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Numerous studies have examined unsteady bio-inspired propulsion by assuming that
aquatic animals oscillate their fins with continuous, sinusoidal motions. However, there are
many fish such as saithe, cod and zebra danios that use a non-continuous or intermittent
swimming gait. This burst-and-coast behavior has be shown to save as much as 50% of
the energy it takes to swim a given distance for some kinematic motions and was originally
hypothesized to be due to a viscous mechanism known as the Bone-Lighthill boundary layer
thinning hypothesis. Recently, it has been shown that there is also an inviscid Garrick
mechanism that can account for most of the observed energy savings. Here, our goal is to
determine the relative contributions from the inviscid and viscous mechanisms to the total
energy savings. To accomplish this we compare the performance and flow structures of a
self-propelled pitching hydrofoil from an inviscid boundary element method (BEM) with
those from direct numerical simulations (DNS). The DNS solutions range from Re ≈ 3000 –
6000 and exhibit significantly more complex boundary layer and wake flows, however, many
of the large-scale structures are captured in the BEM solutions. One DNS flow feature that
is not captured in the BEM solutions is the formation and shedding of additional leading-
edge vortices during the bursting and coasting phases of motion. These vortices lead to
additional form drag during coasting that is not present in the inviscid simulations. For the
Reynolds number range of the simulations, the maximum energy savings calculated by DNS
are 17% and 20% for θ0 = 15◦ and θ0 = 20◦, respectively. For comparable BEM simulations
the maximum energy savings are 14% and 24% for θ0 = 15◦ and θ0 = 20◦, respectively,
showing good agreement between both numerical methods. Finally, it is shown that for
low Re on the order of O(103) the inviscid Garrick mechanism is shown to account for
nearly the entire energy savings of intermittent swimming, while in the high Re limit it is
estimated that half of the energy savings comes from the inviscid mechanism and the other
half comes from the viscous Bone-Lighthill mechanism.

Nomenclature

ρ density of the fluid
f frequency
θ0 maximum pitching angle
A tip-to-tip amplitude
Sp planform area of the propulsor
M mass of the hydrofoil
DC duty cycle
t time
T Time-averaged thrust
P Time-averaged power
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D Drag
U swimming speed
U Time-averaged swimming speed
Sw Wetted area
Re Reynolds number
CT Coefficient of thrust
CoT Cost of transport

ˆCoT Normalized cost of transport

I. Introduction

Aquatic animals use a variety of locomotion mechanisms and swimming gaits to propel themselves fast
and efficiently through the oceans.1 Some caudal fin swimmers such as saithe,2 cod3 and zebra danios4

use an intermittent swimming gait known as burst-and-coast or burst-and-glide swimming. It was first
hypothesized5 and then later verified4,6, 7 that interspersing a coasting phase between steady swimming
cycles can save on the order of 50% of the energy for some fish to swim a given distance.7

Classically, the observed energy savings has been attributed to the Bone-Lighthill boundary layer thinning
hypothesis.6 This mechanism supposes that the skin friction drag coefficient is higher during the bursting
phase of swimming and lower during the coasting phase due to the thinning of the boundary layers on a fish
body when undulating.5,8, 9 This has been observed in biology by Anderson et al.10 where they measured a
skin friction drag rise of 50–90% for swimming scup and dogfish as compared to still fish in a Reynolds number
range of Re = O(103)–O(105). On the contrary, Yanase & Saarenrinne11,12 reported PIV measurements on
a swimming trout where they concluded that although the skin friction increases on one side of the fish the
opposite side of the fish has a skin friction decrease canceling out the net skin friction rise when averaged
over the full cycle of motion. However, Ehrenstein et al.8,9 conducted detailed numerical studies on both
two- and three-dimensional oscillating and static plates at Re = 200 reporting a 20% increase in the skin
friction drag of two-dimensional plates and a 70–100% increase in the skin friction drag of three-dimensional
plates, respectively. These numerical studies conclusively showed that a skin friction rise can occur due to
boundary layer thinning on oscillating bodies. Yet, what is unclear is whether the observed energy savings
for intermittent swimmers can be fully attributed to this viscous mechanism.

In fact, recently an energy savings as high as 68% is observed in computations conducted on inviscid
intermittently swimming two-dimensional pitching hydrofoils,13 which is on the same order as the energy
savings observed in previous studies.6,7, 14,15 For these computations there was no boundary layer model
being used, but instead a U2 drag law with a fixed drag coefficient is prescribed that importantly does not
change during the bursting or coasting phases. The observed inviscid energy savings was attributed to a
Garrick mechanism where by varying the duty cycle of motion there is an increase in the ratio of the added-
mass thrust producing forces compared to the circulatory drag-inducing forces, which improves the efficiency
of locomotion. This newly discovered inviscid mechanism now gives a framework to better understand the
energy savings of intermittent swimming.

It is expected that both the inviscid and viscous mechanisms contribute to the energy savings observed
in real flows, however, the importance of each effect is unclear. Therefore the aim of this study is to (1) fully
resolve the benefit coming from intermittent swimming in a viscous fluid and to (2) determine how much of
the benefit is coming from the skin friction/form drag rise during bursting and how much of it is associated
with the alteration of the ratio of added-mass thrust to circulatory drag-inducing forces.

II. Approach and Methods

An inviscid as well as a viscous model are employed to differentiate the viscous and inviscid mechanisms
contributing to the burst and coast swimming benefit.

A. Boundary Element Method

An unsteady potential flow method is employed to calculate the flow field around the free swimming hydro-
foils. We defined the free swimming problem in an inertial reference frame which is fixed to the undisturbed
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fluid. The velocity, u, can be defined as; u = ∇φ∗, where φ∗ is the perturbation potential defined in the
inertial frame. Then, in an incompressible, irrotational fluid flow, continuity equation is reduced to Laplace’s
equation, ∇2φ∗ = 0. Laplace’s equation is solved subject to two boundary conditions; (1) no flux boundary
condition, i.e. no flux through the body boundaries, and (2) far field boundary condition, i.e. the flow
disturbances caused by the body must decay far away. Following Katz & Plotkin, Quinn et. al. and Akoz &
Moored,13,16,17 the general solution for the Laplace’s equation is reduced to finding a distribution of doublets
and sources on the hydrofoil surface and in the wake that satisfy the no-flux boundary condition on the body
at each time step. Doublets and sources both implicitly satisfy the far-field boundary condition. We use the
Dirichlet formulation to satisfy the no-flux condition on the foil body.

To solve this problem numerically, the hydrofoil is discretized into constant-strength source and doublet
boundary elements and wake is discretized into doublet elements. Enforcing no flux boundary condition by
assigning a collocation point for each boundary element on the hydrofoil leads to a linear system of equations.
The system of equations are underdetermined with N equations and N + 1 unknowns. An explicit Kutta
condition is applied to force the vortex shedding from the trailing edge by setting the trailing edge velocity
to zero. Setting the trailing edge velocity results in a determinate system of linear equations which can be
solved for the body doublet strengths. Once the perturbation potential is solved, the perturbation velocity
on the body is determined by a local differentiation of the perturbation potential. Then, the pressure field
acting on the body is calculated by using the unsteady Bernoulli equation. Then, the forces acting on the
pitching airfoil is calculated by integration of the pressure forces over the hydrofoil boundary.

At every time step, one wake panel is shed from the hydrofoil whose doublet strength is dictated by
the explicit Kutta condition and its strength remains fixed for all time. Shed panels advects with the local
induced velocity field from the other wake and body elements. During this rollup process, the endpoints of
the doublet elements, which are mathematically equivalent to point vortices, must be desingularized for the
numerical stability of the solution. Following Krasny,18 the induced velocity on a wake element from other
doublet elements is then calculated with a desingularized Biot-Savart law.

B. Immersed Boundary Method

The pitching foil is treated as an immersed moving boundary in our in-house immersed-boundary-method-
based computational fluid dynamics (CFD) solver. The numerical methodology employed in the current
study is briefly introduced as the following. The 2D incompressible Navier-Stokes equations were dis-
cretized using a cell-centered, collocated arrangement of the primitive variables, and was solved using a
finite difference-based Cartesian grid immersed boundary method.19 The immersed-boundary treatment
is the same as that in.20 The equations were integrated in time using the fractional step method, which
consists of three-steps. In the first sub-step of this method, a modified momentum equation is solved. A
second-order, Adams-Bashforth scheme is employed for the convective terms while the diffusion terms are
discretized using an implicit Crank Nicolson scheme which eliminates the viscous stability constraint. A
second-order central difference scheme is employed in space discretization. This method was successfully
applied in many simulations of flapping propulsion.21–24 More details about this method can be found in
Mittal et al. and Dong et al.19,20 Validations about this solver can be found in our previous work o fWan
et. al. and Li et al.23,25

C. Problem Formulation

To fully resolve the intermittent swimming benefit and separate the viscous and inviscid mechanisms con-
tributing to the benefit, an inviscid as well as a DNS study is performed with two-dimensional self-propelled
hydrofoils. In the inviscid computations, an empirical drag law is employed to account for the skin friction
and form drag experienced by the hydrofoils. Skin friction drag coefficients are acquired from continuously
swimming and static hydrofoils for a range of Reynolds numbers (Re) in steady swimming conditions from
the DNS solutions (see Figure 1a-b). Then, a second order polynomial fit is applied to estimate the skin
friction drag coefficient based on the Reynolds number of the swimmer. Figure 1c shows the skin friction
coefficient as a function of Re number for static and swimming hydrofoils and the shaded gray region repre-
sents the Reynolds number range of the current study. On the other hand, Figure 1d shows the skin friction
coefficient change of a hydrofoil from static to swimming states as a function of Reynolds number and ∆ is
defined as,
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(c)

Figure 1: (a) Vorticity field of a swimming airfoil. (b) Vorticity field of a static airfoil. (c) Skin friction
coefficient of a swimming and a static airfoil as a function of Reynolds number. Shaded areas in (c) represent
the Reynolds number range of the current study.

∆ =
Cswim

D,s − Cstatic
D,s

Cstatic
D,s

(1)

where Cswim
D,s and Cstatic

D,s are the skin friction coefficients of the swimming and static hydrofoils, respectively.
The skin friction of a static hydrofoil rises 30-136% once it starts to swim within the Re number range of
3.2× 103−5× 103. This observation is in line with the recent reported results.8–10 However, an enhancement
of 3-10 folds as predicted by previous studies3,5, 15,26 , seems unlikely.

The total drag coefficient is assumed to be a linear combination of the skin friction drag (CD,s) and the
form drag coefficients (CD,f ). Form drag coefficient is chosen to be a constant value which ensures that the
average cruising velocity of the inviscid and viscous simulations are in the same range.

To distinguish the energy savings coming from viscous and inviscid mechanisms, three set of simulations
are studied with the BEM solver. The drag coefficient is varied among these three set of simulations to
understand the effect of (1) inviscid mechanism, (2) skin friction change in between bursting and coasting
phases and (3) form drag change in between bursting and coasting phases contributions to the intermittent
gait energy savings. Drag forces associated to the three cases of simulations can be summarized as follows;
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case 1 D =

{
(Cswim

D,s + Cswim
D,f )ρSpU

2, 0 ≤ t ≤ Tburst
(Cswim

D,s + Cswim
D,f )ρSpU

2, Tburst ≤ t ≤ Tcycle
(2)

(3)

case 2 D =

{
(Cswim

D,s + Cswim
D,f )ρSpU

2, 0 ≤ t ≤ Tburst
(Cstatic

D,s + Cswim
D,f )ρSpU

2, Tburst ≤ t ≤ Tcycle
(4)

(5)

case 3 D =

{
(Cswim

D,s + Cswim
D,f )ρSpU

2, 0 ≤ t ≤ Tburst
(Cstatic

D,s + Cstatic
D,f )ρSpU

2, Tburst ≤ t ≤ Tcycle
(6)

where Cswim
form and Cstatic

form are the form drag coefficients of the swimming and static hydrofoils, respectively.
ρ is the density of the fluid, Sp is the propulsor surface area and U is the speed of the swimmer. Tburst is
the bursting period of the cycle and Tcycle is the total cycle period.

Figure 2: (a) Geometric and numerical parameters for the teardrop hydrofoil. (b) Normalized pitching angle
as a function of normalized time for an intermittent swimmer with DC = 0.5.

A teardrop airfoil is chosen for the current study as shown in Figure 2a which has a semicircular leading
edge and tapers along straight lines to its trailing edge. The maximum thickness of the airfoil is set to be
10% of its chord length. The chord and span lengths of the airfoil are c = 0.05m and s = 0.05m, respectively.
The ratio of bursting to costing is controlled by the duty cycle parameter,

DC =
burst period

total cycle period
(7)

Hydrofoils are pitched with respect to their leading edges. The intermittent motion is a combination of
a sinusoidal pitching motion for the burst period and it is followed by a fixed pitch angle of θ = 0 for the
duration of the coast period. The total cycle period is simply the addition of the burst and coast periods.
The combined burst and coast pitching motions about the leading edge of the hydrofoil is then defined as,

θ(t) =

{
ys(t) [θ0 sin (2πft)] , 0 ≤ t ≤ Tburst
0, Tburst ≤ t ≤ Tcycle

(8)

where ys(t) =

{
−tanh(mt) tanh [m (t− 1)] , DC < 1

1, DC = 1
(9)

where θ0 is the maximum pitch angle, f is the oscillation frequency and t is the time (See Figure 2b).
Equation (8) defines a reference signal where 0 ≤ t ≤ Tcycle. The signal used in the simulations has Ncyc
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repetitions of this reference signal. Here, Tburst = 1/f and Tcycle = Tburst/DC. Two maximum pitch angles
are used in the current study, θ0 = 15◦ and θ0 = 20◦.

In order to obtain discretization independent solutions as the time step size is reduced, the discontinuous
angular rates and accelerations at the junction of the burst phase and coast phase must be smoothed. To
do this, a hyperbolic tangent envelope function, ys(t), is multiplied with the sinusoidal burst signal and is
defined in (9). This function modifies the slope of the sine wave at t/Tburst = 0 and t/Tburst = 1 to ensure a
desingularized smooth junction with the coast phase where m controls the radius of curvature of the junction.
In the current study, m = 30 is used. Additionally, if DC = 1, then the signal (8) reverts to a continuous
sinusoidal signal. In the current study the duty cycle ranges from DC = 0.2 to DC = 1 in 0.1 increments.
A summary of the input parameters used in the current study are in Table 1.

Continuous Swimmers

f (Hz) 0.25 0.5 0.75 1

DC 1

θ0 (deg.) 15 20

Intermittent Swimmers

f (Hz) 1

DC 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

θ0 (deg.) 15 20

Table 1: Simulations parameters used in the present study.

The mean cruising velocity, U , mean thrust, T , and mean power P , are calculated once the swimmers
have reached their steady state swimming conditions. The mean thrust force is calculated as the streamwise
force from the integration of the pressure forces only. The mean power input to the fluid is calculated as the
negative inner product of the force vector and velocity vector of each boundary element. Cost of transport
(CoT ), which is defined as the amount of energy it takes to travel a unit distance per unit mass, is another
important performance parameter used in the current study. The thrust coefficient and cost of transport are
defined as,

CT ≡
T

ρSpf2A2
CoT ≡ P

mU
(10)

The ratio of CoT values of intermittent to continuous swimmers at the same mean speed will give the
energy savings observed by choosing either mode of swimming. The ratio can be defined as,

ˆCoT =
CoT i|U
CoT c|U

(11)

where CoT i and CoT c are the cost of transports for the intermittent and continuous swimmer, respectively.

III. Results

A. Wake Dynamics and Thrust Profiles

Figure 3a-d shows the vorticity field of intermittent swimmers operating at DC = 0.2 in a viscous flow
at slightly higher than Re = 3000. Four distinct vortices are shed from the trailing edge of the hydrofoil
through the pitching motion. Vortex A and vortex D are shed as hydrofoil starts/stops pitching, respectively.
Vortices B and C are shed as hydrofoil changes direction. Additionally, A-D vortex group perturbs the flow
on the hydrofoil in the coasting period which in turn leads to shedding of extra vortices marked as E (See
Figure 3c-d). The more hydrofoil coasts, the less extra vortices shed in the coasting phase and eventually
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Figure 3: The evolution of the vortex wake is shown at times for a DC = 0.2 hydrofoil, (a),(e) t/Tcyc = 1/10,
(b),(f) t/Tcyc = 2/10, (c),(g) t/Tcyc = 4/10, and (d),(h) t/Tcyc = 6/10 in viscous and inviscid flows,
respectively.
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flow field would converge to the static hydrofoil flowfield (See Figure 1b). Also, the higher the Re of the
flow, the faster the flowfield converge to the static hydrofoil flowfield.

Similarly, Figure 3e-h shows the vorticity field of intermittent swimmers operating at DC = 0.2 in an
inviscid flow. Four vortices are shed in the same manner as in the viscous case. However, in the coasting
period extra vortices are not formed and the next bursting period starts to a less disturbed wake.

Figure 4: Thrust coefficients over a total period of an intermittent swimmer at DC = 0.5 in (a) an inviscid
flow (b) a viscous flow.

Figure 4a-b shows the thrust generation of an intermittent swimmer at DC = 0.5 over a cycle as a
function of time in inviscid and viscous flows, respectively. Swimmers show two peaks in thrust that are
associated with the shedding of the two strongest vortices. Additionally, starting and stopping vortices
create two dips in the thrust curves marked as A and B. The starting vortex induces a larger drag in the
inviscid environment. On the other hand, the effect of stopping vortex on thrust is less pronounced in
inviscid flow compared to the viscous flow. The hydrofoil swimming in the inviscid environment does not
generate any thurst or experience any drag in the coasting period. However, hydrofoil operating in the
viscous environment experiences drag in the coasting phase which is directly linked to the extra vortices
shed in the coasting phase. As described previously, the influence of the extra vortices fade away further in
the coasting period and thrust curve converges to zero.

B. Performance and Energetics

Figure 5a-b and 5c-d show the cost of transport as a function of Re for maximum pitch angles of θ0 = 15◦ and
θ0 = 20◦, respectively. The black markers represent continuous gait and white markers represent intermittent
gait. Circles and squares are the results acquired in viscous and inviscid flows, respectively. Frequency of
the continuous swimmers is varied in a range of 0.25 − 1 Hz and as frequency of pitching increases so the
Re and CoT . The intermittent swimmers have a fixed frequency of f = 1 Hz. At DC = 1 and f = 1 Hz,
the intermittent and continuous swimmers are equivalent. When the duty cycle is decreased, the Re of the
intermittent swimmer drops and consequently the CoT decreases.

Viscous simulations are plotted against inviscid simulations of drag law case 2 in Figure 5a-b, where
skin friction decreases in the coasting phase as a function of the Re. It can be seen that for a range of Re
and duty cycles, intermittent gait is more economical than the continuous one. Benefit of switching from
continuous to intermittent gait increases with pitching amplitude and Re. The maximum energy savings are
observed to be 17% and 20% in viscous flow for θ0 = 15◦ and θ0 = 20◦, respectively. In inviscid flow, on the
other hand, maximum energy savings are 14% and 24% for θ0 = 15◦ and θ0 = 20◦, respectively.

Similarly, in Figure 5c-d viscous simulations are compared against inviscid simulations of drag law case 3,
where coasting phase is modeled as a static hydrofoil. The response of CoT to changing pitching amplitude
and Re is unchanged. However, absence of the extra vortices shed in the coasting phase in the case 3 model
results in higher energy savings. The maximum energy savings from the inviscid simulations are 23% and
44% for θ0 = 15◦ and θ0 = 20◦, respectively. The benefits observed in the order of case 3 drag law could
only be observed in high Re flows where coasting phase can be modeled as a static airfoil.

Figure 6 show the normalized cost of transport as a function of Re for three cases of drag laws studied for
maximum pitch angles of θ0 = 15◦ and θ0 = 20◦, respectively. If ˆCoT > 1 then a continuous swimming gait
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Figure 5: Cost of transport as a function of Re for continuous and intermittent swimmers for (a),(c) θ0 = 15◦

and (b),(d) θ0 = 20◦. The black markers represent continuous gait and white markers represent intermittent
gait. Circles and squares are the results acquired in viscous and inviscid flows, respectively. In (a),(c)
viscous simulations are compared against the drag case 2 inviscid simulations and in (b),(d) against drag
case 3 inviscid simulations.
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Figure 6: The comparison of dimensionless cost of transport as a function of Re for three set of simulations
(a) θ0 = 15◦ and (b) θ0 = 20◦.

is energetically beneficial. If ˆCoT = 1 then both gaits are energetically equivalent. Finally, if ˆCoT < 1, then
an intermittent gait is energetically beneficial. At the same Re, the cost of transport difference in between
the continuous swimmer and the drag law case 1 curve represents the inviscid energy savings out of using
intermittent swimming gait. Similarly, the cost of transport difference in between the drag law case 2 curve
and the continuous swimming line shows the inviscid benefit plus the benefit coming from the skin friction
reduction in the coasting phase. Finally, the difference between the continuous swimmer line and the drag
law case 3 curve is the total energy savings coming from the inviscid mechanism and the skin friction/form
drag reduction in the coasting phase. A direct observation is, regardless of the pitching amplitude, skin
friction attenuation in the coasting period does not play a significant role in energy savings. Skin friction
difference in between bursting and coasting periods increases with increasing Re. On the other hand, high Re
requires high duty cycle swimming which reduces the coasting period and effect of skin friction attenuation.
Therefore, there is a range of medium duty cycles where the trade off in between coasting duration and skin
friction change leads to the maximum energy savings out of skin friction attenuation. The larger portion of
the savings is coming from the inviscid mechanism. Additionally, drag law case 3 represents that in the limit
of very high Re flow, roughly half of the benefit is linked to the form drag attenuation in coasting period
and the other half is coming from the inviscid mechanism.

IV. Conclusion

The performance and wake structures of self-propelled intermittently swimming hydrofoils are examined
in inviscid and viscous flows. The main vorticity groups observed during the bursting phase of motion are
similar in both viscous and inviscid simulations. A total of four vorticity groups are shed from the trailing
edge per bursting period. Two vorticity groups are shed as starting and stopping vortices while the other
two are shed near the extremes of the pitching motion. The major difference between viscous and inviscid
simulations is the formation and shedding of leading-edge vortices during both the bursting and coasting
phases leading to additional form drag in a viscous flow.

DNS skin friction and form drag data are also directly used in the BEM simulations to disentangle the
relative contributions from the viscous and inviscid energy saving mechanisms. Particularly, three cases
of drag laws are applied to the BEM simulations. The first case only investigates the energy savings by
the inviscid mechanism alone, that is, the energy savings due to the alteration of the ratio of added-mass
thrust-producing to circulatory drag-inducing forces. The second case probes the energy savings from both
the skin friction rise and the inviscid mechanism, which is comparable to the low Re DNS data. The third
case examines the energy savings estimated in the high Re limit where there is both a skin friction and form
drag rise as well as the inviscid mechanism. The energy savings of intermittent swimming at the low Re
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(case 2) ranges from 14–24% for θ0 = 15◦–20◦. At high Re (case 3) the energy savings is estimated to range
from 23–44% for θ0 = 15◦–20◦. The recently discovered inviscid Garrick mechanism is shown to contribute
to nearly all of the energy savings observed at low Re (O(103)) intermittent swimming while it is estimated
that at high Re the inviscid mechanism contributes to half of the energy savings while the other half of the
energy savings comes from the Bone-Lighthill viscous mechanism.
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