Abstracts

Course Overview  |  Course Schedule  |  Abstracts  |  Lecturer Bios

Lecture 1 – Free Radical Polymerization Mechanisms and Kinetics
F. Joseph Schork

A review of the principles of free radical-initiated polymerization, including the four basic reactions of initiation, propagation, termination and transfer, inhibition, molecular weight and molecular weight distribution, effect of temperature and pressure, autoacceleration and diffusion control of termination and propagation, and copolymerization including copolymerization reactivity ratios and copolymer sequence distribution.

Lecture 2 – Emulsion Polymerization Mechanisms and Kinetics
F. Joseph Schork

Reaction mechanisms and kinetics of free radical polymerization will be reviewed. The unique features of emulsion polymerization will be outlined and the influence of the colloidal size of the reaction sites discussed. Kinetic theories due to Smith & Ewart, Stockmayer, O’Toole, Roe, Fitch, Ugelstad, and Gilbert will be discussed.

Lecture 3 – Branching and Grafting in Emulsion Polymerizations
Peter A. Lovell

Branching in polymers produced by free-radical polymerization arises from chain transfer to polymer and has important effects on polymer properties. In emulsion polymerization, intermolecular chain transfer to polymer can lead to grafting of water-soluble polymers to latex particles, facilitating control of colloidal stability and latex rheology. Such branching and grafting is used to good effect in the emulsion polymer industry to control the end-use performance of latexes and emulsion polymers. This lecture will begin with an overview of the chemistry of branching and grafting. Case studies of branching in acrylate and vinyl acetate homopolymerizations and synergistic effects in copolymerization will then be presented, together with strategies for controlling the level of branching. This will provide the basis for considering grafting of water-soluble polymers used as colloid stabilizers in emulsion polymerizations. The chemical processes which the most commonly-used water-soluble polymers may undergo during emulsion polymerization will be illustrated through case studies that highlight the key principles for their control.      

Lecture 4 – The Role of Surfactants in Emulsion Polymerization Processes and Kinetics
Mohamed S. El-Aasser

Surfactants play major roles in emulsion polymerization during the particle nucleation and growth stages, with direct impact on latex particle size, size distribution, polymerization rate, polymer molecular weight, and particle morphology. Surfactants are also essential during post-polymerization processes: stripping, storage, shipping, and formulation for several applications. The general characteristics of surfactants and their adsorption profiles on latex particles will be reviewed. The specific role of surfactants (single and mixtures of surfactants) on the kinetics of emulsion polymerization (rate of polymerization and evolution particle number as a function of polymerization time according to the various nucleation mechanisms) will be described. The influence of water-solubility of monomers, partition of the surfactant between the monomer and aqueous phases, and the use of single vs. mixtures of anionic and non-ionic surfactants on the kinetics results of emulsion polymerization will also presented and discussed. Three alternatives to conventional surfactants, including ionic monomers, block copolymers, and the recent work on reactive surfactants in emulsion polymerization and characterization results of their loci in the final copolymer latex particles as well as properties of films cast from these latexes be discussed.

Lecture 5 -Semi-Continuous Emulsion Polymerization and Structured Latexes
Michael F. Cunningham

Semi-continuous (or semi-batch) polymerizations in which the monomer is added incrementally during the course of reaction are commonly used in industrial processes because they allow control of the polymerization rate, and because they can be used to control the particle morphology. “Structured latexes” are emulsion polymer particles in which the internal morphology and/or composition vary through the particle. Examples include core-shell particles, and particles with radial composition gradients between the particle core and surface. The discussion will describe how semi-continuous processes are run, the unique features of operating an emulsion polymerization in semi-continuous mode, and how structured latexes can be synthesized.

Lecture 6 – Colloidal Stabilization and Destabilization Mechanisms of Latex Systems
Mohamed S. El-Aasser

Colloidal stability are essential both during the entire course of an emulsion polymerization process in order to eliminate coagulum formation and to avoid reactor fouling. Latex stability is also essential for many of the post-polymerization processes such as storage, transportation, steam stripping of residual monomer, as well as formulation involving additives (such as pigments, fillers or coalescing aids,) and latex applications methods which my involve subjecting the latex system to mechanical sheer.

In this lecture we will introduce the electrostatic and steric colloidal stabilization mechanisms of latex systems. We will discuss in details the key parameters responsible for repulsion and attraction between latex particles in light of the Derjaiguin – Landau – Verwey – Overbeek (DLVO) theory, for latex particles that carry negative or positive surface charges due to adsorption of surfactants and/or chemically bound ionized functional groups. We will also discuss the entropy and enthalpy contributions to steric stabilization of latex systems in light of the 2nd law of thermodynamic, due to the presence of non-ionic species at the particle surface such as non-ionic surfactants and/or anchored polymer chain molecules with affinity to the surrounding aqueous phase. The reverse of colloidal stabilization, namely destabilization or aggregation (coagulation and flocculation) of latex systems will be discussed. In this regards, the influence of chemical additives (such as electrolytes, acids, solvents on non-solvents) on stabilization/destabilization will be presented. Also the influence of physical effects (such as agitation and mechanical sheer as well as temperature changes including freeze/thaw cycles) on stabilization/destabilization will be presented. Ways to assess the critical concentrations of additives, and levels of temperature changes as well as mechanical sheer that cause destabilization of a colloidally-stable latex particles will be discussed. Experimental results will be used to illustrate some of the basic concept and the influence of chemical additives and physical effects on stabilization/destabilization mechanisms of latex systems.

Lecture 7 – Experimental Methods for the Characterization of Latex Particle Size and Particle Size Distribution
Cesar A. Silebi

Semi-continuous (or semi-batch) polymerizations in which the monomer is added incrementally during the course of reaction are commonly used in industrial processes because they allow control of the polymerization rate, and because they can be used to control the particle morphology. “Structured latexes” are emulsion polymer particles in which the internal morphology and/or composition vary through the particle. Examples include core-shell particles, and particles with radial composition gradients between the particle core and surface. The discussion will describe how semi-continuous processes are run, the unique features of operating an emulsion polymerization in semi-continuous mode, and how structured latexes can be synthesized.

Lecture 8 Correlation between Colloidal Structure and Properties of Acrylic Latexes
Bernd Reck

For tailoring properties of polymer latexes, a good understanding of their fundamental structure property relationships is essential. In this talk, we will discuss the influence of stabilization system, colloidal interactions, coalescence behaviour and chemical crosslinking on various properties of acrylic latexes. Electrosteric colloidal stabilization is commonly provided by combining anionic and non-ionic surfactants with hydrophilic functional monomers like acrylic acid and acrylamide. Alternatively, amphiphilic polymers or blockcopolymers can be used as protective colloids for latex stabilization. The stabilizers and the hairy layer structure determine the colloidal interactions of polymer dispersions with other coating formulation ingredients like pigments, fillers, dispersants and rheology additives. Theunderstanding and design of these interactions is crucial for tailoring paint properties like rheology, workability, open time and hiding power. Water based polymer dispersions are providing their final function and properties in the dryed state. Upon drying, the individual latex particles of of the dispersion undergo coalescence to form a coherent polymer film. Understanding and control of the film formation process helps to achieve optimum properties.To improve the mechanical properties, it is possible to incorporate specific functional monomers and reactive species, which undergo chemical cross-linking during and after the latex film formation.

Lecture 9 – Inverse Emulsion Polymerization
Donna Visioli

Inverse emulsion polymerization consists of emulsification of a hydrophilic    monomer (usually in aqueous solution) in a continuous oil medium using a water-in-oil emulsifier, and polymerization using either a water-soluble      or an oil-soluble initiator. The resulting water-in-oil emulsion consists of   high molecular weight polymer trapped in aqueous droplets. This process   gives water-soluble polymers the usual benefits of emulsion  polymerization, i.e. rapid polymerization rate, high molecular weight,        and low viscosity. However, latex stabilization is more difficult in an oil-continuous system because the electrostatic double layer which gives rise to electrostatic repulsive forces is more diffuse in water-in-oil    emulsions compared to oil-in-water emulsions. This makes surfactant selection critically important in inverse emulsion polymerization;  strategies for effective surfactant selection are described.    Industrial applications for inverse emulsion polymers often require inverting the resulting latexes by adding excess water and perhaps some oil-in-water emulsifier to destabilize the latexes and release the      water-swollen polymer particles into the water phase. This process proceeds rapidly because it is      simply a dilution rather than a dissolution. Typical industrial applications of inverse emulsion polymers, which include thickeners, flocculants, lubricants, and microgels (in which the polymer structure is modified by the use of crosslinkers), will be reviewed.

Lecture 10 – Latex Film Formation
Peter A. Lovell

Understanding film formation is important for all applications where latexes are dried, which includes obvious applications such as water-borne paints, inks and adhesives, but also those which are less obvious, such as binding of non-woven fabrics, sealants and foamed products. This lecture will describe the fundamental principles underlying the process of film formation from latexes, including the key stages and the molecular processes that are necessary for the formation of coherent films. Factors that influence film formation and the quality of the films produced will be described.

Lecture 11 – Miniemulsions and Their Latex Systems via Polymerization in Monomer Droplets and Direct Emulsification of Polymer Solutions
Mohamed S. El-Aasser

In this lecture the early development of the miniemulsion concept will be reviewed, and current state-of-the-art including theory and practice of miniemulsions will be discussed. The concept of miniemulsions was invented at Lehigh University in 1972. Despite the fact that the first miniemulsion polymerization was also carried out at the same time, the term “miniemulsion” was coined only in 1981. Since that time the number of publications and patents on miniemulsions has been increasing exponentially.  Miniemulsions are relatively stable oil-in-water emulsions with average droplet diameters ranging from 50 to 500 nm. These are typically prepared using a mixture of a surfactant and a low molecular weight, highly water-insoluble costabilizer (sometimes referred to as cosurfactant). In miniemulsion polymerization for the preparation of polymer colloids (latexes), since the surfactant concentration in the aqueous phase is below the CMC, the submicron monomer droplets are the main sites for particle nucleation (and growth) via free radical initiation using oil-soluble or water-soluble initiators. An alternative approach for making latexes based on miniemulsions is the direct emulsification of polymer solutions. The formation and shelf-life stability of miniemulsions are explained based Ostwald ripening and the 2nd law thermodynamics. Miniemulsions have been exploited in making new types of polymer colloids (latexes) that were difficult and sometimes impossible to make using conventional emulsification and/or emulsion polymerization processes. These include preparation of artificial latexes and hybrid latexes, high solids latexes, polymerization of highly water-insoluble monomers and macromonomers, controlled polymer microstructure and morphology, controlled polymer molecular weight distribution via living free radical polymerization, and encapsulation of liquids, inorganic particles, inorganic and organic pigments and dyes.

Lecture 12 – Living Radical Polymerization and Advances in Future  directions for Emulsion Polymers
Michael F. Cunningham

Presources including natural polymers. As this chemistry matures, new classes of polymer colloids will emerge, possibly ushering in entirely new fields of application and considerable opportunities for product innovation. For example, “living” (or “controlled”) radical polymerizations (LRP/ CRP) provide a novel and potentially inexpensive route to designing polymers with controlled microstucture (e.g. block copolymers) and narrow molecular weight distributions. Earlier studies focused on homogeneous bulk and solution living radical polymerizations, but our ability to conduct LRP in aqueous dispersed phase systems has now progressed to a point where commercial applications are feasible. This presentation introduces the three major living radical polymerization chemistries (nitroxide-mediated radical polymerization (NMRP), atom transfer radical polymerization (ATRP) and reversible-addition-fragmentation-transfer polymerization (RAFT)), and summarizes recent progress of these systems in bulk and emulsion-based systems. The emphasis will be on those aspects of operating in a heterogeneous environment that influence the polymerization rate, the molecular weight distribution and the livingness of the system. The presentation will also highlight recent advances in the use of other non-radical chemistries to make polymer colloids, and in progress to make “green” polymer colloids from renewable feedstocks and natural polymers.

Lecture 13 – Nonaqueous Colloids: Physics and Applications
Andrew Hollingsworth

Electrostatic charging of colloids is common in aqueous environments where interfacial charges are responsible for the stabilization of particle dispersions and emulsions. In nonpolar media where the separation of charge is energetically unfavorable, polymeric dispersants may be used to sterically stabilize the colloidal dispersion. The electric charging of sterically-stabilized colloids in low-permittivity fluids is often observed,however, with the addition or presence of surfactant aggregates (e.g., inverse micelles). This puzzling behavior actually plays a crucial role for many technologically important processes, for example, electronic ink display technology, air-borne drug delivery systems, and asphaltene stabilization in crude oil processing, as well as enabling colloidal model systems with tunable interactions. The lecture will focus on the basic concepts related to ions and charged particles in nonpolar media and also discuss the role of polymers in steric stabilization.

Lecture 14 – Latex Rheology
Cesar A. Silebi

Review of experimental studies illustrating the various factors that influence the rheological properties of latexes. Topics to be covered include the effects of solids concentration, particle size and distribution, electrolyte content, particle aggregation, adsorbed surfactants, non-spherical particle morphology, particle swelling, and the use of water-soluble associative and non-associative polymeric thickeners. Consideration will also be given to thickened latexes and variables affecting their rheological flow curves.

Lecture 15 – Waterborne Pressure Sensitive Adhesives
Ying-Yuh Lu

Pressure sensitive adhesives (PSAs) are permanently tacky and adhere to substrates without the need of more than finger or hand pressure. Water borne PSAs are widely used in permanent and removable tapes and label stocks. The lecture will cover basics of PSAs and testing, waterborne PSA compositions and sizes on adhesive performance, as well as challenges of emulsion PSAs.

Lecture 16 – Monodisperse Latex Particles – Preparation, Surface Modification, Characterization and Applications
Mohamed S. El-Aasser

The preparation of monodisperse latex particles were developed at Dow Chemical Co. in the early 1950’s, using emulsion and seeded emulsion polymerization. Monodisperse particles found a wide variety of applications in small-volume high-value applications such as calibration of instruments, medical diagnostic tests, determinations of pore size membranes, sensors, etc. Over the past few decades a noticeable expansion is seen in the use of monodisperse latex particles in biomedical applications. Common characteristics of latex particles for these applications include: colloidal stability, uniform particle size (in the range of 50 nm – 100 µm), and type and density of functional groups/unit surface area. Surface functionality such as carboxyl, amines, or hydroxyl groups are particularly useful for surface modification of latex particles for coupling reactions of proteins using reagents such as Woodward’s, carbodiimide, and cyanogen bromide.

This talk is comprised of two parts:

Part I deals with methods used for “cleaning” and characterization of model monodisperse latex systems with submicron particle dimeters. The cleaning methods involve removal of all adsorbed emulsifies from the particles’ surface and dissolved surfactant molecules and solutes from the aqueous phase. The efficiency of 3 cleaning methods using dialysis, ion exchange and serum replacement are compared. The simple characterization method involving acid/base titration (and in one case electrophoretice mobility measurements) are then used for the characterization and quantitative determination of the number of functional groups/unit area, and surface charge density on the cleaned latex particle surface.

In part II we will review the various methods used in the preparation of monodisperse latex particles in the submicron and micron size range such as emulsion, seeded emulsion, and emulsifier-free emulsion polymerizations, two-step swelling method, and dispersion polymerization. This will be followed by describing methods used for surface modifications and characterization as a result of incorporating functional groups such as carboxyl, hydroxyl, and sulfonate on the particles’ surface to make them suitable for wide range of applications including biomedical applications.

Lecture 17 – Fundamentals and Advancement of Waterborne Epoxy and Polyurethanes
Bedri Erdem

This talk will be given in two parts. Part I. Epoxy resins were first commercialized more than 60 years ago. Two component (2K) solventborne (SB) epoxy coatings based on epoxy/polyamide chemistry were developed and heavily used for direct-to-metal coatings and concrete coatings. These 2K SB epoxy coatings deliver excellent adhesion, chemical resistance and corrosion protection, but these coating systems have the negative attribute of high solvent content (VOC). In the last three decades, increasing health and safety awareness and regulatory compliance directives have challenged the coatings industry to develop lower Volatile Organic Component (VOC) coating solutions. In the early 1980’s, waterborne epoxy coatings emerged to primarily fulfill the need for lower paint odor and fast return to service requirements in institutional and maintenance coatings.  Waterborne epoxy systems have been improved over several technology generations to provide additional benefits such as shorter induction time, fast dry time, extended re-coatability while maintaining traditional epoxy coating attributes such as chemical and corrosion resistance, toughness, and adhesion.

Further improvements have been underway to make waterborne epoxy coatings even more viable alternatives to solventborne coatings, especially in challenging metal coating applications. Combining the fundamentals of colloidal, interfacial, and material science in the design of epoxy and curing agent chemistries has led to further improvements in waterborne epoxy coatings. For example, novel high performance waterborne zinc rich primers that provide easier dispersibility and stability for zinc powders (up to 80-85 wt%) have been developed to replace solventborne 3K epoxy zinc rich primers. These low VOC waterborne zinc rich coating systems provide easier application, good flexibility, good adhesion, and outstanding corrosion protection. Additionally, an ultra-low VOC WB epoxy coating (<50 g/L) for concrete (floors, walls and interior building structures) have also been developed. A novel polymer composition incorporating a custom designed specialty surfactant within the polymer architecture provides a ZVOC curing agent is capable of emulsifying epoxy resins.  This waterborne epoxy system provides low viscosity, ease of application and improved adhesion in challenging concrete coatings. These advancements in waterborne technologies have also led to development of high performance ZVOC epoxy dispersions and curing agents for low (< 50 g/L) and zero VOC coating formulations. This presentation will focus on the development of advanced waterborne epoxy coating systems and summarize the performance attributes obtained from these coating systems.

Part II. Polyurethanes are unique materials with a wide range of physical, chemical and mechanical properties. Aqueous polyurethane dispersions (PUDs) have recently emerged to replace their solvent-based counterparts in various applications due to increasing health and environmental issues.  This paper will provide an overview of the fundamentals for the preparation of solvent-free and high solids content (~60 wt%) aqueous PUDs from aromatic isocyanate/polyether and aliphatic isocyanate/polyester prepolymers using a high shear continuous mechanical dispersion process.  It was shown that the chemical composition of the PU prepolymer (nonionic or anionic) and type and amount of surface active agents(s) play critical role in the formation and stabilization of submicron size colloidally stable particles in this process.  The kinetics of polyurethane and polyurea polymerization PUD formation and process was also investigated.  Understanding of reaction kinetics and fundamentals of colloidal and interfacial science allowed the preparation of solvent-free polyurethane dispersions for a myriad of applications from a well-designed combination of a variety of commercially available raw materials.  Effect of the time and temperature on the film formation and coalescence of soft and hard PUDs, crosslinking of polyurethanes with organofunctional silanes and incorporation of inorganic fillers were also investigated for various applications.

Lecture 18  Recent Patent Activity Involving Emulsion Polymers
Donna Visioli

The patent literature can provide valuable insights into unmet market needs and technology gaps as well as activity of industrial competitors. Patent search strategies and tools will be described as background. Recent patent activity around emulsion polymers and processes will be reviewed to identify trends.

Lecture 19 –Requirements and Challenges for Industrial Latex Applications
Bernd Reck

Acrylic polymer latexes are used in numerous every day life applications. Typical examples are interior and exterior architectural coatings, water proofing membranes, pressure sensitive and lamination adhesives, printing inks, and binders for industrial and medical nonwovens. The versatility of the semi-continuous emulsion polymerization process allows the cost efficient manufacturing of polymers with tailored application properties in large scale reactors. In this talk, we will discuss the major application segements for acrylic latexes and their specific requirements, which need to be fulfilled. A broad chemical tool box of main monomers and functional monomers as well as modern property-by-process concepts can be used for the development of advanced latexes to meet the increasing application challenges.

Lecture 20 – Water-Borne Soft-Soft Nanocomposites: Principles and Application Case Studies
Peter Lovell

Many applications of water-borne polymers prepared by emulsion polymerisation require use of soft polymers with glass transition temperatures below room temperature so that films can be formed. In this lecture an overview of the principles underlying the soft-soft nanocomposite concept for enhancing the performance of soft films produced from water-borne polymers prepared by methods of emulsion polymerisation will be presented and then exemplified through three commercially-relevant application case studies: (i) water-borne pressure-sensitive adhesives; (ii) polybutadiene films as models for nitrile rubber glove applications; and (iii) acrylic latexes for use as binders in surface coatings.

Lecture 21 – Question & Answer Session with Short Course Lecturers and Participants

Lecture 22Sensors and Controls for Emulsion Polymerization Reactors
F. Joseph Schork

Recent developments in the area of on-line sensors, coupled with the availability of high-performance digital control systems, have opened up new opportunities for the efficient operation and control of latex reactors. Available sensors for on-line analysis will be discussed. The use of such measurements in the application of advanced control techniques to batch and continuous polymerization reactors will be reviewed, with special emphasis on controlling the undesirable process dynamics associated with continuous emulsion polymerization, and optimizing controllers for batch polymerization.

Lecture 24 Reactor Design and Scale-up in Emulsion Polymerization
Michael F. Cunningham

The principles of designing and safely operating emulsion polymerization reactors will be presented in the context of how the selection of reactor type, mode of operation (batch, semi-batch/semi-continuous, continuous) and specific reaction conditions influence latex product properties and reactor productivity. The first part of the presentation will emphasize the interaction of the chemistry and kinetics of  emulsion polymerization with the physical design and operation of the reactor. The second part of the presentation will examine the issues involved in converting a laboratory scale emulsion polymerization process to a production scale process, including consideration of reaction kinetics, heat transfer and mixing. Emulsion polymerizations often pose a difficult scaleup challenge since by their nature the polymerization kinetics are coupled with both heat and mass transfer. Consequently almost any change to the process during scaleup is likely to impact product properties, whereas the primary goal of scaleup is to reproduce the latex properties obtained in bench scale experiments. The principles of scaling up an emulsion polymerization will be introduced, and specific challenges will be discussed.

Print Friendly, PDF & Email