remains a bottleneck for proving systems, while

verifying proofs is computationally inexpensive and fast. However, the

proof generation process is primarily dominated by operations such as

multi-scalar multiplication (MSM) and number theoretic transforms

(NTT), which happen to be embarrassingly parallel. This paper de-

scribes the hardware acceleration techniques and challenges for con-

structing zero-knowledge proofs using NVIDIA GPUs in the CUDA

programming language.
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1 Introduction

Zero-knowledge proofs enable one party (the prover) to convince another

party (the verifier) they possess confidential information without revealing

said information. For instance, suppose the prover claims to know the pre-

image w of a public hash function H that evaluates to y such that H(w, x) =

y, where witness w and x are private and public inputs respectively. The

prover can convince the verifier of this claim without leaking information

about the private input w. Without ZKPs, the prover would need to disclose

sensitive information like w with the verifier, who can check the prover’s

result by recomputing the hash on w and comparing the outputs. This

naive approach is neither succinct nor work-saving since the verifier needs

to perform work proportional to the size of the original problem in order to

validate the result. The inputs to the program may be intractably large, and

recomputing the hash can be a compute-intensive task.

With ZKPs, the verifier can validate the correctness of the result without

explicitly recomputing the hash. Instead, the prover generates a succinct

zero-knowledge proof ⇡ that shows y was computed correctly, where the size

of ⇡ is small on the order of a few hundred bytes or kilobytes. The size of ⇡

is logarithmic or constant with respect to the problem size depending on the

proof system. The verification time for verifying ⇡ is in the range of a few

milliseconds [1].

The notion of fast verification, independent of the complexity of the orig-
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inal computation, has enabled many practical use cases such as outsourced

verifiable computation, private transactions, decentralized storage, trustless

cross-chain bridges, and more. Notably, scaling solutions like zkRollups [2]

are designed to increase the transaction throughput of Ethereum by outsourc-

ing transaction processing and computation o↵-chain. Every proof generated

o↵-chain proves the correct execution of a transaction in a smart contract,

and many proofs can be batched together and composed into a single proof by

recursively aggregating them in a Merkle-tree [3]. The final proof represents

the correct execution of a batch of transactions, usually in the thousands,

and is verified on-chain. The verifier is encoded as a smart contract that

performs the lightweight proof verification and state updates.

Mina [4] applies these compression techniques to maintain a fixed-size,

22 kB, blockchain that compresses blocks of transactions into a single proof

that validates the entire history of the chain. This allows light clients to

easily synchronize to the latest state of the chain and verify state transitions.

Cryptocurrency exchanges like Binance have also been experimenting with

zero-knowledge for their proof-of-reserve system [5], enabling them to prove

their financial solvency and safe custody of user assets.

In addition to applications related to scalability and compliance, a third

use case has been gaining popularity; private payments on public blockchains.

Zcash [6] emerged as one of the first private cryptocurrencies based on shielded

addresses where the sender and receiver addresses and transaction amounts

are not publicly visible. Similarly, Aztec [6] is a private zkRollup that sup-
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ports encrypted payments by logically separating client-side and server-side

computation. A weak client proves the correctness of a single private trans-

action by generating a proof locally on its machine, and a powerful server

batches these proofs into blocks and validates them for correctness. More

recently, privacy-preserving payment systems that emerged from Zcash have

been expanding to support general private computation. Aleo [7] for example

is an encrypted blockchain that supports an environment for private smart

contract execution.

These use cases are a few examples of how zero-knowledge proofs can

be used, with numerous other possibilities being developed. The domain of

zero-knowledge applications has been steadily growing in complexity, and

consequently, in size. To create a ZKP of a given program, the program is

codified as an arithmetic circuit with gates and wires. The size of the circuit

is quantified by the number of constraints, which define the number of logical

operations in the program. At the current rate of exponential growth, the

highest number of constraints in an application circuit is estimated to reach

240 by 2032 [8]. In 2016, Zcash’s private payments circuit was 1 million,

approximately 220, constraints and required 30 seconds to generate a proof [9].

In 2023, Polygon’s zkRollup circuit [10] requires 127 million, approximately

227, constraints for generating a STARK proof for a batch size of nearly 500

transactions in 2 minutes using a 192-core CPU and 512 GB of memory. The

steady increase in the number of constraints demands more computational

work to construct a proof, resulting in longer proof generation times. The
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use of specialized parallel architectures like GPUs, FPGAs, and ASICs can

dramatically accelerate this process to support larger circuits, lower proof

latency, and cheaper proofs. Hardware acceleration ultimately reduces the

prover cost, defined by the computational cost per transaction, by generating

more proofs in parallel in a shorter period of time.

1.1 Contribution

This work describes a minimal implementation, Cuda-Barretenberg [11], of

an existing general-purpose zero-knowledge proof construction, Plonk, that

takes advantage of GPU hardware acceleration. To accomplish this, Aztec’s

Barretenberg cryptographic library and backend [12] is modified to be com-

patible with GPUs. Barretenberg includes a C++ implementation of Plonk,

while most other implementations are written in Rust. For this reason, Bar-

retenberg was chosen as the focus for GPU acceleration. The majority of the

underlying mathematical structures the proving system operates over, pri-

marily finite field arithmetic and elliptic curve operations, are implemented

on the GPU. The implementation references Cuda-Fixnum [13], a Bignum

fixed-precision SIMD library that targets CUDA, for implementing the multi-

threaded field and curve arithmetic used in computing the MSM and NTT

operations. The multi-scalar multiplication kernel for Pippenger’s Bucket

Method is based on the algorithms used in PipeMSM [14], and was ported

over the BN-254 elliptic curve in order to be compatible with the Barreten-

berg’s proving system. Moreover, a wrapper was created to override the
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existing Barretenberg queue with a carefully designed CUDA pipeline to

perform the proof generation. We further explore unified-memory architec-

tures in order to address memory concerns for programs with exceptionally

large constraint sizes. As of the publication of this thesis, e↵orts to port the

complete prover are still ongoing.

2 Preliminaries

2.1 Overview of Universal zkSNARKs

Zero-knowledge systems require a preprocessing step referred to as a Trusted

Setup Ceremony. The procedure coordinates a distributed multi-party com-

putation among a group of N independent participants. This involves a

round-robin computation where each participant Pi receives a message Mi

from the previous participant Pi�1, contributes their randomness to gener-

ate a new message M 0
i
, and passes M 0

i
to the next participant Pi+1. The

final output is a set of public parameters known as a Structured Reference

String (SRS). The SRS consists of the prover and verifier keys, Sp and Sv,

for generating and verifying proofs. The setup ceremony has a 1-of-N trust

assumption, and is considered secure as long as at least one participant in

the setup has securely destroyed their contributed randomness.

The widely used, but older, Groth16 [15] system requires a new setup,

S(C, r) ! (Sp, Sv), for each circuit C. Per-circuit trusted setups are unfavor-

able because even minor changes to an existing circuit require coordinating
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a new setup. The more recent Plonk proving system [16] requires just one

setup, a universal trusted setup denoted by S = (Sinit, Sindex), that can then

be reused across any set of circuits. This means it can be used to create

proofs for any computation, rather than being specific to a particular circuit.

The universal trusted setup is comprised of a two-step procedure:

• Sinit(�, r) ! PP.

Sinit represents the randomized algorithm for generating the generic

public parameters that can be used for all circuits, where the random-

ness r must be kept secret from the prover. In 2017, the Power’s of Tau

setup ceremony [17] generated these public parameters PP commonly

used in industry.

• Sindex(PP, C) ! (Sp, Sv).

Sindex is a circuit specific step for generating Sp and Sv, where r is

independent of the circuit C. Since the verifier can only operate in

constant or logarithmic time with respect to C, preprocessing the circuit

in this way creates a short summary of C, Sv, that’s easily readable by

the verifier.

Zero-knowledge proofs posses several properties:

• Completeness – A honest prover must be able to prove true state-

ments and convince a verifier.

• Soundness – A prover cannot convince a verifier of false statements

and produce invalid proofs.
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• Zero-Knowledge – The circuit, prover and verifier keys, and proof

reveal nothing about the private witness.

Succinct Non-Interactive Arguments of Knowledge (SNARKs), such as Groth16

and Plonk, are popular zero-knowledge proof systems that exhibit two addi-

tional succinctness properties.

• Small Proof – P (Sp, x, w) ! small proof ⇡.

• Fast Verification – V (Sv, x, ⇡) ! accept or reject ⇡.

2.2 Methods for Proof Generation

We discuss the arithmetization scheme for Plonk, which converts a circuit into

a collection of polynomials. This is loosely termed Plonkish Arithmetization.

Compared to Groth16’s constraint format known as R1CS, Plonk is more

flexible by supporting constraints of degree larger than two.

2.2.1 Plonkish Arithmetization

A program P must first be converted into an arithmetic circuit C composed

of gates and wires. The circuit is internally structured as a Directed Acyclic

Graph (DAG). The gates in the circuit represent either addition or multipli-

cation operations and each gate supports two input wires and a single output

wire. Once the circuit is constructed, the arithmetization process transforms

it into a structured system of polynomial equations. In this process, each

gate in the circuit is associated with a separate equation represented by a
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low-degree polynomial. The set of polynomials that comprises the compu-

tation is known as the constraint system. Each equation in the constraint

system is modeled by a general form:

(QLi)ai + (QRi)bi + (QOi)ci + (QMi)aibi + (QCi) = 0 (1)

where ai, bi, ci 2 FP are the left input, right input, and output wires of the

ith gate in circuit C, respectively, and the finite field FP is of prime order P.

The wires are assignments to the circuit and represent the prover’s private

witness values. The boolean selectors QLi , QRi , QOi , QMi , QCi 2 {0, 1}

represent the ith gate and can be toggled on or o↵ to activate a specific gate.

The selectors encode the structure of the circuit. For instance, an addition

gate is represented as QLi = 1, QRi = 1, QMi = 0, Q0i = �1, and QCi = 0,

which yields the constraint ai + bi = ci. This can be rewritten as ai + bi -

ci = 0, where the sum of the input wires has to equal the output wire. This

constraint needs to be satisfied for that specific gate.

For a circuit with n gates, n constraints must satisfied. Arithmetic cir-

cuits must adhere to two types of constraints: gate constraints and copy con-

straints. Gate constraints enforce the relationship between wires attached to

the same gate, for example ai * bi = ci for a single multiplication gate. Copy

constraints make consistency claims about wires attached to di↵erent gates

in the circuit, for example a1 = c3 where the left wire of the first gate is the

same as the output wire of the third gate. Said di↵erently, copy constraints
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connect wires between disconnected gates and force them to be equal. The

constraints are in place to ensure the gates and wires are evaluated correctly.

We can more easily represent these constraints in matrix form. The con-

straint system of a circuit is modeled as a 2D matrix of rows and columns,

which contains the result of executing the computation and placing interme-

diary wire and gates values into the correct cells.

Table 1: Matrix of Constraints

an bn cn QL QR QM Q0 QC

a(1) b(1) c(1) 1 1 0 1 0
a(2) b(2) c(2) 0 0 1 1 0
a(3) b(3) c(3) 1 1 0 1 0
... ... ... ... ... ... ... ...
a(n) b(n) c(n) 0 0 1 1 0

The matrix in Table 1 consists of finite field elements. Each column can be

considered a length-n vector of field elements, and each row encodes a distinct

constraint in Table 1. Equation (1) can then be rewritten in polynomial form:

QL(x)A(x) +QR(x)B(x) +QO(x)C(x) +QM(x)A(x)B(x) +QC(x) = 0 (2)

Here, the vectors an, bn, cn, QL, QR, QM , QO, QC are now represented in a

single polynomial expression, where A(x), B(x), C(x) are wire polynomials,

and QL(x), QR(x), QM(x), QO(x), QC(x) are gate polynomials [18]. Wire

polynomials encode the user’s input, gate polynomials encode the gate con-
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straints. Permutation polynomials �, emitted from the table below, encode

the copy constraints. Each column vector has been reformulated as a large-

degree polynomial of degree n� 1.

Table 2: Matrix of Polynomials

A(x) B(x) C(x) QL(x) QR(x) QM(x) Q0(x) QC(x)

A(x1) B(x1) C(x1) 1 1 0 1 0
A(x2) B(x2) C(x2) 0 0 1 1 0
A(x3) B(x3) C(x3) 1 1 0 1 0
... ... ... ... ... ... ... ...

A(xn) B(xn) C(xn) 0 0 1 1 0

In order to represent the column vector an as a polynomial A(x) that passes

through all of the points in an, Lagrange Interpolation is used. Consider for

instance the column A in the table where the ith element of A corresponds

to the evaluation of A(xi) = ai, where xi 2 FP. This means that evaluating

the polynomial A at a specific xi will yield the vector value ai for each

cell in column A. The set of xi’s is known as the evaluation domain H,

which is the set of points that the polynomial A(x) is evaluated over. More

precisely, H = {!0,!1, ...,!i} is the set of nth roots of unity, where !n = 1.

We associate each row i with a unique root of unity !i, and each point in

polynomial A(x) is represented in evaluation form by evaluating it on !i

[19].
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2.2.2 Lagrange Interpolation

Lagrange Interpolation is a method where given a set of n arbitrary points,

it constructs a polynomial F (x) that passes through all points. Said another

way, for an arbitrary n-dimensional vector of field elements v 2 FP, there

exists a unique univariate polynomial F (x) with degree n � 1 that passes

through the points (i, vi) for i = 1, 2, ..., n. Lagrange interpolation is a two-

step procedure [20]:

1. Construct a Lagrange Basis, which is a set of n polynomials of degree

n � 1. Each polynomial Li(x) evaluates to 0 at all points except for

one, where it evaluates to 1.

Li(x) =

8
>><

>>:

0, if x = xj, j 2 [n], j 6= i

1, if x = xi

(3)

The individual polynomials Li(x) can be constructed as follows.

Li(x) =
Y

0j<n,j 6=i

x� xj

xi � xj

(4)

At this point, we have n polynomials L0(x), L1(x), ..., Ln(x). Each of

these polynomials is evaluated over the roots of unity H = {!0,!1, ...,!n}.

Consider for example the unique polynomial L0(x) which can be de-

composed into its component parts L0(!0) = 1, L0(!1) = 0, ..., L0(!n)

= 0 respectively. Here the 0th lagrange polynomial evaluates to 1 on

12



the 0th root of unity, and 0 at every other point.

2. Scale each lagrange polynomial Li(x) to a target value and sum them

together to express the final polynomial F (x).

F (x) =
n�1X

i=0

Yi ⇤ Li(x) (5)

For each column in the matrix table, the vector is converted into a polyno-

mial. However, there is a more e�cient method called Number Theoretic

Transforms, which we discuss in section 4.2.

2.2.3 Quotient Polynomial

The set of polynomials discussed capture the execution trace of the original

computation. In order to prove the execution trace is valid, all the constraints

arising from the circuit must be satisfied. Thus far, we have converted the n

individual constraint equations,

QL(!i)ai + QR(!i)bi + QO(!i)ci +QM(!i)aibi + QCi = 0

into a single general polynomial equation that can be formally expressed as,

QL(x)A(x) +QR(x)B(x) +QO(x) +QM(x)A(x)B(x) +Qc(x) =  i(x) (6)

The set of constraints is denoted by  i(x), and  i(x) = 0 for all X 2 the

domain H = {!0,!1, ...,!n} in order for the constraints to hold.
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We have n constraint polynomials  0(x),  1(x), ...,  n�1(x) that need to

evaluate to 0. As the execution trace of the computation becomes exceed-

ingly large, checking that each individual constraint holds becomes compu-

tationally challenging. Instead of checking each constraint individually, the

constraint checks can be compressed into a single check. We batch them

together into a single constraint polynomial, denoted by  (x), by sampling

a random field element � 2 Fp and then taking a random linear combination

of the individual constraints [21]:

 (x) = �0 ⇤  0x+ �1 ⇤  1(x)...�
n�1 ⇤  n�1(x) (7)

The constraint  (x) evaluates to 0 over the domain if all the individual

constraints do. Therefore, the constraints satisfied for each row means that

 (!i) = 0 for all inputs.

So far we have compressed all the constraints into a single polynomial

 (x). To prove  (x) holds for each row in the matrix table with a single

check, we can derive an equivalent statement which is computationally easy

to check:

 (x) = Z(x) ⇤Q(x) (8)

where Q(x) is known as the quotient polynomial and Z(x) is known as the

vanishing polynomial. The vanishing polynomial is shorthand for xn � 1,

which can be expanded and evaluates equivalently to (x�!1)(x�!2)...(x�
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!n). This represents the minimal polynomial that evaluates to 0 for each !n

in the evaluation domain since it includes elements of H as roots.

Z(x) =
Y

i2[n]

(x� !i) (9)

We can verify the correctness by performing the division  (x)
Z(x) . The constraint

system is satisfied if  (X) is divisible by Z(x), and this allows us to perform n

constraint checks using a single polynomial division check [17]. The quotient

polynomial can be rewritten and computed as follow.

Q(x) =
 (x)

xn � 1
=
�0 ⇤  0(x) + �1 ⇤  1(x)...�n�1 ⇤  n�1(x)

xn � 1
(10)

In summary, zkSNARKs like Groth16 and Plonk are protocols to prove

a polynomial  (x) = 0 8 x 2 H, where the domain H = {!0,!1, ...,!n}.

The prover is ultimately trying to prove to the verifier that the polynomial

is vanishing in the domain of H. Proving that statement is equivalent to

proving that polynomial is divisible by the vanishing polynomial Z(x) which

includes elements of H as roots. This equivalently reduces down to instead

proving that  (x) = Q(x) · Z(x) 8 x 2 H. The prover then commits to poly-

nomials  (x) and Q(x) and sends them to the verifier. Instead of the verifier

naively checking the polynomial over the entire domain H, a more succinct

verification method exists. The verifier samples a random field element r and

the prover evaluates two polynomials  (r) and Z(r) at that random point.
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Prover sends back f(z) and t(z) evaluations and proof that these evalaution

is correct. The verifier checks whether  (r) = Z(r) * Q(r) [22].

The polynomials described here, however, are too large to send to the

verifier. The Plonk protocol uses a commitment scheme, discussed in the

next section, for compressing the polynomials into succinct representations

called commitments that can be e�ciently evaluated by the verifier.

2.2.4 KZG Polynomial Commitments

In zkSNARKs, a polynomial commitment scheme is a cryptographic protocol

that enables a small, O(1) sized-object to represent an arbitrarily large O(N)-

sized object like a large polynomial of degree d. The degree d can range in the

hundreds of millions for large circuits. The Kate Polynomial Commitment

scheme (KZG10) was introduced by Kate, Zaverucha and Goldberg [23] in

2010. KZG10 has strong security properties, enabling proving systems to

have a constant proof size and verification time, regardless of the proven

statement’s size.

• Hiding - A prover commits to a large secret polynomial P of degree

d, where the commitment C represents P as a single elliptic curve

point. The commitment hides P such that the verifier does not learn

anything about the original polynomial P . The prover can later open

the committed polynomial at a random evaluation point � chosen by

the verifier, for example showing P (�) = y without leaking information

about P .
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• Binding - The prover cannot cheat by changing the original polyno-

mial P after sending the commitment C to the verifier.

The KGZ protocol provides a way for a prover to succinctly commit to a set of

large-degree polynomials and produce a small proof that verifies the correct

execution of these polynomials. The prover starts by sending the verifier a

commitment C associated with polynomial P . The verifier in turn can only

ask the prover to check the commitment at a single random challenge point

�. The prover opens the commitment C at �, outputting the evaluation

P (�) = y. The prover then generates a proof of knowledge ⇡ that shows

the commitment to the polynomial is valid and the original polynomial P

evaluated at �, P (�), yields the correct output. These steps are described in

greater detail as follows.

1. Setup – A Trusted Setup ceremony is performed to generate the public

parameters used in the commitment scheme. During the setup phase, a

random element ↵ is sampled from the prime finite field FP. The public

parameters that comprise the Structured Reference String (SRS) are

represented by {H0 = G,H1 = G↵, H2 = G↵
2
, ..., Hd = G↵

d}. G is a

generator, and there are d+ 1 elements comprising the public parame-

ters [1]. The parameter d represents the upper bound for the problem

size supported by the trusted setup. For Aztec’s ignition ceremony, d

is around 100 million constraints.

2. Generate Commitment – The objective is for the prover to compute
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the commitment C to a polynomial P evaluated at the secret point ↵,

where C = GP (↵) 2 G. The resulting commitment C is a single curve

element. However, since ↵ was deleted, the prover cannot directly

compute GP (↵) and uses the public parameters PP to commit to the

polynomial instead. Let P (x) = P0 + P1X + ... + PdXd, then the

commitment C to polynomial P is computed by C = P0H0 + ... +

PdHd = P0G + P1G↵ + P2G↵
2
+ ... + PdG↵

d
= GP (↵) Generating a

commitment to an arbitrary polynomial can be reformulated as:

P (x) =
n�1X

i=0

aiX
i (11)

where ai are the coe�cients of the polynomial P and X i are values from

the SRS public parameters. To perform this operation, the multi-scalar

multiplication algorithm detailed in Section 3.2 is required.

3. Generate Proof – The prover needs to demonstrate to the verifier

the polynomial P evaluated at a random evaluation point � chosen by

the verifier yields the correct output, P (�) = y. Equivalently, we can

define another polynomial G(x) = P (x) � y with root at x = � which

evaluates to 0. Since G(x) is divisible by the linear polynomial (X��),

there must exist a quotient polynomial Q(x) such that Q(x) = P (x)�y

X�� .

Therefore, the existence of (X � �) as a factor of P (x) � y confirms

P (�) = y. Q(x) exists if and only if P (�) = y, and its existence serves

as the proof.
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After computing the quotient polynomial Q(x), the prover generates a

commitment C 0 to the quotient polynomial and sends it to the verifier.

The commitment C 0 represents the evaluation proof ⇡ [24]. Impor-

tantly, the size of the proof is a single curve element and is independent

of the degree d of the polynomial.

⇡ := C 0 2 G (12)

4. Verify Proof – The verifier uses elliptic curve pairings to check (1)

the prover has evaluated the polynomial P correctly, and (2) the com-

mitment C is associated with the Polynomial P. The verifier either

accepts or rejects the proof ⇡.

In summary, the prover will commit to wire polynomials A(x), B(x),

and C(x) that encode the user’s private inputs and gate polynomials QL(X),

QR(X), QM(X), QO(X), QC(X) that encode the structure of the circuit. The

prover will also commit to permutation polynomial �1(X), �2(X), �3(X) that

encodes all copy constraints to ensure consistency between wires of di↵erent

gates. The quotient polynomial Q(x) summarizes the entire circuit, and

computing the commitment to Q(x) along with an evaluation proof serves as

the proof ⇡.
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2.3 Plonk

Plonk (Permutations over Lagrange-bases for Oecumenical Non-Interactive

Arguments of Knowledge) is a newer zkSNARK construction developed at

Aztec in 2019 by Ariel Gabizon, Zachary J. Williamson, Oana Ciobotaru

[16]. Plonk is a multi-round zero-knowledge protocol between a prover and

verifier with a universal and updatable trusted setup. The proof generation

process progress in five rounds, producing a message at every round. The

messages collectively make up the proof. Plonk requires calculating 9 scalar

multiplications which domainate the prover’s work. Additionally, the proof

size is 9 G1 group elements for a total of approximately 400 bytes and 6

milliseconds to verify.

In recent years, more performant proving systems like TurboPlonk and

UltraPlonk have been developed. TurboPlonk generalizes the constraint sys-

tem by introducing custom gates that represent complicated statements with

fewer gates, for expressing the same computation, in a circuit [7]. Cus-

tom gates represent more complex operations in a single gate, reducing the

number of total gates in the circuit. UltraPlonk extends this TurboPlonk

construction with precomputed lookup tables, enabling a prover to prove a

witness exists in a table instead of proving the computation itself, which

ultimately reduces the circuit size.

Our experiments pertain specifically to standard Plonk and the techniques

for accelerating the prover will be discussed in the next sections.
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3 Techniques for Proof Acceleration

Most SNARKs rely on similar primitives for generating proofs: multi-scalar

multiplication (MSM) over elliptic curves and number theoretic transforma-

tions (NTTs) over large finite fields. MSM involves multiplications between

large vectors and dominates approximately 85% of the proof-generation time

in Plonk, and NTTs involve complex polynomial calculations and dominate

approximately 10% of the run-time [14]. MSMs are highly parallelizable and

have predictable memory access patterns, but require a high amount of raw

computation and memory. NTTs frequently shu✏e data during the runtime,

have non-uniform memory access, and require high memory bandwidth [25].

Implementing conventional algorithms like Pippenger’s Bucket Method [26]

for multi-exponentiation or Cooley–Tukey algorithm for NTTs [27] on par-

allel architectures like GPUs can dramatically accelerate these operations

by running them over thousands of CUDA cores. These techniques will be

discussed in more detail in Sections 3.1 and 3.2. Section 3.3 will discuss

the specific parallel hardware architectures, including GPUs, FPGAs, and

ASICs on which these operations are performed, and a discussion of prior

works. Section 3.4 will discuss our GPU-based Plonk implementation.

3.1 Number-Theoretic Transform

Recall the wire polynomials A(x), B(x), C(x) are constructed by perform-

ing a series of Lagrange Interpolations. Recall given a set of n points, La-
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grange Interpolation constructs a polynomial F (x) of degreeN�1 that passes

through all of them. This algorithm incurs a deficient O(n2) time complexity,

prompting Number Theoretic Transforms (NTTs) with O(nlogn) complexity

to be employed instead.

The Number-Theoretic Transfer (NTT) algorithm is a variation of the

Fast-Fourier Transform (FFT) algorithm that enables e�cient conversions

between di↵erent polynomial representations like coe�cient and evaluation

forms. These conversions are necessary because arithmetic like multiplica-

tions among large polynomials are more amenable in evaluation form since

they can be performed in log-linear time. While traditional FFTs are de-

fined over complex numbers, NTTs are defined over finite fields F with a

multiplicative subgroup H of order n = 2k. The subgroup H corresponds to

the domain consisting of the nth roots of unity H = {!0,!1, ...,!n} and are

known as the twiddle factors. The most common algorithm for performing

these conversions is Cooley-Tukey which uses a divide-and-conquer approach

to recursively decompose the NTT of size N into smaller size N

2 by per-

forming a butterfly operation at every stage. Formally we can define NTT

as two N -sized vectors X and Y where Xi =
P

N�1
j=0 Yjw

ij

N
(mod P ), and x

is the size of the input vector, and w are the twiddle factors. The inverse

NTT is defined as Yi = N�1
P

N�1
j=0 Xjw

�ij

N
(mod P ). NTTs are necessary for

converting a polynomial from coe�cient form to evaluation form in order to

perform the convolution, and then inverse NTT are used to convert back to

polynomial coe�cient form.
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NTTs su↵er from bad memory access patterns due to the butterfly com-

putation. Memory-optimized FFT algorithms like gNTT [28] have been de-

veloped that significantly reduce the memory accesses required to compute

an NTT by a logarithmic factor. The twiddle factors are re-ordered to avoid

random access to memory. Other techniques [29] use a smaller field size like

Goldilocks [30], which uses a finite field with prime P = 264 � 232 � 1, to

minimize the amount of storage required to store points and corresponding

twiddles. PipeZK, an ASIC ZK implementation uses techniques to decom-

pose large NTTs into smaller ones. This can reduce 228 NTTs into 214 NTTs,

dramatically reducing bandwidth requirements [31].

3.2 Multi-Scalar Multiplication

Multi-scalar multiplication (MSM) is defined as follows. Given an elliptic

curve group G of prime order P , let G = [G0, G1, ..., GN�1 2 GN ] and x

= [x0, x1, ..., xN�1 2 FP] be N -element vectors of elliptic curve points and

scalars. Then the MSM can be formally defined as:

MSM(G, x) =
N�1X

i=0

xi ·Gi (13)

which expands to x0 · G0 + x1 · G1 + ... + xN�1 · GN�1. The problem

with this scheme is that computing a single scalar multiplication, xi · Gi,

involves performing an elliptic curve addition of Gi to itself xi times. These

arithmetic operations are expensive since elliptic curve points are composed
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of large finite field elements on the order of usually 254-bit or 381-bits. Curve

additions also decompose into many expensive modular field multiplication

operations.

The naive method for computing the MSM is using the Double-and-Add

algorithm, where the number of group operations scales like 384 · N , where

N is the number of points. For large circuits with many constraints, N

can be 226 or more. The objective for computing the MSM is minimizing the

number of group operations as a function of the problem size N . Pippenger’s

Bucket Method described in the next section reduces this scalar factor down

to 16 ·N , resulting in a 24x improvement.

3.2.1 Pippenger’s Bucket Method

We implement the current state-of-the-art algorithm for computing an MSM,

Pippenger’s Bucket Method [26]. Pippenger introduces a windowing tech-

nique that breaks up each xi ·Gi problem into K windows of size c such that

xi ·Gi = xi0Gi + xi12
cGi + xi22

2cGi + ... + xik�1
2c(k�1)Gi [32]. This can be

formally written as:

G =
N�1X

i=0

K�1X

k=0

2kcx[k]
i

·Gi (14)

The equation describes a scalar decomposition where each scalar xi of size

b-bits (254-bits for BN-254) is partitioned into K smaller sub-scalars of size

c-bits, where K = d b

c
e windows. The sub-scalars are denoted by x[k]

i
, which
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represents the kth partition of scalar xi. The choice of c is variable to optimize

performance for the specific MSM implementation used and input size. To

provide a concrete example, consider b = 254-bits, c = 16-bits, and K = d b

c
e

= 16 windows. Each window will have 2c - 1 = 65535 buckets, for a total of

(2c � 1) ·K or approximately 1 million buckets across all windows. We can

change the order of the summations and rewrite the equation above as

G =
K�1X

k=0

2kcBk (15)

where G[k] =
P

N�1
i=0 x[k]

i
·Gi. After decomposing the scalars into sub-scalars,

we can focus on computing each Bk e�ciently. Each Bk is called a Partial

Sum, and represents a multi-scalar multiplication with b-bit scalars. There

are K partial sums in total, one for each window. At this stage, the MSM is

logically broken up into 3 phases:

1. Phase 1: Bucket Accumulation – In order to compute K indepen-

dent partial sums Bk, start by iterating over all the elliptic curve points

Gi. Associate each c-bit scalar with a curve point, and place each point

into the appropriate bucket. After distributing all the points into buck-

ets, accumulate the points inside each respective bucket. The result of

each bucket will be a single elliptic curve point after performing the

addition. Recall there are K windows, and 2c � 1 buckets in each win-

dow. This step is inherently parallelizable as for each bucket, we can

assign a di↵erent thread to perform the bucket accumulation step.
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2. Phase 2: Bucket Aggregation – After accumulating all the points

in each bucket, we need to sum up all the individual buckets together

for each window. In order to add up all the buckets, each bucket needs

to be multiplied by its bucket index. This step is performed separately

for each window.

G[k] =
N�1X

i=0

x[k]
i

·Gi =
2c�1X

l=0

W [k]
l

· l (16)

Let W [k]
l

represent the bucket sum for a single bucket l in window

k. This expands to the series 1 · Wl1 + 2 · Wl2 + ... + 2c � 1 · Wl.

This seemingly easy looking problem looks exactly like our initial MSM

problem, but only smaller. To calculate this series, we can perform

the Running Sum method, which is equivalent to the equation above.

Continuing with our earlier example of c = 16,

Tj1 = Wj65535

Tj2 = Tj1 +Wj65534

...

Tj65535 = Tj65534 +Wj1

This can formally be written as,

G[k] =
2c�1X

i=0

Tji (17)

26



This is a highly serial operation. A more e�cient segmented version is

described in 3.2.2.

3. Phase 3: Result Aggregation – Now we need to perform the final

accumulation of all the partial sums across the windows. Each window

will now have a single partial sum represented as a single elliptic curve

point. Since there are K windows, with a single partial sum each, K

point additions are performed, resulting in a single elliptic curve point.

This step is usually performed on the CPU.

3.2.2 Design

Our MSM design implements the Pippenger algorithms described in PipeMSM

[14] [33] to enable a higher degree of parallelism. Although some of algo-

rithms’ design choices were developed specifically for the FPGA, we can

leverage their parallel construction over CUDA cores. The general MSM is

specifically bottlenecked by the bucket aggregation step described in phase 2,

which is an inherently sequential workload. It requires K sequential compu-

tations, allowing for only 2K parallel additions to be performed a time. Our

design enables computing the K partial sums in parallel. The implementa-

tion uses a segmented version of the buckets by breaking up the buckets in

each window into M segments. For example, we can break 2c buckets in the

Kth window into M segments of size U , where U = 2c

M
. We show this step

for a single window below.

27



G[k] =

 
1 ·W [k]

1 + 2 ·W [k]
2 + ...+ U ·W [k]

U

!

+

 
(U + 1) ·W [k]

U+1 + ...+ 2U ·W [k]
2U

!

+ ...

+

 
(U(M � 1)) ·W [k]

U(M�1)+1 + ...+ 2c � 1 ·W [k]
2c�1

!

(18)

Although this leads to more computation upon recombining the results, the

calculations are performed in parallel. The implementation leverages the BN-

254 curve, which is supported by Ethereum, along with projective coordinates

for cheaper curve additions since they avoid expensive inversions. The MSM

also uses a modified version of a highly optimized Bignum finite field library,

Cuda-Fixnum [13], to accelerate basic operations like modular multiplication

and large integer additions. I modified the bignum library to support the BN-

254 and Grumpkin curves, projective coordinates, and variable limb sizes.

The library also has existing support for multi-threaded field operations for

performing curve operations in parallel. For example, 256-bit curve elements

are decomposed into an array of 64-bit limbs, and each thread can operate on

a separate limb. Multi-thread variants of field operation can have a significant

data exchange overhead for performing parallel arithmetic since the threads

need to communicate. Operating over a smaller field like BN-254 over BLS-

381 can reduce this overhead and consumes less memory, but a smaller field
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leads to lower parallelization potential compared to larger fields. Balancing

these tradeo↵s is critical to achieving high performance when generating a

proof that involves billions of these basic operations. In our implementation,

the parallelization potential is higher than the data exchange overhead. This

means the performance hits incurred from the data exchange overhead are

smaller than the speedup we experience from parallelizing the arithmetic

using multi-threaded field operations. Therefore performing these arithmetic

operations in parallel using multiple threads is worth-while.

Multi-threaded field operations are possible with cooperative groups, which

is a flexible model for synchronization and communication within groups of

threads in CUDA. This allows for finer granularity for synchronization be-

tween threads and allows threads in a block to communicate. We also take

advantage of cooperative groups for global synchronization within a kernel.

This reduces the number of kernel calls since we’re synchronizing the threads

directly within the kernel itself, rather than using a separate kernel launch

as a synchronization directive.

In practice, although our MSM implementation does not achieve any

meaningful speedup over the Barrenteberg’s MSM CPU results in its current

development stage, there is significant room for improvement at the expense

of memory. The current implementation does not use any precomputation

in calculating the MSMs, and there’s an inherent tradeo↵ between execution

time and memory consumption.

The input points G1, ..., Gn are known in advance in the proving key.
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Therefore the prover can precompute and store many multiples of these base

points. With precomputation, the preprocessing phase will generate mul-

tiples of the base points, which can be reused over multiple MSMs. More

precomputation requires additional space, but accelerates each subsequent

MSM.

To handle the increased memory demands, a larger GPU with access to

more memory will be necessary. For example, gnark [34], a Golang-based

zkSNARK library, normally requires 60 GB to store enough BLS-377 curve

points for n = 108 or 100 million points [35]. This memory consumption is

without any precomputation. Moreover, once the problem size becomes too

large, relying on disk storage is not feasible since disk reads are significantly

slower than memory operations.

Specifically, Yrrid Software [36] implemented a GPU version of Pippenger

that precomputes 6 points for every input point. The precomputation re-

quires 38 GB for storing points, and 9.5 GB is used for sorting tables, for

a total of about 48 GB of memory for 226 constraints. Another GPU solu-

tion from Matter Labs [37] uses fewer points for every input point because

it needs more space for the sorting steps, but similarly uses close to 48 GB

for 226 constraints. These implementations were executed on Nvidia A40s,

which has a maximum VRAM of 48 GB. An A10 GPU with only 24 GB

would certainly not work for either implementation. The precomputation

needs to be loaded into the GPUs VRAM in order to be used at runtime,

leading to huge storage overheads at the cost of improved performance. The
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performance of these state-of-the-art implementations is discussed in Section

3.3.2.

3.3 Hardware Architectures

3.3.1 GPUs, FPGAs, and ASICs

Selecting the proper hardware architecture to accelerate zkSNARKs requires

carefully examining the trade-o↵s between di↵erent hardware architectures

and the prior works that use them. Our analysis suggests that GPUs cur-

rently remain the most suitable architecture for accelerating zkSNARKs.

The rapidly evolving zero-knowledge space has left the blockchain com-

munity fragmented on the ideal hardware architecture for accelerating zk-

SNARKs. Modern CPU processors remain sub-optimal for generating proofs

because integer computation is performed in the arithmetic logic unit (ALU),

which only accounts for 5% of the core’s area used in the computation [38].

ALUs are not optimized for finite-field operations where the bit-width is

significantly larger than typical 32-bits or 64-bits. Modular arithmetic per-

formed over large prime fields is approximately 10x slower on existing pro-

cessors [39] as a result. CPUs are further limited by the maximum number

of computing cores available on the chip. These factors collectively result

in large computation overheads. Still, prior works like DIZK [40] leverage

Apache Spark to distribute the proof generation of zkSNARKs across expen-

sive CPU clusters.
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Using parallel hardware architectures instead, zkSNARKs can be accel-

erated by running them over thousands of simultaneous cores using GPUs,

crafting low-latency pipelines using FPGAs, or building customized ASICs

that drastically enlarge the size of the ALU in the silicon die. GPUs are a nat-

ural choice for programming SNARKs using NVIDIA’s programming library,

CUDA [41]. CUDA virtualizes the hardware with a three-dimensional hier-

archy of thread blocks that can be indexed to span the vectors and matrices

encoding the computation. GPUs are built using streaming multiprocessors

(SMs) that perform the actual computation, and each SM is logically com-

posed of many physical CUDA cores running the same instruction set. In

2023, the newest generation NVIDIA GPUs have reached over 16 thousand

CUDA cores in a single chip, a nearly 30x increase from 2015 [42].

The current state-of-the-art GPU-accelerted Groth16 zkSNARK systems

include Bellperson [43], adopted by cryptocurrency application Filecoin [44],

and Mina [45]. cuZK [46], a more recent GPU-based implementation in in-

dustry, is an end-to-end Groth16 design [47] that performs all zkSNARK

operations entirely on the GPU. cuZK achieves about 19x and 2x speedups

over Mina and Bellperson respectively and supports up to 8 GPUs in par-

allel. Additionally, open-source GPU libraries, like Icicle [33] developed by

Ingonyama and Sppark by Supranational [48], have been developed for ac-

celerating common zkSNARK operations. Recently, works by Yrrid [36] and

Matter Labs [37] have been soley focusing on acceleration of MSM on GPUs.

The advantages of GPUs over FPGAs are clear-cut, with GPUs sup-
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porting high-performance parallel computing with better performance than

FPGAs in terms of transistor density. GPUs support 8nm nodes compared

to FPGAs’ 16nm nodes respectively, enabling GPUs to outperform FPGAs

by about 2x for MSM workloads [49]. GPUs o↵er high bandwidth and larger

memory capacities, with on-chip HBM2 memory of up to 80 GB, whereas

FPGAs mostly support DDR4 and PCIe 3.0 standards. Moreover, GPUs are

more cost-e↵ective than FPGAs, o↵ering higher raw compute per unit cost

and are more readily available to consumers on the open-market than FP-

GAs. The price point for top-of-the-line Xilinx FPGAs can range upwards

of 10 thousand dollars, making them 10x more expensive than GPU cards

with comparable performance like NVIDIA 3090s. Programming GPUs us-

ing CUDA is also more user-friendly than individually wiring circuits with a

Hardware Description Language (HDL) on FPGAs.

FPGAs benefit from lower power consumption, by a factor of 10x on

average compared to GPUs, and lower latencies. There have been several

implementations focused on improving MSM on FPGAs, such as Hardcaml

by Jane Street [50], CycloneMSM by Jump Crypto [51], and PipeMSM by

Ingonyama [14]. Since FPGAs focus on latency rather than raw throughput,

these implementations include pipelined elliptic curve adder designs that can

start a new operation every clock cycle. For example, FPGAs with clock

frequency of 250 MHz can start a new point addition every 4 nanoseconds,

and receive the result after 100 cycles, or 400 nanoseconds [52]. This design

hides the latency of the pipeline as a result.
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ASICs alternatively, although more powerful than GPUs and FPGAs, in-

cur large development cycles and the risk of newer rapidly developing proof

constructions. It will take time for the community to settle on the most per-

formant proving systems and algorithms, and some ASICs may be outdated

at that point. Still, there are teams building ASIC cards with custom power

deliveries, higher clock frequencies, and customized interconnect systems.

PipeZK [31] is an ASIC implementation with a pipelined architecture focus-

ing on optimizing o↵-chip memory bandwidth, achieving a 5x speedup over

previous CPU and GPU implementations. Ingonyama is a hardware accel-

erator building ASICs for production-grade systems like ZKSync, Plonky2,

Halo2 [53]. Cysic [54] is another FPGA and ASIC hybrid implementation

that achieves about 2x – 5x speedup over the other FPGA implementations

like PipeMSM and CycloneMSM.

The aforementioned trade-o↵s suggest GPUs remain a more suitable choice

for accelerating zkSNARKs than FPGAs and ASICs due to their higher level

of programmability and updatabaility. GPUs are highly parallel commod-

ity architectures that can also work with provers in a distributed setting,

e�ciently splitting the workload across multiple simultaneous GPUs as dis-

cussed in prior works [55]. We describe our GPU-based implementation of

Plonk [11] in Section 3.4.

34



3.3.2 GPU Acceleration of Groth16 and Plonk

To understand how the performance and bottlenecks for proving systems

have changed over the years, it’s necessary to examine prior works focusing

on hardware acceleration. We measured the sustained CPU, GPU, system

memory and VRAM utilizations for prior works on several bare-metal archi-

tectures presented in Tables 3 & 4. The benchmark figures are referenced in

the Appendix. Our full benchmarking results can be found at [56] [57] [58],

and were submitted formally to the Verifiable Database Systems (VDBS)

workshop [59].

The Mina Protocol, a blockchain network using zkSNARKs for verifi-

able data compression, previously held a competition in 2019 to speed up

Libsnark, the industry standard C++ library for Groth16 [60]. Libsnark fo-

cuses on performing parallel proof generation on multiple CPU cores. The

benchmark GPU prover implementation by Mina [45] executes roughly 2x

faster than the standard CPU prover. In recent years, significant strides have

been made in accelerating zero-knowledge provers. Aleo, a privacy-preserving

blockchain environment for executing private applications and smart con-

tracts, held the ZPrize competition [49] in 2022 with over $2M in prizes for

speeding up zero-knowledge computations on GPUs and FPGAs.

In our experiments for Mina’s Groth16 provers, the limiting factor was

available main memory for the GPU and CPU. In the CPU implementation,

generating a Groth16 proof over the MNT4-753 curve with 768-bit elements

and 225 variables took approximately 1550s and consumed about 200 GB on
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Table 3: Hardware Configuration of Testbeds

Testbeds P100 A10 A40
Device Tesla P100 Ampere A10 Ampere A40

Core Count 3584 9216 10752
VRAM 16 GB HMB2 24 GB GDDR6 48 GB GDDR6

Host (CPU) Xeon(R) Gold, Xeon(R) Platinum, Xeon(R) Platinumm
5120 Intel(R) 8358 Intel(R) 8358 Intel(R)

28-cores 32-cores 32-cores
192 GB DDR4 1024 GB DDR4 1024 GB DDR4
128 GB SSD 1 TB SSD 1 TB SSD

Table 4: Baseline Implementations

Implementations Platform Multi-GPU Operations Elliptic Curves
Barretenberg CPU X Plonk BN-254

Cuda-Barretenberg GPU X Plonk BN-254
Mina GPU X Groth16 MNT4753
Yrrid GPU X MSM BLS377

Matterlabs GPU X MSM BLS377

a 32-core Intel(R) Xeon(R) Platinum 8358 CPU (Figure 1 in Appendix) [57].

In the GPU implementation, the execution time is roughly 2x faster, but the

memory results were more drastic.

For programs larger than 219 constraints, the P100’s 16 GB of GPU

VRAM is maxed out, which induces a spike in the system’s main memory de-

mands (Figure 2 in Appendix). Moving from the P100 to the more powerful

A10 GPU allowed us to extend these memory figures to larger constraints.

Mina’s Groth-16 GPU prover requires a substantial amount of main mem-

ory in its preprocessing phase and limited runs to systems of 225 constraints
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on the A10 GPU. Generating a Groth16 proof using a GPU took approxi-

mately 750s and consumed nearly 900 GB for 225 variables on a NVIDIA A10

(Ampere Architecture) with 24 GB GDDR6 VRAM (Figure 1 in Appendix)

[57]. The GPU implementation performs a map-reduce to implement the G1

and G2 multi-exponentiation with a batched double-and-add algorithm. The

execution time and memory utilization grew log-linearly with respect to the

number of constraints in the program.

The GPU memory is much higher since the prover performs a precompu-

tation step that computes multiples of the base points, which accounts for the

significantly high memory consumption. The precomputation can be reused

over multiple MSMs, reducing the overall computational work. The more

precomputation requires additional storage, but accelerates each subsequent

MSM.

This results in public parameters 3x larger than the program’s input (Fig-

ures 3 & 4 in Appendix). Preprocessing the parameters produces a file that

grows super log-linearly with respect to the size of both the parameters and

inputs. These parameters are ultimately injected into the GPUs VRAM and

system memory for the prover to access. Since the preprocessed parameter file

is loaded into main memory, the parameters are then paged between host and

device memory. The results ultimately indicate that prover tradeo↵s depend

on the computing platform. CPU-based provers use a small parameter file

and less system memory, but execute slower. GPU-based provers use a larger

preprocessed parameter file requiring more system memory and VRAM, but
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execute proportionally faster. Although the transfers of precomputed multi-

ples are specific to Mina’s GPU implementation, newer implementations that

outperform these results don’t require any precomputation.

Aleo’s ZPrize competition for accelerating MSM operations on GPUs and

FPGAs is already significantly advancing the hardware acceleration field.

The multi-exponentiation algorithm developed by Supranational in their Sp-

park library [48] represents a complex variation of Pippenger’s algorithm.

This serves as the baseline benchmark for the competition. The implementa-

tion does not require a precomputation step, which massively decreases the

parameter file sizes loaded into VRAM and main memory. The benchmark-

ing harness can be configured to run multiple MSM batches of maximum size

226, all using the same points, but with di↵erent scalars. The results indicate

MSM execution time is about 250x faster than Mina’s Groth16 prover for

225 constraints on an A10 GPU. Aleo’s codebase also uses about 2.5x less

memory for 226 constraints on an A10 with 24 GB GDDR6 VRAM. The

baseline benchmarks for running a single 226 MSM takes approximately 2.8

seconds and 13 GB VRAM on a NVIDIA A10 (Figure 5 & 6 in Appendix).

The more performant A40 GPU computes a proof about about 1.5x faster

than the A10, with similar memory profiles. The winners of the competition

were able to achieve a 2x speedup over the baseline.

The current CPU-based Plonk library on which we’re working, Barreten-

berg [12], can benefit from these prior algorithmic optimizations. CPU bench-

marks performed on the same testbeds show that for 226 constraints, comput-
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ing a single multi-scalar multiplication takes about 6.7 seconds and consumes

46 GB of memory (Figures 7 & 8 in Appendix). The figures exemplify that

execution time and memory utilization grow log-linearly with respect to the

number of constraints in the program. For 226 constraints, proof generation

took about 100 seconds with 255 GB of system memory (Figures 9 & 10

in Appendix) [56]. The prover memory consumed for generating the proof

is about 6x higher than the multi-scalar multiplication here because Plonk

precomputes and stores each of the polynomials used in the computation

in three forms. The prover memory can be reduced by 6x by only storing

the polynomials in coe�cient form, at the cost of increased computation at

runtime.

Consequently, the results from prior works show that the prover bottle-

neck has slowly been shifting from memory to computation over the years.

Still, limited on-chip GPU memory remains a bottleneck for larger circuits.

These results provide su�cient motivation for applying these algorithms in

Barretenberg for accelerating zkSNARKs and consuming less memory on spe-

cialized hardware like GPUs. The details will be discussed in the following

section.

3.4 High-Bandwidth Pipeline

The CPU-based Plonk prover in Barretenberg uses a queue to perform the zk-

SNARK operations in FIFO order. We implement a wrapper class that over-

rides the queue with a carefully designed, high-bandwidth execution pipeline.
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The pipeline replaces the MSM used in the KZG polynomial commitment

scheme with our GPU kernel for Pippenger’s Bucket Method discussed ear-

lier. The pipeline further swaps out the memory model with traditional

CUDA memory allocation techniques to be compatible with the GPU.

The original GPU work used unified memory, an abstraction layer that

allocates a single memory space accessible by both the CPU host and GPU

device. This simplifies CUDA programming by allowing data transfers to be

automatically handled by the driver instead of manually performing memory

copies. Unified memory unfortunately performed worse in multi-threaded

workloads since it implements a critical section to access memory where

threads are serialized, resulting in substantial performance degradation.

Pinned memory was used to load memory onto the GPU instead to

achieve higher performance and memory bandwidth over unified memory.

While unified memory is pageable by default and can be swept to disk,

pinned memory “pins” allocations in the kernel space. This allows for asyn-

chronous, non-blocking data transfers that avoid page faults. To achieve a

greater degree of concurrency, pinned memory is necessary for creating mul-

tiple streams. A stream is a sequence of CUDA operations that execute in

order on the GPU. The operations in a single stream cannot overlap, but op-

erations between multiple separate streams can run concurrently with each

other and the CPU. CUDA streams can be strategically used for hiding com-

munication latency by overlapping data transfers with device computation.

Our prover implementation uses multiple CUDA streams to concurrently
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execute the multi-scalar multiplication GPU kernels. Recall the KZG poly-

nomial commitment scheme computes a degree d-sized multi-exponentiation

(MSM) of G1 elliptic-curve points. In the first round of Plonk, the prover

computes the MSM of the wire polynomials A(x), B(x), and C(x) concur-

rently in separate streams, with a default stream running on the CPU. The

prover later computes the quotient polynomial Q(x), which encodes the ma-

jority of the information contained in our circuit and assignments all at once,

and generates the commitment to Q(x). The prover cannot directly commit

to Q(x) since the polynomial’s degree is 3n+ c, where c is a constant, which

is too large and exceeds the upper-bound of Aztec’s trusted setup of n =

100 million constraints. Instead Q(x) is split into three smaller polynomi-

als tlow, tmid, and thigh each of degree n + 1. The prover commits to each

of these smaller polynomials in parallel in di↵erent CUDA streams. The

current implementation performs the MSM calculations in dedicated GPU

kernels concurrently with the NTTs running on the host CPU. Since the

NTTs are performed on the CPU while the GPU is busy working, it may not

be blocking anything.

The prover needs to commit to 9 polynomials during the 5-round pro-

tocol. Unfortunately, it’s not possible to parallelize the MSM computation

across rounds, which would break soundness. Commitments from di↵erent

rounds cannot be overlapped since the computation of round i depends on the

challenges computed in round i, which are dependent on the commitments

added to the Transcript until round i � 1. After computing each round,
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the CUDA streams need to be synchronized and memory transfers need to

be coordinated before continuing execution on the host CPU. Synchronizing

massive memory transfers in a high-bandwidth pipeline while speeding up

the SNARK prover is a challenging task.

SNARK provers’ have massive memory requirements for large constraint

sizes. Recall the C++ CPU-based implementation of Barretenberg requires

46 GB of system memory for computing 226-sized MSMs, and the entire

prover consumes 255 GB of system memory. The prover stores multiple

copies of these large polynomials in di↵erent forms which significantly in-

creases the memory consumption during the proof-generation phase. This

explains the 6x memory increase for generating a proof, and can be reduced

by 6x by storing the polynomials in a single form at the expensive of longer

computation time. As the constraint sizes grow past 223 constraints, the

prover memory we are pinning in our GPU implementation overtakes the

GPUs on-chip VRAM. All tests are performed on NVIDIA A10 with 24 GB

of VRAM. To mitigate these on-chip memory limitations, the problem needs

to be statically partitioned into chunks and distributed among multiple GPU

devices. The results from each chunk can then be transferred back onto a

single GPU where the final result is aggregated.

Additionally, there are other limitations imposed by the underlying hard-

ware. The PCIE interconnect connecting the CPU and GPU presents another

bottleneck for proving systems. As the constraint sizes for a program, grow

significantly larger past the upper-bound of the PCIE bandwidth, the PCIE
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bus is saturated and bottleneck shifts from memory bandwidth to IO band-

width. The PCIE 4.0 standard has a limited transfer throughput rate of 64

GB/s, while PCIE 5.0 doubles the memory bandwidth to 128 GB/s. This

newer standard is more expensive and not universally adopted by hardware

vendors. To mitigate the IO bandwidth limitation, a multi-GPU cluster solu-

tion would help here as well. Once the problem is broken up and distributed

among multiple GPU devices, NVIDIAs NVLink interconnect system can be

used for direct GPU-GPU data. NVLink takes advantage of the raw mem-

ory bandwidth of GPUs to facilitate much faster data transfers than PCIE.

However, NVLink is about 20x more expensive than standard PCIE [61].

As the industry starts to progressively decentralize their prover networks,

using custom interconnects would make the cost of generating proofs more

expensive.

Our current GPU implementation is at a stage where multiple MSM

kernels are running in concurrent CUDA streams, and operations between

the CPU and GPU are e�ciently accessed in a high-bandwidth pipeline.

Although the memory curve have shifted rightwards to support large con-

straint sizes with the adoption of newer MSM algorithms that require less

memory, limited GPU memory is still a bottleneck as the constraint sizes

grow exponentially larger.
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4 Architecture Directions and Impact on

Future Work

4.1 Unified Memory Architectures

Executing zero knowledge proofs on powerful servers with extensive hardware

resources merits evaluating the trade-o↵s between computational e�ciency

and memory consumption. Acquiring memory is less likely to be a resource

limitation compared to processing power. With the decreasing costs of con-

sumer memory chips, it is reasonable for a server to have access to multiple

terabytes of DDR4 dynamic random-access memory (DRAM). A larger mem-

ory profile can often lead to better performance and computational e�ciency

through reduced disk IO, faster memory access times, reduced memory swap-

ping, and better caching.

Simultaneously, it is anticipated that cloud data centers and powerful

workstation machines will support physical unified memory architectures in

the future. Unified memory, similar to Apple’s ARM-based M1 silicon chips,

enables both the CPU and GPU to have access to the same physical memory

address space. CUDA currently supports a unified memory model, but that

is a virtual abstraction with a limited memory space. The shift from Non-

UniformMemory Access (NUMA) to unified memory will drastically open the

performance space for zkSNARKs, especially for computing zero-knowledge

proofs on mobile devices and web browsers.

44



Consider for instance a recent proof construction, Hyperplonk [62]. Hy-

perplonk is a sum-check based protocol with multi-linear polynomial com-

mitment scheme. The prover runs in linear-time O(n) instead of O(n log n),

compared to previous SNARKs, by eliminating the super-linear NTTs. Hy-

perplonk instead implements Multi-Linear Extension (MLE), and the MSM

and MLE kernels account for a majority of the proof generation time. The

trade-o↵s compared with Groth16 and Plonk are a larger proof size and ver-

ification time, going from O(1) to O(log n). The performance bottlenecks

for NTT are the random memory access patterns and memory bandwidth.

MLE shifts the performance bottleneck from memory access to IO band-

width which is the PCIE connectivity between GPU device and CPU. If the

community widely embraces Hyperplonk, we can expect that GPUs, FPGAs,

and ASICs will perform at the same level, as they are limited by the speed

of the PCIE standard [61].

Unified memory architectures makes sense for applications bottlenecked

by limited GPU VRAM and slower PCIE bus, since the integrated GPU

can access the entire memory of the host machine while bypassing explicit

memory transfers of memory over PCIE. The memory accessible by the GPU

surpasses even the most powerful NVIDIA graphics cards, which have a max-

imum VRAM of 80 GB [42]. The customized memory bandwidth intercon-

nects are also significantly faster with higher memory bandwidth limits than

PCIE. For example, Apple’s M1 Ultra chip can be configured with 128GB of

unified memory and the infinite fabric interconnect supports memory band-
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width up to 800GB/s compared to 64 GB/s for PCIE. The transition of

Apple’s Mac Pro (the cheese grater) to M1 will include multiple terabytes of

unified memory and a more performant interconnect for transferring data.

However, achieving the highest level of performance and scalability for a

prover is currently achieved with NVIDIA GPUs using CUDA on powerful

servers. The advantage of Metal, Apple’s hardware acceleration framework

similar to CUDA, are more geared towards generating proofs on mobile de-

vices and web browsers with access to limited computational and memory

resources. Since unified memory architectures enable a GPU to directly

access the entire system memory, zero-knowledge computations that trade

memory for speed can benefit. For example, a larger system memory for the

GPU to access would enable MSMs to use more precomputation, resulting

in improved performance. As unified memory architectures become more

accessible and integrated GPUs become more powerful, these ideas become

more feasible in practice.

5 Concluding Remarks

5.1 Summary

Zero-knowledge proofs are powerful tools that provide verification of a certain

event or fact, without revealing any information to the verifier. While they

are useful in keeping sensitive information private and scaling blockchains,

they are computationally expensive to generate. These proofs can be accel-
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erated using modern parallel architectures using GPUs by distributing the

workload over thousands of cores. As the constraint sizes of these programs

become larger, provers’ running on GPUs must focus on optimizing the lim-

ited on-chip memory and the memory bandwidth between the GPU and host

CPU. By distributing the problem among multiple GPUs and overlapping

data transfers with device computation, synchronizing the GPU memory be-

comes vital to achieve a meaningful speedup.

5.2 Future Directions

The CUDA-Barretenberg implementation uses a single GPU to execute the

MSM kernels using multiple streams, with FFTs concurrently executing on

the CPU. Our GPU prover does not achieve meaningful speedup over Bar-

retenberg’s existing prover in its current development stage. Although tech-

niques like precomputation that trade memory for speed would be beneficial

here to improve performance. For larger problems that exceed the VRAM

of a single GPU, the workload can be further split up and distributed across

a multi-GPU cluster to take advantage of massive parallelism and more

memory. One complementary technology here is RDMA [63], which can

be useful in addressing the significant memory demands of proof generation

[55]. RDMA would enable a prover to access the remote host memory of

another machine in a cluster without involving its CPU at all, and access

the remote memory at close to the same speed of accessing its own host

memory. GPU acceleration can also be extended from standard Plonk to
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more performant proving systems like TurboPlonk, UltraPlonk, and Hyper-

plonk. Moreover, unified memory architectures for larger constraint sizes will

become increasingly more important for running zero-knowledge workloads

with higher memory demands.
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7 Appendix

Figure 1: Groth16 CPU and GPU (A10) performance on proof generation as a

function of number of constraints.

Figure 2: Groth16 system memory consumption for proof generation as a func-

tion of number of constraints. Shown for CPU prover, GPU prover

(P100), and GPU VRAM.
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Figure 3: Groth16 performance on parameter and preprocessing generation as a

function of number of constraints.

Figure 4: Groth16 memory consumption for parameter and preprocessing gener-

ation as a function of number of constraints.
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Figure 5: MSM execution time on GPU (A10 and A40) for the ZPrize Baseline

Benchmark.

Figure 6: MSM memory consumption on GPU (A10 and A40) for the ZPrize

Baseline Benchmark.
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Figure 7: Plonk performance of MSM on CPU as a function of number of con-

straints.

Figure 8: Plonk memory consumption of MSM on CPU as a function of number

of constraints.
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Figure 9: Plonk performance of proof generation on CPU as a function of number

of constraints.

Figure 10: Plonk performance of memory consumption on CPU as a function of

number of constraints.
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