
BBSF: Blockchain Benchmarking Standardized Framework
Kunpeng Ren

dcsrenk@nus.edu.sg
National University of Singapore

Singapore

Jefferson F.B. Van Buskirk
jef@lehigh.edu

Lehigh University
Bethlehem, PA, USA

Zheng Yong Ang
zhengyong@u.nus.edu

National University of Singapore
Singapore

Shizheng Hou
housz@nus.edu.sg

National University of Singapore
Singapore

Nathaniel R. Cable
nrc324@lehigh.edu
Lehigh University
Bethlehem, PA, USA

Miguel Monares
mmonares@ucsd.edu

UC San Diego
La Jolla, CA, USA

Henry F. Korth
hfk2@lehigh.edu
Lehigh University
Bethlehem, PA, USA

Dumitrel Loghin
dumitrel@comp.nus.edu.sg

National University of Singapore
Singapore

ABSTRACT
In this paper, we propose the Blockchain Benchmark Standardized
Format (BBSF), a framework for standardized, transparent, and fair
benchmarks for blockchains. BBSF enables users and developers to
compare blockchain platforms using metrics derived from realistic
workloads. We outline the challenges in developing a blockchain
benchmark with this degree of breadth and flexibility. We contrast
the results using our approach with prior benchmark implementa-
tions and show why BBSF generates results that are more verifiable
than prior published benchmarking data. We present an imple-
mentation of our framework, called Blockbench v3, which is a
benchmarking system focusing on Web3 applications and work-
loads, primarily to be used by layer-1 blockchains. Blockbench v3
serves as a test case for our framework’s effectiveness as part of
ongoing work in the characterization of blockchain performance.

CCS CONCEPTS
• Networks → Network performance modeling; Network perfor-
mance analysis; • Information systems→ Distributed database
transactions.

KEYWORDS
blockchain, benchmarking, standardization, verifiable, performance
ACM Reference Format:
Kunpeng Ren, Jefferson F.B. Van Buskirk, Zheng Yong Ang, Shizheng
Hou, Nathaniel R. Cable, Miguel Monares, Henry F. Korth, and Dumitrel
Loghin. 2023. BBSF: Blockchain Benchmarking Standardized Framework.
In Proceedings of June 23, 2023 (VDBS). ACM, New York, NY, USA, 9 pages.
https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VDBS, June 23, 2023, Seattle, WA
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Since the introduction of blockchain with the proposal of Bitcoin
in 2008 [14], blockchain technology has experienced rapid growth
in popularity and development, with numerous blockchain appli-
cations emerging in domains such as financial services, supply-
chain management, IoT, and healthcare [13]. With the increasing
popularity and demand for decentralized systems, the number of
blockchains has skyrocketed, most with their own unique features,
protocols, and design choices.

However, the abundance of blockchain choices poses a challenge
for developers and businesses seeking to implement blockchain
solutions. It is difficult to determine which blockchain is most ap-
propriate for a particular use case, as each blockchain cites its
own performance characteristics, distinctive features, and unique
strengths. Their published benchmark data give at least the ap-
pearance of being biased towards the blockchain being promoted
and is usually not subject to independent verification. Our pro-
posed framework seeks to meet the need for a reliable means of
benchmarking and comparing the performance of blockchains.

1.1 Blockchain Technology Overview
We assume the reader has some background in the basic concepts
underlying blockchain technology including the use of hashes and
digital signatures to achieve immutability and irrefutability. We
also assume at least a high-level understanding of the internal
operation of Bitcoin’s proof-of-work consensus protocol, and the
basic concepts of proof-of-stake as used in Ethereum and other
chains. An introduction to these concepts at a high level appears in
a variety of sources including [11, 20].

The type of code that can run on a blockchain is dependent on
the features that the blockchain has for code execution. Bitcoin has
a stack-based scripting language offering no loops and no recursion
and, thus, is not Turing complete. Ethereum and most other major
blockchains offer a Turing-complete framework for writing code
that runs on-chain. Such code is referred to in the blockchain com-
munity as a smart contract, but those more familiar with database
systems will find this concept similar to a stored procedure. The
power of a blockchain’s smart-contract language and the strength

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

VDBS, June 23, 2023, Seattle, WA Ren, et al.

of its built-in features play a significant role in what workloads the
blockchain can run and how effective it will be in running them.

1.2 Benchmarking Overview
A proper benchmark provides quantifiable metrics that can be used
to compare systems against each other, identify the strengths and
weaknesses of a system, and ensure that a system is applicable to a
given project. Kistowski, et al. [23] define the desirable characteris-
tics of a proper benchmark:

• Relevance: How closely the benchmark behavior correlates to
behaviors that are of interest to consumers of the results.

• Reproducibility: The ability to produce consistently similar
results when the benchmark is run with the same test configu-
ration.

• Fairness: Allowing different test configurations to compete on
their merits without artificial limitations.

• Verifiability: Providing confidence that a benchmark result
is accurate.

• Usability: Avoiding roadblocks for users to run the benchmark
in their test environments." [23]

The database community has a robust and mature set of methods
for benchmarking. The TPC (Transaction Processing Performance
Council1) database benchmark is a widely used industry standard
for measuring the performance and scalability of database sys-
tems [7]. TPC has a variety of benchmarks that are used by major
companies like IBM, Intel, Dell, Cisco, Nvidia, and AMD. These
benchmarks cover a wide range of database use cases, the most rel-
evant being TPC-C and TPC-E, two workloads that simulate OLTP
(Online Transaction Processing) businesses with multiple types of
transactions aggregated into one transaction mix. The TPC-C and
TPC-E benchmarks measure throughput, transactions completed
in a set amount of time, with a constraint on individual transaction
latency. As most databases are specialized for specific usage, de-
velopers can choose the TPC benchmarks that most closely match
their intended use. This leads to simpler, more relevant benchmarks
across varied database use cases. In the blockchain setting, the
variance in use cases is much larger.

Developing a standardized benchmark for blockchains is signifi-
cantly more challenging than it is for databases. First, the transac-
tions being executed are not the same in both settings. In a data-
base setting, the majority of transactions are data processing in the
form of read, write, update, and delete. Under the TPC-C Bench-
mark, these database transactions are required to support the ACID
(Atomicity, Consistency, Isolation, and Durability) properties [7].
These ACID requirements ensure that all transactions are similar
and easily testable. The TPC-C transaction mix contains “business
transactions” composed of one or more of these actions, creating
transactions that are predictable and similar in composure. For
these actions to execute, the code simply executes and commits. In
a blockchain setting, a transaction is much more ambiguous. Trans-
actions may be simple debit/credit functions between wallets, but
can also be much more complex. Transactions include minting new
tokens or publishing contracts to the blockchain and creating new
digital entities and assets. Transactions may execute smart-contract

1tpc.org

code that may, in turn, call other smart contracts, which is far more
complex than a simple database function.

In addition to these differences, block finality adds another chal-
lenge. When a database transaction commits, it is done executing
and is durable. On a blockchain, blocks that are newly added to
the chain may not be considered final. Accidental forks of the
blockchain happen often, sometimes requiring a several-block race
for a fork to win. The blocks on the losing side of the fork are nulli-
fied (“orphaned”), making it so their transactions never happened.
These transactions will eventually be attempted at a later point
within the winning fork, which ensures that the chain operates
properly but creates a benchmarking issue as it is not always ob-
vious when a transaction is complete. In contrast to the database
concept of transaction commit, in which a specific atomic action
makes the transaction durable, block finality, in many blockchains,
can be considered as a probability distribution of how likely a
transaction is final, and different users may set different acceptable
thresholds for a transaction being considered complete.2 A 90%
probability that a transaction is completed will mark transactions
complete sooner than a 98% probability, as more time will need to
pass to solidify the transaction’s completion. Some blockchains, for
example, Algorand [4], claim to support instant finality, a property
resulting from the absence of forks under certain assumptions about
the degree of dishonest node behavior. Instant finality makes bench-
marking much easier, as it is easy to identify when transactions are
complete, however not all blockchains support this property.

The differences in transaction execution are only a portion of the
benchmark that require standardization. Representing a running
blockchain is very difficult. Database environments can represent
the expected hardware of a fully deployed database. In contrast, a
fully deployed chain cannot be easily represented. Bitcoin is cur-
rently running with 50,000 validator nodes, which is not a model
that can be created in a testing environment. A testing environment
representing a chain cannot simulate the noise of other transactions
running concurrently on the chain. Blockbench, a blockchain bench-
mark from 2017, benchmarks their workloads with blockchains
ranging from 4 to 32 nodes [5].

A metric missing from most database benchmarking is fault
tolerance. If nodes fail to act and consensus is not reached, actions
are taken to fix the situation and get the system to where it should
be. While this does happen, and recovery times are important,
failures are less common. All nodes in a private database system
are properly acting nodes and failure occurs only in the case of
hardware malfunctions or software bugs. In a blockchain scenario,
there is an incentive for nodes to attack the chain, and in a public
scenario, there can be no expectation that all nodes are acting
properly. Attacks are composed of nefarious nodes choosing to
act in unpredictable ways that aim to prevent proper consensus
and stop the chain from operating. Different consensus algorithms
have different tolerances for attacks, a threshold at which nothing
happens (denial-of-service), and a threshold at which the chain
is taken over. It is important to benchmark both this threshold
for total chain stoppage and the slowdown achieved by a smaller

2The Bitcoin community accepts a notion of finality based on a block being followed
by 6 more blocks, a process that takes approximately an hour. The exact probability
of finality that this represents is dependent on many features of the block mining
ecosystem and is thus difficult to compute with any degree of precision.

tpc.org

BBSF: Blockchain Benchmarking Standardized Framework VDBS, June 23, 2023, Seattle, WA

attack. Measuring fault tolerance provides a metric for the resilience
of a chain under attack, a metric typically missing from database
benchmarking since external security is not within the scope of a
database system.

1.3 Problem Statement
Given the sparse ecosystem and wide architectural variance of
blockchains, there is a need for methods to evaluate and compare
different blockchains based on objective and standardized meth-
ods, in order to empower well-informed choices of blockchains for
applications.

In the state of blockchains today, benchmarking of blockchain
performance is mostly performed in-house. In-house benchmarking
is great for advertising a blockchain’s capabilities but lacks the
verifiability and comparability of a standardized benchmark. Many
current blockchain performance evaluations lack the transparency
of methodology, workload, and testing environment, often leading
to irreproducible claims.

Chain foundations, supporters, and others often cite figures pre-
suming their proposed transactional models and workloads as the
“correct” ones. Contrast that with enterprise-focused benchmarking
typified in the DB world by TPC, where workloads match what real
users do and the benchmarks prescribe testing details from that
workload perspective.

One difficulty in comparing the declared assessment of bench-
marked blockchains is the lack of standardization in the metrics
being measured, such as transactions per second (TPS). For the
results of a benchmark to be useful for a fair comparison, they
must be measuring the same metrics under the same workloads
and environment. Without a standardized system, the evaluation
of blockchain performance is invalid and, therefore, largely unin-
formative to developers.

Standardized metrics are important, but only under a standard-
ized workload. The workload is the set of processes that a sys-
tem is performing while the metrics are measured. In the state of
blockchain benchmarking today, workloads are heavily unstruc-
tured between evaluations, and there is a tremendous variety of
possible workloads that are executed on a blockchain. For example,
Solana claims to perform tens of thousands of transactions per
second, an astronomical difference compared to Ethereum’s 10s
of transactions per second, but the definition of “transaction” is
ambiguous. In general, blockchain transactions can be simple, such
as debit/credit transactions for simple payments, or complex and
demanding, such as NFT minting or smart contract execution. Clas-
sifying all of these actions as “transactions” allows companies to
make claims that may technically be true, but not fair and relevant
when comparing blockchains. Explicitly stating the environment,
processes, and requirements of the workload ensures that systems
are being benchmarked fairly. A comparison of performance claims
by various chains published in early 2021 [12] illustrates the lack
of clarity in terms of definitions and workload.

While many blockchain organizations may measure the same
metric, the environments in which they are performing may differ.
The environments may differ in hardware, number of nodes, and
percentage of nefarious nodes, resulting in incomparable results. A
proper benchmark must specify workload parameters for adjustable

elements and require the benchmark to list full details of the hard-
ware environment (nodes, network, etc.). Such a benchmark must
contain a variety of workloads that explore the strengths and weak-
nesses of blockchains robustly so that each chain is tested not only
on its strong points but also areas of weakness.

1.4 Related Work
There are few available blockchain benchmarking solutions, and
many are limited in scope, functionality, or design. Others were
designed specifically for older versions of blockchains and not
constructed so as to be easily deployed on new systems.

Our proposal rests on the foundation of the prior Blockbench
(and related) work discussed in [2, 5, 9]. Blockbench is a blockchain
benchmarking framework released in 2017 that focuses on the eval-
uation of micro/macro metrics for private blockchains. Blockbench
evaluates chains on workloads such as Smallbank and key-value
storage. Since its release, the complexity and breadth of blockchain
applications and workloads have dramatically increased, creating
a need for a benchmarking solution that is relevant to modern
blockchain use cases. Hyperledger Caliper [1] is a blockchain bench-
marking framework that supports performance evaluations of trans-
action/read throughput, latency, and resource consumption using
synthetic workloads. Another benchmarking solution is Gromit
[15], which uses fixed asset transfer as its workload in its evaluation
of blockchains’ performance and scalability. BCTMark [21], a frame-
work that benchmarks blockchains with an emphasis on system
metrics, conducts its evaluations using workloads such as varied
sorting algorithms. The Diablo Benchmark Suite [6] benchmarks
blockchains with smart contracts inspired by Web2 workloads,
such as Dota (gaming), Uber (mobility service), and YouTube (video
sharing). While these workloads attempt to capture the nature of ap-
plications in the field, these Web2 workloads are not characteristic
of applications run on a blockchain3.

A prevailing issue among current blockchain benchmarking
solutions is the lack of relevant workloads that are representative
of realistic blockchain applications. This leads to evaluations that
fail to characterize completely modern blockchains’ true workloads
and use cases.

1.5 Call for a New Framework
With these problems in mind, we propose a framework to standard-
ize the benchmarking process for the blockchain industry. The goal
of this framework is to create benchmarks that relate to realistic
decentralized application use cases. The existence of such bench-
marks can motivate blockchain system design not only to focus
on user needs but to measure their success in that regard using
independent metrics that are not biased towards a specific architec-
ture. A standardized benchmark addresses the issues presented by
in-house benchmarking and will push the industry towards more
transparent, comparable results. This paper outlines our proposed
framework, the Blockchain Benchmark Standardized Framework,
a framework that requires explicit definition of all aspects of the
3There are blockchains designed around gaming and video services however they are
not storing this data on-chain. The use of merkle trees allows the verification of data
to occur on-chain while keeping the economic and process costly storage off-chain.
While workloads could be developed to explore these services, the workloads provided
by Diablo as of 2022 assume all data is on chain.

VDBS, June 23, 2023, Seattle, WA Ren, et al.

benchmark to standardize the results produced. In addition to this
framework, this paper outlines our preliminary implementation
called Blockbench v3, a benchmark focused on Web3 applications
on modern blockchains.

1.6 Overview of the Paper
In Section 2, we present the features of our new framework for
blockchain benchmarking. These include themanner in which to de-
scribe a workload, a set of metrics measured by the framework, the
driver that runs the actual benchmark, and a standard result-report
format. Section 3 describes the 4 workloads in our Blockbench v3
instantiation of the framework: a token exchange, an NFT market-
place, NFT minting, and a sports-betting application. While many
experiments remain a work-in-progress, we report results in Sec-
tion 4 for Etherum and Quorum. As we note in Section 5, these
initial results serve primarily as a demonstration of our framework
and its operation. We plan to study additional blockchains and hope
that others will use BBSF to do even more studies. A large set of
experimental results will enable future research (about which we
elaborate in Section 6 and in [3]) in comparing the suitability of var-
ious design features of blockchain systems for optimal performance
in a variety of applications.

2 BLOCKCHAIN BENCHMARK
STANDARDIZED FRAMEWORK

The Blockchain Benchmark Standardized Framework (BBSF) pro-
vides standardization across all aspects of blockchain benchmark-
ing.

(1) A standardized workload framework that contains explicit
definitions of all aspects of a workload ensuring proper im-
plementation across all blockchains.

(2) Standardized micro metrics that are aggregated into a set of
macro metrics that are easily comparable among blockchains.

(3) A standard driver that interfaces with a fully deployed block-
chain, calls the transactions in a standardized fashion and
uses standardized methods for measuring metrics.

(4) A standardized reporting format that ensures that all met-
rics measured are transparently communicated in an easily
comparable format.

2.1 Standardized Workload Framework
Each workload is composed of standard components to ensure that
all implementations of the workloads provide comparable results.
The workload framework starts with an overview of each of the
major sections. Firstly, a summary of the type of activity repre-
sented by the workload is given as well as current applications that
generate this type of activity. Next, an overview of the transactions
that make up this activity is given. Workloads may include multiple
transaction types as most applications have multiple types of ac-
tions. Having multiple transaction types means that the transaction
throughput (TPS) measured in the workloads represents an “aver-
age transaction” that contains the average amount of work among
the transaction types and their frequencies. Following the transac-
tion overview are sections outlining the smart-contract functions,
wallets required, and external structures used in the workload that
may be “off-chain”.

After the overview of the workload, the next section outlines
workload sizing. For each workload, each worker client (more de-
tails in Section 2.3) is given a number of transactions determined by
the transaction mix. Adding more clients increases the total number
of transactions and thus the total workload size, however any num-
ber of clients that properly stress the system suffices. The number of
nodes used is reported in the standardized results reporting frame-
work. This workload section includes a statement of the transaction
mix and the arrival distribution of transactions. The transaction
mix contains the list of transaction types and their contributing
portion to the overall transaction mix. While some workloads have
only one transaction type, others will have multiple. It is impor-
tant to ensure that workloads with multiple transaction types use
the same mix across all implementations. As the transactions are
pseudo-randomized, the exact proportion of each transaction to
the total mix may slightly vary. The transaction mix has minima
and maxima for the proportion of each transaction type permitted.
Arrival distribution refers to the times at which transactions are
given to the workload. Some workloads will provide all of the trans-
actions at time 0, while other workloads create new transactions
throughout the workload, with workload-dependent distribution
characteristics (BBSF does not mandate any specific distribution
such as uniform or Poisson).

Following the workload section, the setup section outlines the
starting conditions for the workload. The wallet and contract sec-
tions outline the starting balances of wallets and contracts, as well
as the initial state of the contract. If certain information needs to
be in the contract before the workload begins, that need is stated
here, including the information required and the contract functions
that need to be called to reach this state. The setup section also
contains the starting values for external structures that may be
used for assisting the workload. It is important to note that if these
external structures are accessed by a smart contract associated with
the workload the performance of this structure may impact results.
To ensure that this impact is standardized, implementations of these
structures must be explicitly defined.

The contracts section of the workload explicitly defines each
contract used in the workload. Each contract has an overview of
the wallets, structures, and other contracts called within its func-
tions and then outlines each variable, struct, event, and function.
The variables, structs, and events are straightforward definitions
of what each contains as well as a description of the usage and
purpose of each. The functions section lists each function’s param-
eters, return type, processes, wallets accessed, events emitted, and
external contracts called. It is important to define each function in
as detailed a manner as possible to ensure that the transactions are
implemented by different blockchains in similar fashions. While
functions could be defined line by line, we chose to take a less con-
trolling approach. Some blockchains support different tools within
their programming language that possibly can affect performance.
While this does seem like an unfair advantage in what should be
a standardized process, it is important to remember the goal of
providing results that are relevant to real developers. If specific
blockchain languages support different functionality, this function-
ality will be used by developers building on top of said blockchain
and will thus see the performance increase as a result.

BBSF: Blockchain Benchmarking Standardized Framework VDBS, June 23, 2023, Seattle, WA

Server
Workload
Generator

TCP
Server

Result
Aggregator

Client
TCP

Client
Blockchain

Client

Blockchain
Nodes

Node 1

...

RPC

workload_config.json
"worker_number": x,
"worker_threads": y,

"blockchain_info": {...},
"workload_info": {...}

Node 2

Node 3

Node 4

RPC

Figure 1: Driver Design

The results of a blockchain’s performance under a workload
are determined through measurements called metrics. Each work-
load is structured with a list of workload-specific micro metrics
that directly measure the performance of the blockchain under the
workload, usually relating to throughput, latency, and time. Each
micro metric has sections explaining what units are being mea-
sured, what transactions are associated with the metric, and how
to measure4 the metric. These micro metrics serve as intermediate
measurements that can be aggregated to determine the macro met-
rics of a blockchain, the overall, cross-functional scores. The macro
metrics can describe the performance of the blockchain in 3 scores
without requiring any understanding of the underlying workloads.
This allows developers to make quick decisions without needing to
read entire performance reports.

2.2 Standardized Metric Framework
In addition to standardizing the transactions being called, BBSF has
a standardized framework for the metrics being measured. Each
workload has specific micro metrics used to compose macro metrics
by changing the parameters of the blockchain being measured.
Changing blockchain parameters and plotting the changes in micro
metrics leads to a broader analysis of the performance. For example,
running the same workload using a blockchain with 1, 4, 8, 16, 32,
and 64 5, nodes and plotting the micro metric throughput against
the number of nodes will provide insight into the scalability of
the blockchain. This macro metric can be used to extrapolate how
efficiently the chain will run at full scale and conveys valuable
information that cannot be measured by one workload. Although
individual workload results can be compared, macrometrics provide
a zoomed-out view of these results that is more easily understood
by an external viewer. A developer can look at these macro metrics
without needing to understand the underlying workloads and still
make accurate comparisons about their blockchains of interest.

2.3 Standardized Driver
We created a driver that executes the workload on the respective
blockchain. Similar to the case for workloads, a proper driver must
interface with all blockchains in a standard manner, so as to not
have driver performance impact blockchain performance. The main

4Recall that we noted earlier that measuring these metrics in a blockchain setting
may be less precise than in database benchmarking, since, for example, blockchain
transaction finality may be only probabilistic, while database transaction commit is
deterministic.
5This range provides a reasonable basis for performance insight, but we look forward
to experiments with more nodes when larger platforms become available.

goals for the driver are that it should not affect the performance
of the blockchain, semi-idempotent execution so that running the
same workload multiple times yields the same metric scores, and
an implementation that makes it easy to benchmark a variety of
blockchains. Our driver implementation is a server/client separate
from the measured blockchain that calls transactions from clients
without any direct connection to the blockchain itself. By keeping
the blockchain a separate system, the integrity of the benchmark is
preserved as the system that is being measured is the same system
that will be deployed.

2.3.1 Structure. The driver is structured as a server that connects
to multiple worker clients that act as users connecting to and using
the blockchain. The server is responsible for compiling and deploy-
ing the contract, generating the workload from the transaction list
and wallet list, signing each transaction, and sending transactions
(invocation to smart contracts) to the clients. The clients call these
transactions as normal users would and measure the metrics for
each individual transaction. This structure ensures that the limiting
factor in the benchmark, and thus the process being measured,
is the execution of the transactions on the blockchain. Without
multiple clients, a fast blockchain could outpace a slow driver and
process transactions faster than a single source could call them.
Multiple workers allow the driver to scale infinitely and eventually
call as many transactions as the blockchain can handle.

2.3.2 Functionality. The driver takes inputs of the workload con-
tract, a wallet list, a transaction list, and a finality parameter. The
wallet list is the set of wallets used during the workload execution,
represented as a file with the address and private key pairs. The
transaction list is the set of transactions used in the workload com-
posed of the type of transaction, the parameters of the transaction,
the time the transaction is to be called, and the wallet calling the
transaction. The finality parameter is determined by the user run-
ning the benchmark, as the process for determining this number
is external to the benchmark. Setting this variable to 1 marks all
transactions as final after they are one block “deep” onto the chain
while setting it to 𝑛 defers marking the transaction as final until it
is 𝑛 blocks deep. This variable is reported with the results to ensure
the benchmark is reproducible.

The process starts with the server compiling and deploying the
contract and signing all of the transactions using the wallet list. The
server then sends the transactions to the clients, and then simulta-
neously signals the nodes to begin the workload. Once the clients
start calling the transactions, the clients log when each transaction
was called. While the workload is running, the server monitors
each block and measures the throughput. Throughput is measured
by taking the current completed transactions and measuring the
current block timestamp and subtracting the time the first transac-
tion was called. Dividing the completed transactions by the total
time gives the current average throughput. When the workload is
complete, this will represent the average throughput for the whole
workload. When the workload is complete, the clients send their
transaction timestamps to the server. The server uses these times-
tamps as well as the appropriate block timestamp to find the latency
for each transaction by subtracting the block timestamp from the
sending timestamp. Adding these differences together and dividing
by the total transactions aggregates the average latency.

VDBS, June 23, 2023, Seattle, WA Ren, et al.

2.3.3 Workload Generation. Before generating the workload, his-
torical data is used to determine the transaction mix and arrival
distribution. Historical data is obtained by inspecting the relevant
smart contract from the “real world” application. The history of
the transactions within this smart contract will reveal what types
of transactions happen when, and their contribution to the total
transaction mix. For each of the workloads outlined in Section 3.1
we used historical data to determine the transaction mix and arrival
distribution, however this is not strictly necessary for workloads
testing new functionality.

While two of the driver goals were satisfied through a blockchain-
neutral driver, semi-idempotency is achieved through the usage
of a transaction-list file rather than randomized workloads. Every
workload contains an arrival distribution and a transaction mix.
These components are useful for understanding the transactions
a workload contains, however, they could be interpreted slightly
differently upon implementation. Varying interpretations could
lead to changes in performance. For example, in the NFT market-
place workload, if the transaction mix is 50% listing and 50% buying
and there are 100 transactions total, there will be 50 lists and 50
purchases that need to be measured. If all of the lists happen before
the purchases, then everything will work fine. However, if the pur-
chases happen before the listing of the NFT occurs, the purchasing
transactions will fail as they are trying to purchase NFTs that have
not been listed yet. This ordering discrepancy will cause the perfor-
mance metrics to be significantly different, despite the individual
transactions being exactly the same. To mitigate this, we employ
pre-generated transaction lists with pseudo-random orderings that
maintain the correct sequence while introducing random elements.

Using multiple clients ensures that the blockchain is the limiting
factor, but causes idempotency problems. If the transactions are to
be called in a specific order and there are multiple clients calling
transactions at a time, the ordering of the transactions cannot be
guaranteed. To address idempotency issues arising from multiple
clients, where transaction order cannot be guaranteed, we partition
the transaction list and assign prefixes to differentiate each client’s
transactions. For instance, client 1 may receive transactions for
NFTs 1A, 1B, 1C, and 1D, while client 2 handles transactions for
NFTs 2A, 2B, 2C, and 2D. Although the transaction mix remains the
same for each client, each client operates on its own set of NFTs. By
maintaining ordered calls within each client, the overall integrity of
the workload is preserved. Consequently, client 2 cannot purchase
an NFT that client 1 has not listed because they operate on distinct
sets of NFTs.

2.4 Standardized Reporting Format
Comparability among benchmark runs depends not only on stan-
dard workloads, metrics, and driver, but also on a result-reporting
format that simplifies comparison among experimental runs by a
variety of organizations. While the main goal is to provide easily
understood macro metrics, it is important that all driver inputs,
workload specifications, and environmental specifications are prop-
erly reported to maintain transparency. Reporting every aspect of
the benchmark allows independent users to verify the results, by
running the benchmarks themselves. Due to length constraints, the
format is not fully outlined in this paper although it does contain

all of the parameters to set up the same driver and blockchain envi-
ronments, the hardware used, each specific micro metric measured,
and the macro metrics extrapolated from these micro metrics.

3 BLOCKBENCH V3
Our implementation of the BBSF, Blockbench v3, is a benchmark-
ing platform focused on Web3 applications running on layer-1
blockchains. The workloads proposed in Blockbench v3 cover a va-
riety of transaction types seen in the Web3 space, as well as a range
of arrival distributions to provide full insight into a blockchain’s
performance on Web3 applications.

3.1 Workloads
Blockbench v3 is composed of 4 workloads: a decentralized token
exchange, an NFT marketplace, NFT minting, and a sports betting
site. These workloads use a variety of transaction types and arrival
distributions to cover a range of blockchain use cases. The workload
sizing, transaction mix, and arrival distribution of the workloads
are determined through historical data from Web3 applications
that perform similar tasks to the workload, or historical demand
from Web2 equivalents. For the sake of benchmarking, these work-
loads are simplified, representing the core functionality required to
complete these tasks.

3.1.1 Token Exchange. The first Blockbench v3 workload is a de-
centralized token exchange roughly based on Uniswap-V2 [8], an
application that allows users to trade tokens of type A for tokens
of type B for a small fee. The exchange is an automated market
maker that calculates exchange rates automatically and removes
the need for a central party to create a market. In addition to using
the exchange to swap tokens, users can earn rewards by providing
liquidity to the exchange. When a user is done providing liquidity,
that user can retrieve the tokens and the share of the fees generated
by swaps using liquidity that had been provided. This workload
is composed of transactions for providing liquidity, retrieving liq-
uidity, and swapping tokens. To simplify the smart contract, we
do not implement the reward function of the liquidity pool, due
to the complex economic model. The workload sizing, transaction
mix, and arrival distribution are generated from Uniswap-V2 [19]
historical data.

3.1.2 NFT Marketplace. The next Blockbench v3 workload repre-
sents the trading volume of an NFT marketplace. NFT marketplaces
allow users to list, sell, and buy NFTs. Non-fungible tokens (NFTs)
are one-of-a-kind tokens that are tied to a digital asset. Owning
the token proves ownership of the tied digital asset. NFTs have a
very high potential for practical real-world application. NFTs can
be used for titles/deeds of a car or house, tickets for concerts or
flights, or licensing of music or other creative works. Despite this
potential, most NFT usage right now is digital art. Our inclusion
of this workload is motivated not by recent NFT fads, but rather
by the long-term application potential in business and government.
NFT transactions require different protocols than those for simple
debit/credit transactions, broadening the pool of features measured
by Blockbench v3. This workload is composed of listing transac-
tions, posting of an NFT, sale transactions, and the transfer of funds
and NFT. These features represent the core functionality of an NFT

BBSF: Blockchain Benchmarking Standardized Framework VDBS, June 23, 2023, Seattle, WA

marketplace. Workload sizing, transaction mix, and arrival distri-
bution for this workload are based on CryptoPunks [22] historical
data.

3.1.3 NFT Minting. The third workload in Blockbench v3 focuses
onNFTminting, which involves generating unique digital-art assets.
In a digital-art collection, each piece possesses distinct traits that
make it part of the overall collection while being unique in its own
way. To mint an NFT in this style, a random number determines
the traits of the newly created NFT. This random number must be
different from any previously minted NFTs to prevent duplicates.
Once the random number is generated, the associated artwork is
linked to a token using Interplanetary File Storage (IPFS). This
off-chain storage ensures that the NFT is bound to the generated
token. This workload does not require an arrival distribution as
the structure of the workload provides all transactions at time 0
(because the typical NFT project does most, if not all, minting at the
initial deployment of the NFT project). The sizing for the workload
is based on common NFT project sizes.

3.1.4 Sports Betting. The last workload of the Blockbench v3 bench-
mark represents the traffic of a sports-betting website. Sports bet-
ting is a large industry that revolves around a middleman bookie
that could easily be replaced with a smart contract. In the time lead-
ing up to the game, users will place bets on the game and then once
the game ends all of the winners need to be paid out. This workload
represents the calculation of winners and the payment to these win-
ners. As soon as the game ends, all information is available to the
contract and thus all winners are known. This creates an interesting
arrival distribution where all transactions start at time 0, allowing
for the blockchain to operate at maximum throughput. Although
we are modeling a Web3 sports-betting environment, we have sized
the workload using data from current Web2 sports-betting sites
such as Fanduel on games of varying sizes.

3.2 Macro Metrics
The macro metrics proposed by Blockbench v3 are designed around
the central trilemma of blockchain. The trilemma states that a suc-
cessful blockchain needs to be decentralized, scalable, and secure.
However, in practice, a blockchain struggles to maximize all three
of these pillars. A decentralized blockchain’s main feature is the
lack of a central authority. Without a central authority to control
consensus, blockchains use decentralized consensus algorithms to
ensure security in the decentralized environment; however, these
algorithms tend to scale poorly. Bitcoin has high security and is
completely decentralized, but has very slow performance. If the
blockchain aims to prioritize scalability while maintaining its decen-
tralized status, then the requirements for consensus will be lessened,
possibly leading to worse security. If the blockchain has high secu-
rity and high performance, then a central authority is required to
process the transactions. Visa, although not a blockchain, has very
high security and also very high performance, but is obviously a
centralized organization. This trilemma is a triangular spectrum
in which moving towards two of the pillars brings us away from
the third. While these features are at odds with each other, the
Blockbench v3 macro metrics allow developers to choose which

features suit their requirements and which blockchains maintain
these features the best.

3.2.1 Decentralization. Testing decentralization in a small envi-
ronment is challenging and lacks direct correlation with scalability
and security metrics. Quantifying decentralization, such as the dis-
tribution of mining nodes in PoW blockchains and deposit users in
PoS blockchains, is complex and lacks standardized measures. As a
result, our current implementation does not include specific macro
metrics for decentralization.

3.2.2 Scalability. The main elements the macro metrics focus on
are scalability and security. For scalability, the macro metric comes
from measuring the micro metrics of a given workload with differ-
ent numbers of nodes. Running the benchmark with 4, 8, 16, 24, and
32 nodes provides a set of micro metrics that can be graphed against
the number of nodes. This graph can then be curve-fit to extrapolate
how the blockchain will perform in a full-scale environment. The
macro metric is the function provided by this curve-fitting process.
Measuring with a larger number of nodes would provide more accu-
rate results, however, it is unreasonable to expect every blockchain
to have a test environment with more than 32 nodes. Scalability
provides insight into how blockchain performance is affected as
more nodes join the network. As more nodes join, the network is
more decentralized and may have more computing power6, how-
ever, responses from more nodes are needed to reach consensus.
Users can use the results provided by scalability to see how two
blockchains would perform at the same size, despite the deployed,
live, chains being different sizes.

3.2.3 Fault Tolerance. For security, the macro metrics crash-fault-
tolerance and nefarious-fault-tolerance explore the effects of per-
formance when nodes are not behaving properly. Looking at the
consensus algorithm used, it can easily be determined how many
nodes are required to perform correctly for a system to work. A
blockchain cannot function below that threshold. For fault toler-
ances, the macro metrics explore the impact on performance as
this threshold is approached. Crash fault tolerance measures the
performance change as the number of nodes that return nothing
increases. To measure crash fault tolerance, a workload is run on
a 32-node blockchain with 0, 4, and 8 faulty nodes. In this met-
ric, faulty nodes return nothing during consensus, representing
nodes that have crashed. With each number of faulty nodes, we
measure the performance of the relevant micro metrics. The crash
fault tolerance macro metrics are composed of the ratios of the
performance, with 0:4 faulty nodes and 0:8 faulty nodes. To get
the nefarious fault tolerance, the same steps are performed, except
the faulty nodes return random7 responses, emulating an attack.
These macro metrics provide insight into how well blockchains can
handle attacks and how much their performance is affected during
an attack.

6In most blockchains, every node runs every transaction so the added computing
power adds no significant ability to do more work. This remains true in general for
sharded blockchains since the number of shards is normally fixed independently of
the number of nodes.
7While the actual definition of malicious nodes is omnisciently evil behavior repre-
senting the worst possible case for a correctness proof, actual construction of such
behavior for a workload is not possible as it is equivalent to the halting problem, which
is proven to be undecidable.

VDBS, June 23, 2023, Seattle, WA Ren, et al.

4 8 16
0

200
400
600
800

1000

Th
ro

ug
hp

ut
 (T

PS
)

Donothing

4 8 16
0

200

400

600

800

1000
Token Exchange

4 8 16
Num of blockchain nodes

0

10

20

30

La
te

nc
y

4 8 16
Num of blockchain nodes

0

10

20

30

Ethereum-R10 Ethereum-R50 Quorum-R10 Quorum-R50

Figure 2: Evaluation results of two workloads on Ethereum
and Quorum with different request rates and blockchain
nodes

4 EXPERIMENTS
We report here preliminary results for two blockchains that we
have benchmarked to prove the viability of the BBSF framework:
Ethereum (v1.10.26) and Quorum (v22.7.6). The experiments were
run on a powerful machine with 2 AMD EPYC Milan 7513 CPUs
(64 cores, 128 threads) and 1 TB RAM. Ethereum is using Clique for
proof-of-authority consensus while Quorum is using IBFT. Both
Ethereum and Quorum use the same block gas limit configuration
of 30M and a block period of 5 seconds.

Figure 2 presents the results of our evaluation of two workloads,
Donothing and Token Exchange. Donothing represents empty con-
tract calls and was used throughout the driver testing. Token Ex-
change is the workload outlined in 3.1.1. The evaluation was con-
ducted by employing two different request rates, 10 and 50 tx/s
(R10/R50) for each thread, running 10 threads per worker. Each
experiment was conducted for a duration of 60 seconds, and the
average results were obtained from three separate runs. To test the
scalability of the blockchain systems, we also conduct experiments
with the number of workers set equal to the number of blockchain
nodes. In the case of a 4-node network, our results indicate that
Quorum outperforms Ethereum with a peak throughput of approx-
imately 1000 TPS for both workloads and a small latency of around
10 seconds. Conversely, Ethereum’s throughput is limited to 250
and 78 TPS separately, due to the block gas limit. Notably, we also
observed that the block gas limit does not apply to Quorum, al-
lowing for the production of larger blocks when receiving high
request rate workloads. Furthermore, our latency evaluation shows
that Quorum exhibits faster response times for low-rate workloads,
while Ethereum takes longer response times.

We also tested the performance of the two blockchains with
8 and 16 nodes. Our results show that Ethereum’s performance
slightly drops with increasing nodes, while Quorum’s performance
decreases significantly. Additionally, when the request rate is set
to 50 with 8 and 16 nodes, Quorum only produces blocks with

empty transactions, which prevented us from providing certain
results. While our experiments can be used to create the scalability
macro metric, we only have 3 sizes that are minuscule compared to
a deployed chain. As we perform larger-scale experiments using
more blockchains and micro metrics, resulting in more data points,
these macro metrics will help encapsulate these results. We do plan
to run experiments with a larger number of nodes, however we are
unsure as to how large of a network we can spin up ourselves. Our
preliminary results are intended to show that the BBSF is capable
of producing comparable, verifiable, and transparent results. We
hope to interest groups with larger testing environments to get
more accurate results.

5 DISCUSSION: LAYER-1 AND BEYOND
We have motivated the development of BBSF based on the need to
compare layer-1 blockchains and the prevalence of irreproducible
performance claims from advocates of specific blockchains. A wider
domain of performance competition is emerging now at layer-2. In
principle, our framework and workloads apply equally well at layer-
2, but it will be interesting to consider designing specific workloads
that gain insight into the performance of the alternative transaction
aggregation approaches taken at layer-2. Among the issues faced
in analyzing layer-2 are the definition of finality when we compare
optimistic rollups such as Optimism [17] and Arbitrum [16] with
zero-knowledge(ZK) rollups such as Polygon ZK-EVM [18], Matter
Labs’ zkSync [24], and Loopring [10]. Layer-2 solutions compete
on performance, security, and cost. That latter point, cost, is one we
have not considered, and a difficult one to benchmark in a dynamic
economic system.

6 FUTUREWORK
Although this paper focuses on the benchmarking framework it-
self, our medium-term goals are twofold: doing an extensive set of
benchmarking experiments and encouraging others to use BBSF for
their experiments. Our initial results show the feasibility of using
BBSF. The long-term goal is to assemble a rich set of comparable
benchmarking results and use those to gain insight into blockchain
system design. In reaching our long-term goal, we expect to re-
fine the framework, but hope to quickly reach a point where the
framework is stable and focus our efforts on new workloads using
the existing framework. Ultimately, we aim to enable the broad
blockchain community to be able to make informed, reliable perfor-
mance comparisons based on independently defined standards. As
we noted in Section 5, the need for independent and transparent
benchmarking in blockchain is growing, and the domain over which
testing needs to be done is expanding beyond layer-1 to layer-2 and
the burgeoning ZK-EVM ecosystem.

ACKNOWLEDGMENTS
The research group from NUS is supported by the National Re-
search Foundation, Singapore under its Emerging Areas Research
Projects (EARP) Funding Initiative. Any opinions, findings and con-
clusions or recommendations expressed in this material are those
of the author(s) and do not reflect the views of National Research
Foundation, Singapore. The work at Lehigh is supported by a gift
from Steel Perlot.

BBSF: Blockchain Benchmarking Standardized Framework VDBS, June 23, 2023, Seattle, WA

REFERENCES
[1] 2023. Hyperledger Caliper. Web document. https://hyperledger.github.io/caliper/.
[2] Dinh Tien Tuan Anh, Rui Liu, Meihui Zhang, Gang Chen, Beng Chin Ooi, and

Ji Wang. 2018. Untangling Blockchain: A Data Processing View of Blockchain
Systems. IEEE Transactions on Knowledge and Data Engineering 30, 7 (July 2018),
1366–1385.

[3] Jefferson F.B. Van Buskirk. 2023. The Standardization of Blockchain Benchmark-
ing. https://shorturl.at/aDX03

[4] Jing Chen, Sergey Gorbunov, Silvio Micali, and Georgios Vlachos. 2018. ALGO-
RAND AGREEMENT: Super Fast and Partition Resilient Byzantine Agreement.
Cryptology ePrint Archive, Paper 2018/377. https://eprint.iacr.org/2018/377
https://eprint.iacr.org/2018/377.

[5] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-Lee
Tan. 2017. Blockbench: A framework for analyzing private blockchains. In Proc.
ACM SIGMOD Conference on the Management of Data. 1085–1100.

[6] Vincent Gramoli, Rachid Guerraoui, Andrei Lebedev, Chris Natoli, and Gauthier
Voron. 2022. Diablo-v2: A Benchmark for Blockchain Systems. (2022), 14. http:
//infoscience.epfl.ch/record/294268

[7] Jim Gray and Andreas Reuter. 1993. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann.

[8] Hayden Adams and Noah Zinsmeister and Dan Robinson. 2020. Uniswap v2
Core. Web document. https://blog.uniswap.org/whitepaper.pdf/.

[9] Dumitrel Loghin, Tien Tuan Anh Dinh, Aung Maw, Gang Chen, Yong Meng
Teo, and Beng Chin Ooi. 2022. Blockchain Goes Green? Part II: Charac-
terizing the Performance and Cost of Blockchains on the Cloud and at the
Edge. CoRR abs/2205.06941 (2022). https://doi.org/10.48550/arXiv.2205.06941
arXiv:2205.06941

[10] Loopring. 2023. https://loopring.org/#/protocol
[11] Omid Malekan. 2018. The Story of Blockchain. Triple Smoke Stack.
[12] Mateusz Raczynkski. 2021. What Is The Fastest Blockchain And Why? Analysis

of 43 Blockchains. Web document. https://alephzero.org/blog/what-is-the-

fastest-blockchain-and-why-analysis-of-43-blockchains/.
[13] Bhabendu Kumar Mohanta, Soumyashree S Panda, and Debasish Jena. 2018.

An Overview of Smart Contract and Use Cases in Blockchain Technology. In
2018 9th International Conference on Computing, Communication and Networking
Technologies (ICCCNT). 1–4. https://doi.org/10.1109/ICCCNT.2018.8494045

[14] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Web
document. https://bitcoin.org/bitcoin.pdf.

[15] Bulat Nasrulin, Martijn De Vos, Georgy Ishmaev, and Johan Pouwelse. 2022.
Gromit: Benchmarking the Performance and Scalability of Blockchain Systems.
arXiv:2208.11254 [cs.DC]

[16] OffchainLabs. 2023. https://offchainlabs.com
[17] Optimism. 2023. https://www.optimism.io
[18] Polygon. 2023. https://wiki.polygon.technology/docs/zkEVM/introduction
[19] Uniswap V2: Router. 2023. https://shorturl.at/uCLNQ
[20] Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, Meihui Zhang, and

Gang Chen. 2023. Blockchains: Decentralized and Verifiable Data Systems. Springer
Nature.

[21] Dimitri Saingre, Thomas Ledoux, and Jean-Marc Menaud. 2020. BCTMark: a
Framework for Benchmarking Blockchain Technologies. In 2020 IEEE/ACS 17th
International Conference on Computer Systems and Applications (AICCSA). 1–8.
https://doi.org/10.1109/AICCSA50499.2020.9316536

[22] CRYPTOPUNKS Token. 2023. https://shorturl.at/doFGV
[23] Jóakim v. Kistowski, Jeremy A. Arnold, Karl Huppler, Klaus-Dieter Lange, John L.

Henning, and Paul Cao. 2015. How to Build a Benchmark. In Proceedings of
the 6th ACM/SPEC International Conference on Performance Engineering (Austin,
Texas, USA) (ICPE ’15). Association for Computing Machinery, New York, NY,
USA, 333–336. https://doi.org/10.1145/2668930.2688819

[24] ZKsync. 2023. https://docs.zksync.io/userdocs/intro

Received 24 March 2023; revised n/a; accepted n/a

https://hyperledger.github.io/caliper/
https://shorturl.at/aDX03
https://eprint.iacr.org/2018/377
https://eprint.iacr.org/2018/377
http://infoscience.epfl.ch/record/294268
http://infoscience.epfl.ch/record/294268
https://blog.uniswap.org/whitepaper.pdf/
https://doi.org/10.48550/arXiv.2205.06941
https://arxiv.org/abs/2205.06941
https://loopring.org/#/protocol
https://alephzero.org/blog/what-is-the-fastest-blockchain-and-why-analysis-of-43-blockchains/
https://alephzero.org/blog/what-is-the-fastest-blockchain-and-why-analysis-of-43-blockchains/
https://doi.org/10.1109/ICCCNT.2018.8494045
https://bitcoin.org/bitcoin.pdf
https://arxiv.org/abs/2208.11254
https://offchainlabs.com
https://www.optimism.io
https://wiki.polygon.technology/docs/zkEVM/introduction
https://shorturl.at/uCLNQ
https://doi.org/10.1109/AICCSA50499.2020.9316536
https://shorturl.at/doFGV
https://doi.org/10.1145/2668930.2688819
https://docs.zksync.io/userdocs/intro

	Abstract
	1 Introduction
	1.1 Blockchain Technology Overview
	1.2 Benchmarking Overview
	1.3 Problem Statement
	1.4 Related Work
	1.5 Call for a New Framework
	1.6 Overview of the Paper

	2 Blockchain Benchmark Standardized Framework
	2.1 Standardized Workload Framework
	2.2 Standardized Metric Framework
	2.3 Standardized Driver
	2.4 Standardized Reporting Format

	3 Blockbench v3
	3.1 Workloads
	3.2 Macro Metrics

	4 Experiments
	5 Discussion: Layer-1 and Beyond
	6 Future Work
	Acknowledgments
	References

