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We present experimental results on the role of flexibility and aspect ratio in bio-
inspired aquatic propulsion. Direct thrust and power measurements are used to
determine the propulsive efficiency of flexible panels undergoing a leading-edge
pitching motion. We find that flexible panels can give a significant amplification
of thrust production of O(100–200 %) and propulsive efficiency of O(100 %) when
compared to rigid panels. The data highlight that the global maximum in propulsive
efficiency across a range of panel flexibilities is achieved when two conditions are
simultaneously satisfied: (i) the oscillation of the panel yields a Strouhal number
in the optimal range (0.25 < St < 0.35) predicted by Triantafyllou, Triantafyllou &
Grosenbaugh (J. Fluid Struct., vol. 7, 1993, pp. 205–224); and (ii) this frequency of
motion is tuned to the structural resonant frequency of the panel. In addition, new
scaling laws for the thrust production and power input to the fluid are derived for the
rigid and flexible panels. It is found that the dominant forces are the characteristic
elastic force and the characteristic fluid force. In the flexible regime the data scale
using the characteristic elastic force and in the rigid limit the data scale using the
characteristic fluid force.
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1. Introduction
Animals often propel themselves through a fluid by employing flexible appendages

that generate lift and thrust forces while producing highly three-dimensional wakes
(Lauder et al. 2011). It was hypothesized, and later confirmed, that there is
considerable advantage in using flexible propulsors instead of rigid ones that depend
on the kinematics of the motion, the planform shape and structural stiffness (Katz
& Weihs 1978; Heathcote, Wang & Gursul 2008; Michelin & Smith 2009; Eldredge,
Toomey & Medina 2010; Masoud & Alexeev 2010; Kang et al. 2011; Ramananarivo,
Godoy-Diana & Thiria 2011; Dai et al. 2012). Gains of over 100 % in net thrust
(Ramananarivo et al. 2011) and propulsive efficiencies (Dai et al. 2012) have been
observed, primarily due to improved hydrodynamic factors associated with the bending
of the surface (Ramananarivo et al. 2011; Dewey, Carriou & Smits 2012), as well
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as to the exploitation of the structural resonances of flexible structures (Masoud &
Alexeev 2010).

Although Kang et al. (2011) noted that it is now generally accepted that operating
near a structural resonant frequency will result in an enhanced thrust performance,
the exact role that resonance plays in enhancing efficient performance remains unclear.
For example, certain insects oscillate their wings well below their natural resonant
frequency (Sunada 2002), and a number of studies of flapping flight have observed
that flexible wings display a peak efficiency at frequencies between one-third and
one-half of the resonant frequency. In this respect, Vanella et al. (2009) numerically
investigated a two-dimensional two-link structure and suggested that animals oscillate
well below their primary structural resonance, measured in a vacuum, in order to
capture the benefits of a superharmonic nonlinear resonance at one-third of the primary
resonance. Ramananarivo et al. (2011) offered that in bending a flexible wing can
take on a more aerodynamically efficient shape that becomes optimal at 70 % of the
resonant frequency. Using an order of magnitude scaling argument, Kang et al. (2011)
predicted that optimal efficiency occurs at 40 % of the resonant frequency. In contrast,
for a heaving flexible wing in the two-dimensional inviscid limit, Michelin & Smith
(2009) found a peak in efficiency at a particular structural resonance frequency, and
for a flexible wing at a net angle of attack, Masoud & Alexeev (2010) observed an
efficiency maximum at 1.2 times the resonant frequency. The limited data on the role
of structural resonance in water also suggest that optimal conditions occur very near
a resonant frequency (Spagnolie et al. 2010; Moored et al. 2011; Alben et al. 2012;
Leftwich et al. 2012).

Another question that needs further attention is the coupling between flexibility
and three-dimensional effects. Many investigations have considered two-dimensional
flow past flexible oscillating structures in both the inviscid (Katz & Weihs 1978;
Michelin & Smith 2009; Alben et al. 2012) and viscous regimes (Vanella et al. 2009;
Eldredge et al. 2010). A number of studies have also examined the flow past three-
dimensional flexible oscillating structures (Masoud & Alexeev 2010; Moored et al.
2011; Ramananarivo et al. 2011; Dai et al. 2012; Leftwich et al. 2012), although in
these particular investigations the geometry of the propulsive surface was fixed and
only the stiffness was varied. Dai et al. (2012) suggested that the effects of aspect
ratio in the rigid case (examined by Buchholz & Smits (2008)) can be extrapolated to
the flexible case, but this has not yet been verified.

Motivated by these observations, we perform experiments on the behaviour of
rectangular flat plates undergoing a pitching motion at a moderate Reynolds number
(Re= 7200). First, we investigate the coupling between aspect ratio and stiffness of the
propulsive surface. Second, we examine the role of structural resonance in generating
unsteady propulsion. The kinematic motion (leading-edge pitching) and rectangular
planform were selected for their simplicity so that the effects of flexibility and aspect
ratio could be isolated. The considerable amount of previous work on similar pitching
panels by, for example, Buchholz & Smits (2008), Green & Smits (2008) and Dai
et al. (2012) also helps to provide a context for this work. We report measurements
of the thrust production, power input to the fluid and propulsive efficiency for a range
of input oscillation frequencies, aspect ratios and panel stiffnesses. We propose an
argument to explain the role of structural resonance in generating efficient propulsion,
and develop new scaling laws that collapse the data for flexible as well as rigid panels.
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FIGURE 1. (Colour online) Experimental set-up. (a) Perspective view of the entire set-up.
Note that the load cell and support for lever arm are rigidly mounted to an external support
that is fixed in the laboratory. (b) Detailed view of the pitching panel rig, note that the chord
length C and span length S of the panel are defined here. (c) Detailed view of the actuation
mechanism.

2. Experimental set-up
Experiments were conducted in a closed-loop, free-surface water channel with a

test section 0.46 m wide, 0.3 m deep and 2.44 m long. The experimental apparatus is
shown in figure 1. The free stream velocity, U∞ = 0.06 m s−1, was selected to achieve
a Reynolds number based on the panel chord length (C = 120 mm) of 7200 ± 3 % so
that direct comparisons to Buchholz & Smits (2008) could be made. The leading edge
of the panels was attached to a pitching shaft located just downstream of a NACA
0012-64 stationary fairing (chord length of 50.8 mm but truncated at two-thirds of
the chord) that suppressed leading-edge vortex formation. Note that the panel chord
length defined here refers to the chord length of the panel itself and does not include
the chord length of the stationary fairing. An acrylic sheet spanning the width of the
channel was used to suppress the free-surface disturbances caused by the oscillating
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FIGURE 2. Characteristic kinematics of a flexible pitching panel at resonance at 10 time
points in its oscillation period. Note that the leading-edge fairing remains stationary
throughout the oscillation period. Kinematics shown are for panel P4 at k = 9.1 and = 0.5.

panel. The sheet was in contact with the surface of the water and extended 0.75 m
downstream and 0.3 m upstream of the leading edge of the fairing.

The pitching shaft was oscillated at a frequency f using a servo motor coupled
to the shaft via a spur gear with a 5:1 ratio. The motion was verified by coupling
a US Digital S1 optical encoder directly to the shaft to measure the oscillations.
Altogether, 27 evenly spaced frequencies, corresponding to reduced frequencies from
k = 2πfC/U∞ = 2.3–18.8, were examined for each panel. For all cases considered here,
the maximum pitching angle of the leading edge, θ0 = 0.25 rad, was held constant
and chosen such that the peak-to-peak amplitude of motion of the trailing edge of the
rigid panel was A∞ = 0.25C. The peak-to-peak amplitude of motion, A, is defined as
the lateral excursion of the trailing edge of the panel at its midspan. In all cases, the
measured pitching angle varied by less than 1 % and the frequency varied by less than
0.1 % from the input values. The amplitude of motion and kinematics of the flexible
panels depend on the passive response of the panel, as discussed below. The shape
of a typical flexible pitching panel at various points in the flapping cycle is shown in
figure 2.

The panel actuation mechanism was mounted on a low-friction air-track system
using cylindrical air bushings aligned with the flow direction. The mechanism abutted
against a lever arm and the air bushing system was forward biased by angling the
tracks by 0.5◦ to ensure that the apparatus was always in contact with the lever arm
since the actuation mechanism was not rigidly attached to the lever arm. The net thrust
(or drag) produced by the panel was determined by subtracting the forward bias force
from the total force measured by the Omega LCAE-600 load cell. The dynamics of the
lever arm system are described by Buchholz, Clark & Smits (2008). Note that the flow
velocity is imposed on the panel so that a positive net thrust indicates that the channel
flow speed is slower than the speed that would be achieved by the freely swimming
panel.

The average power required to actuate the panel, Pa, was found by measuring
the reaction torque, τ , on the motor using an Omega TQ-202 torque sensor, and the
angular velocity, θ̇ , by using an optical encoder (Pa = T−1

p

∫ TP
0 τ θ̇ dt). The power

required to overcome the mechanical friction in the system, Pf , was found by
actuating the system with the panel removed. The power delivered to the fluid is
then P =Pa −Pf . The variances in the average value of the thrust and power were
<7 % and <15 %, respectively.
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Panel P1 P2 P3 P4 P5 P6 P∞

Π1 0.3 0.7 1.4 2.0 4.0 7.8 O(104)

h/C(×10−3) 1.1 1.6 2.1 3.2 4.2 5.3 26.5

TABLE 1. Physical properties of the panels.

The chord length for all of the panels was fixed at 120 mm, and the aspect ratio of
the panels, = S/C, was varied by changing the span S. The flexibility of the panel is
described by the effective stiffness of the panel Π1, defined by

Π1 =
Eh3

12(1− ν2
p)ρf U2

∞
C3
, (2.1)

where E is the elastic modulus of the material, h∗ = h/C is the non-dimensional
panel thickness, νp is Poisson’s ratio for the panels and ρf is the fluid density
(Kang et al. 2011). The panels were made from polyethylene plastic with a density
ρs = 1300 kg m−3, that is, a specific gravity ρ∗ = ρs/ρf = 1.3. Seven panels with
different flexibilities were considered, including one rigid panel (see table 1). The
flexibilities of the panels were selected such that the flexural stiffness (EI, where I
is the area moment of inertia) ranged from 4.2 × 10−4 to 1.1 × 10−2 Nm2, covering
the range of flexural stiffnesses seen in biological propulsors (Lauder et al. 2011).
The panels will be referred to as P1–P6 for the flexible panels, where subscripts 1–6
indicate the range from the most to the least flexible panel, with P∞ denoting the rigid
panel.

Two sets of experiments were conducted so that the parameters of interest, aspect
ratio and flexibility, could be systematically isolated from one another. In the first set,
all seven flexibilities were considered and the panels spanned the entire depth of the
water channel ( = 2.4) to generate a nominally two-dimensional flow field. In the
second set, only panels P4, P5 and P∞ were considered and four different aspect ratios
were considered ( = 0.5, 1.0, 1.5, and 2.0).

The peak-to-peak amplitude of motion of the trailing edge of the flexible panels,
A, is an output from the system that depends on the balance between inertial, elastic
and external fluid forces (Daniel & Combes 2002). It was measured by observing the
trailing edge of the panels as they oscillated, and the results are given as a function
of reduced frequency in figure 3. For all flexible panels the spanwise deflection of
the trailing edge of the panel was found to be negligible. The Strouhal number,
St = fA/U∞, has been used extensively in the literature; however, we prefer to present
our results as a function of reduced frequency since the Strouhal number is an output
of this system. We see that for panels P3–P6 the amplitude A reaches a maximum
at a given frequency, which we denote as the resonant frequency of the first bending
mode (f1) of the panel-fluid system. Panels P1 and P2 do not display a maximum
since for these cases the resonant frequency of the first beam bending mode is lower
then the frequencies examined here. For the other panels, the maximum values of A
are ∼20–30 % higher than that of the rigid panel, which agrees with the work of
Dai et al. (2012). Also, decreasing the aspect ratio moves the peak to higher reduced
frequencies, and decreasing the flexibility leads to a higher amplitude of motion. The
latter observation must be limited eventually in its scope since the rigid panel by
definition has a non-dimensional amplitude of unity.
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FIGURE 3. Peak-to-peak amplitude of motion of the trailing edge of the flexible panels as
a function of reduced frequency. (a) Fixed aspect ratio panels, = 2.4. (b) Varying aspect
ratio panels: P4 dashed lines, P5 dot-dashed lines. The amplitude is normalized by A∞, the
amplitude of motion of the rigid panel.

3. Propulsive performance results
The average net thrust (T) and average power input to the fluid (P) are typically

given in non-dimensional form by the coefficients of thrust CT and power, CP, where

CT =
T

1
2ρf U2

∞
SC

and CP =
P

1
2ρf U3

∞
SC
. (3.1)

The propulsive efficiency is then defined as the Froude efficiency given by

η =
TU∞
P
=

CT

CP
, (3.2)

To maximize the propulsive efficiency it is desirable to generate large thrust forces
while expending as little power as possible.

The thrust coefficients are shown as a function of reduced frequency in figure 4. For
the flexible panels, for all aspect ratios considered here, the thrust coefficient initially
increases with k until a maximum is reached after which it declines slightly with a
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FIGURE 4. Coefficient of thrust as a function of reduced frequency for (a) nominally
two-dimensional panels ( = 2.4) and (b) finite aspect ratio panels.

further increase in k. The peaks occur at a frequency that is ∼50 % higher than the
structural resonance frequency f1 for each panel. The structural resonant frequency of
the panels is more closely aligned with the inflection point of the curves. In general,
we see that the maxima in the thrust coefficients for the flexible panels increase
with increasing stiffness. Buchholz & Smits (2008) and Green & Smits (2008) noted
that the coefficient of thrust for a rigid panel increases with increasing aspect ratio,
a result that is confirmed in the present study. In contrast, the flexible panels do
not exhibit a monotonic trend with aspect ratio. Consider the data for panel P4. At
lower frequencies, the coefficient of thrust increases with aspect ratio; while at higher
frequencies it decreases with aspect ratio. Thus, it is shown for the first time that with
varying aspect ratio the thrust response of the panels depends on the stiffness of the
panel. Intuitively, changing the aspect ratio is expected to augment the circulatory and
reactionary forces imposed on the panel. In the elastic regime, this will be directly
coupled to a modification of the elastic deformation of the panel. However, in the rigid
limit, the panel kinematics are restricted from changing regardless of aspect ratio. So
it is perhaps not surprising that there is differing behaviour in the elastic and rigid
regimes when the aspect ratio is varied.
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FIGURE 5. Coefficient of power as a function of reduced frequency for (a) nominally
two-dimensional panels ( = 2.4), and (b) finite aspect ratio panels.

By comparing the flexible and rigid panels for a given aspect ratio, it can be seen
that each of the flexible panels generates a higher thrust coefficient than its rigid
counterpart over a certain frequency range. For example, at k ≈ 10 with = 2.4, the
results in figure 4(a) indicate that the stiffer panels (P5 and P6) yield thrust coefficients
that are twice as large as the rigid panel (P∞). For the smallest aspect ratio considered,
P5 produces twice the thrust of the rigid panel while P4 produces three times as much.
With increasing frequency, the thrust coefficient produced by the rigid panel typically,
but not always, outpaces that of the flexible panel because for the rigid panels the
thrust coefficient monotonically increases with frequency.

The coefficient of power, CP, is shown as a function of reduced frequency in
figure 5. The results for CP demonstrate qualitatively similar trends as those of CT .
For the rigid panels, the coefficient of power monotonically increases with reduced
frequency, while for the flexible panels it initially increases with reduced frequency
until a maximum is reached at which point the coefficient of power levels off. The
peak in CP occurs at a frequency that is ∼50 % higher than the structural resonance
frequency, which is the same point where the thrust reached its maximum. The
coefficient of power monotonically increases with aspect ratio in the rigid case, while
there is no monotonic trend observed in the flexible case. This is consistent with the
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thrust response of the flexible panels (figure 4) and denotes a difference between the
propulsive characteristics of the rigid and flexible panels. The qualitative similarities
between the trends of thrust and power, including the coincidence of the peaks in
thrust and power, is attributed to the expectation that both the thrust production and
power input will scale with the same characteristic force imposed on the structure. As
described by Knoller (1909) and Betz (1912), the thrust production of harmonically
oscillating panels is merely the component of lift in the streamwise direction. Here,
lift refers to the force perpendicular to the instantaneous relative velocity. The moment,
or torque, imposed on the pitching panel is the component of lift in the transverse
direction times some characteristic moment arm. This implies that we should expect
qualitatively similar trends in the thrust and power curves.

In the thrust response, all of the flexible panels outperformed the rigid panels over
some range of frequencies. However, the coefficient of power for all flexible cases
is either less than that of the rigid panel, or the relative increase in CP is lower
than the relative increase in thrust performance. This behaviour is perhaps due to the
panels adopting a more aerodynamically efficient shape during their oscillation period.
As noted by Ramananarivo et al. (2011), when a flexible panel oscillates, its trailing
edge will deform with respect to the free-stream velocity. The deformed trailing edge
lessens parasitic flow separation at the trailing edge, and will therefore decrease the
torque (and power) required to sustain motion.

The propulsive efficiency η is given as a function of reduced frequency in figure 6.
For each flexibility examined, η increases with aspect ratio as previously observed by
Buchholz & Smits (2008) for rigid panels. At the highest aspect ratios, the moderately
flexible panels (P3 and P4) yield the highest propulsive efficiencies. Either an increase
or a decrease in the stiffness yields a decrease in the propulsive efficiency, indicating
that there is an optimal stiffness for maximum efficiency. The global maximum
efficiency for the rigid panel reaches only 16 % at k = 6.3, but the global maximum
efficiency for the flexible panels reaches ∼38 % (panel P3) at the same reduced
frequency, a greater than 100 % increase. In addition, the flexible panels exhibit high
efficiency across a wide range of frequencies whereas the rigid panels display sharper
peaks. As the frequency is increased, therefore, the performance benefit of the flexible
panels over the rigid panels becomes even more pronounced.

4. Role of resonance
The propulsive efficiency for the two-dimensional panels is plotted as a function of

reduced resonant frequency, f ∗1 = f /f1, in figure 7(a). Here, the resonant frequency of
the first beam bending mode, f1, is determined by experiment (figure 3). The peak in
propulsive efficiency for each panel is observed either below (P5, P6) or close to (P3,
P4) the structural resonant frequency of the panel. The peak in propulsive efficiency
for the most flexible panels, P1 and P2, likely occurs above the structural resonant
frequency, although it was noted in figure 3 that a clear resonant frequency was not
observed for these panels. From these observations, it is apparent that the resonant
frequency of the structure is therefore not the primary mechanism governing efficient
locomotion, and so we consider an alternative hypothesis.

Triantafyllou, Triantafyllou & Grosenbaugh (1993) performed a linear stability
analysis on the two-dimensional wake of an oscillating aerofoil and found that the
time-averaged wake profile was convectively unstable. They proposed that when the
driving frequency of the aerofoil matched the frequency of maximum spatial growth
of the instability of the velocity jet, the propulsor would maximize its work output
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FIGURE 6. Propulsive efficiency as a function of reduced frequency for (a) nominally two-
dimensional panels, = 2.4 (b) finite aspect ratio panels. Symbols are the same as those used
in figures 4 and 5.

for a given energy input (Triantafyllou, Techet & Hover 2004). This efficient condition
was predicted to occur in a narrow Strouhal number range, 0.25 < St < 0.35, a result
supported by the observation that many animals tend to swim in this regime (Taylor,
Nudds & Thomas 2003). Indeed, Lewin & Haj-Hariri (2003) and Moored et al. (2012)
confirmed that the alignment of the driving frequency with the frequency of maximum
growth of the instability (the so-called wake resonant frequency) leads to a local peak
in propulsive efficiency. Moored et al. (2012) applied this concept to a bio-inspired
propulsor that generated chordwise travelling waves, first studied by Clark & Smits
(2006) and Dewey et al. (2012). Since the flexible panels examined in this effort
generate a similar kinematic motion (figure 2), we may expect that a local peak in
efficiency will be achieved when the driving frequency of the flexible panels is tuned
to a wake resonant frequency.

We noted earlier that the Strouhal number for the current work is not an
input parameter to the system but an output. It is interesting, therefore, that the
peaks in efficiency all fall within, or very near in the case of P1, the optimal
Strouhal number range for two-dimensional propulsion predicted by Triantafyllou
et al. (1993), 0.25 < St < 0.35. With increasing Strouhal number the efficiency
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FIGURE 7. Propulsive efficiency for the nominally two-dimensional panels ( = 2.4) as a
function of (a) reduced resonant frequency and (b) Strouhal number, St = fA/U∞.

slowly decays from the peak, but within the experimental uncertainty the efficiency
is maximized within this range. It was observed that the panels that achieve the
highest efficiencies (P3 and P4, see figure 7), are the only panels that achieve a
Strouhal number within the optimal range while simultaneously operating near the
structural resonant frequency. The global optimal efficiency for the two-dimensional
data then occurs when two conditions are satisfied: (i) the oscillation frequency of
the panel produces an amplitude of motion that yields a Strouhal number in the
optimal range (0.25 < St < 0.35) described by Triantafyllou et al. (1993); and (ii) this
frequency of motion is tuned to the structural resonant frequency of the panel. The
first condition proposes that a local peak in efficiency will exist since it yields a
Strouhal number in the optimal regime. The second condition then acts as a tuning
mechanism that yields the global maximum efficiency for the two-dimensional data
when the oscillation frequency is tuned to the structural resonant frequency. Since the
analysis and predictions of Triantafyllou et al. (1993) are limited to two-dimensional
flows, we hesitate to extend these conclusions to the three-dimensional case without
further work.
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5. Scaling
The coefficients of thrust and power, CT and CP, use the dynamic pressure and

the planform area to make the thrust and power non-dimensional. That is, the
characteristic velocity and force scales are U∞ and ρf U2

∞
SC, respectively. However,

when our results were presented in terms of these non-dimensional parameters, the
data did not collapse. Hence, it may be interesting to consider new scaling parameters
that are more suited to the performance of unsteady propulsors.

To scale the thrust and power of unsteady propulsors, consider that their dynamics
will be governed by the balance between inertial, elastic, and fluid forces acting on
the panel (Daniel & Combes 2002). A characteristic inertial force for the panel Fi

is defined by the mass of the panel mp (=ρsSCh) times its characteristic acceleration
(f 2C). The elastic forces depend on the flexural stiffness of the panel (EI ∝ ESh3),
and so a characteristic elastic force is Fe = ESh3/C2. A characteristic fluid force Fv is
given by the virtual mass (mv) times its acceleration (f 2C). In general, it is expected
that the mass of fluid displaced by the panel should be the product of the fluid density,
the panel area and a characteristic length that will depend on the planform shape and
kinematics of the panel. For the pitching kinematics used here the amplitude of motion
of the panel increases from zero at the leading edge to its maximum at the trailing
edge, and so only a portion of the panel is responsible for the majority of displaced
fluid. We will therefore use S2C as the characteristic volume of displaced fluid, and the
external fluid forces are then expected to scale as Fv = ρf S2C(f 2C).

Having identified these characteristic forces, we then obtain two non-dimensional
parameters: Πk, the effective stiffness of the panel given by the ratio of elastic and
fluid forces; and Πm, the effective inertia of the panel given by the ratio of the inertia
and fluid forces. Hence,

Πk =
Fe

Fv
=

(
E

ρf f 2C2

)(
1
A

)(
h3

C3

)
, (5.1)

and

Πm =
Fi

Fv
=

(
ρs

ρf

)(
1
A

)(
h

C

)
. (5.2)

For thin panels oscillating in a dense fluid we expect the effective inertia of
the panel to be small, indicating that the characteristic inertial forces are small in
comparison with the characteristic fluid force. Under these conditions, the parameter
Πk is expected to be the more important one.

Thus far, we have used the reduced frequency k = 2πfC/U∞ to represent the scaling
of the characteristic time, but to capture the structural response of flexible panels we
turn to the unsteady Euler–Bernoulli beam equation (Allen & Smits 2001), where

Πm
∂2y∗

∂t∗2
+Πk

∂4y∗

∂x∗4
= F∗f . (5.3)

Here, y∗ is the non-dimensional beam deflection due to bending, x∗ is the non-
dimensional coordinate along the length of the beam, t∗ is the non-dimensional time,
and F∗f is the external force imposed on the structure normalized by Fv. We see that
the effective inertia and effective stiffness parameters Πm and Πk identified through
physical arguments arise naturally in this non-dimensional form of the equation, a
similar form of which was shown by Alben (2008) and Alben (2010). Though in
these works a two-dimensional treatment was considered that did not include the effect
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of aspect ratio. The equation highlights that the structural resonance frequency is
proportional to the ratio of the effective stiffness and the effective mass. That is,

ω∗2n = β
4
n

Πk

Πm
∝

(
fn

f

)2

, (5.4)

where βn represents the eigenvalue and fn is the natural frequency corresponding to
the nth eigenmode of the beam (Timoshenko 1974). Therefore, we propose that the
appropriate scaling for the oscillation frequency f will relate to the structural resonant
frequency of the panel (in the presence of flow), which is similar to the argument
made by Thiria & Godoy-Diana (2010). For our purposes, we present this as the
reduced natural frequency f ∗n = f /fn (=1/ω∗n). In our experiments only the first bending
mode was observed so that we use only f ∗1 , where f1 is determined from the results
shown in figure 3.

When flexibility becomes the dominant effect (Πk is small), as may be the case
for some of the flexible panels described here, the thrust production and power
input to the fluid should be scaled using the characteristic elastic force, Fe. The
characteristic power expended in bending is then expressed by the product of Fe and
the characteristic velocity fC. The non-dimensional thrust production and power input
for flexible panels are then

C̃T =
TC2

Eh3S
and C̃P =

PC2

Eh3S(fC)
. (5.5)

In addition, a new efficiency η̃ can be defined by considering the ratio of the new
thrust parameter to the new power parameter, so that

η̃ =
C̃T

C̃P

=
T(fC)

P
. (5.6)

We see that η̃ is similar to the Froude efficiency η given by (3.2); however, η̃ uses fC
as the characteristic velocity rather than the free stream velocity.

The thrust, power and efficiency data in this new scaling are shown in figure 8
for the flexible panel data. We observe that this scaling collapses the data remarkably
well across all aspect ratios examined. Note that only the data for panels P3–P6 are
displayed as they are the only panels that clearly display a first resonant mode. The
new efficiency parameter, η̃, monotonically increases with frequency and does not
reach a maximum. This behaviour is likely due to the characteristic velocity in η̃

being proportional to frequency, and it does not necessarily indicate that the strategy
to optimize propulsive efficiency, typically defined by the Froude efficiency η, is to
oscillate at high frequencies.

The scaling parameters of the thrust production and power input to the fluid show
no particular dependence on the Reynolds number. For a given kinematic motion, the
scaling is expected to be independent of Reynolds number. However, a variation in
Reynolds number will modify the skin friction and form drag acting on the panel as it
oscillates. This could alter the kinematics of the flexible panels, which would change
the fluid forces acting on the panels as well as the resonant frequency of the panel. It
is expected, therefore, that the effect of Reynolds number is to modify the achieved
kinematics of the flexible panels, which, in turn, will modify the thrust production and
power input to the fluid. This consideration merits additional study that we leave to
future endeavors.
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FIGURE 8. (a) Scaled thrust behaviour, (b) scaled power behaviour and (c) scaled efficiency
behaviour. Symbols are the same as used in figures 4–7, only the flexible panel data for panels
P3–P6 is presented here.

We now consider the behaviour of rigid panels, which is the limit where Πk is large.
Instead of scaling the thrust and power with the characteristic elastic force, which is
expected to be less important in this regime, we now use the characteristic fluid force
Fv = (ρf S2C)(f 2C). The non-dimensional thrust and power for rigid panels are then

T̃ =
T

ρf S2C(f 2C)
and P̃=

P

ρf S2C(f 2C)(fC)
. (5.7)

The scaled efficiency for the rigid panels remains unchanged from the flexible panel
scaling, which is defined in (5.6). In addition, the resonant frequency of the rigid
panels is much higher than the frequencies of oscillation considered here, so that the
reduced frequency k should be the correct non-dimensional frequency parameter for
rigid panels, instead of f ∗1 . Figure 9 shows that the data for the rigid panels collapse
very satisfactorily using this representation for the thrust, power and efficiency.

Green & Smits (2008) found that the thrust produced by a rigid pitching panel
is related to the unsteady lift generated by the oscillating panel and the thrust
decreased with aspect ratio because of the increasing influence of the finite span.
The interpretations of the current effort and that by Green & Smits (2008) may, in
fact, be related. Theodorsen (1935) notes that the forces generated by harmonically
oscillating plates can be decomposed into circulatory and non-circulatory components.
The non-circulatory forces are related to the virtual mass term, which depend on
aspect ratio, while the circulatory forces depend on the circulation distribution, and so
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FIGURE 9. Rigid panel scaled data for (a) thrust, (b) power and (c) efficiency.

also depend on aspect ratio. Hence, it seems reasonable that the forces generated by
the oscillating panel can be related to either the virtual mass term or the unsteady lift.

The scaling analysis presented here indicates that when the effective inertia of the
panel is very small (Πm� 1), the dominant forces are the characteristic elastic force
and the characteristic fluid force. In the flexible regime the data scale using the
characteristic elastic force and in the rigid limit the data scale using the characteristic
fluid force. In general, we expect that a continuum exists between these regimes and
the appropriate scaling force will be a balance of the elastic and virtual mass force. To
better understand this continuum, consider that if the inertial effects of the panel can
be neglected we could statically relate the non-dimensional bending deformation of the
panel, δ, by considering the applied fluid forces and the flexural stiffness of the panel,
Fv = (EI/C2)(δ/C)= Fe(δ/C). As the bending deformation becomes of a similar order
to that of the chord length, the characteristic fluid force approaches the characteristic
elastic force. This is expected to occur as the panels become more flexible and might
relate to the transition between the regimes. Deciphering the exact nature of this
continuum is difficult though based on the current investigation since the stiffness of
the rigid and flexible panels differs by O(103). This difficulty could be overcome in
future work by considering stiffnesses separated by evenly spaced intervals extending
from the rigid to the flexible regimes.

6. Concluding remarks
In general, each flexible panel exhibited a frequency band over which it produced

more thrust than a rigid panel with the same aspect ratio. The response of power
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input to the fluid depends on frequency, aspect ratio and flexibility (it can increase
or decrease in comparison with the rigid panel); but its rate of change is always
less than the relative change in thrust, which therefore leads to a net increase in
propulsive efficiency as compared with the rigid panel. It was found that the effective
stiffness is important in optimizing efficiency, and when the panel is too stiff or too
flexible a degradation in performance occurs. Nevertheless, the effects of flexibility on
propulsion are clearly beneficial. For instance, a global maximum efficiency of ∼38 %
was found for a moderately flexible panel, which is a greater than 100 % increase over
the maximum observed for the rigid panels. By incorporating flexibility into a simple
pitching mechanism there is a profound impact on propulsive efficiency, suggesting
that further benefits may accrue with optimization of the actuation strategy.

Previous studies have found efficiency peaks below the resonant frequency
(Ramananarivo et al. 2011), at the resonant frequency (Michelin & Smith 2009)
and above the resonant frequency (Masoud & Alexeev 2010). In the current effort
all of these cases were observed. This suggest that operating at resonance is not a
sufficient condition to ensure efficient locomotion of flexible propulsors. Instead, we
note that a local peak in efficiency for the two-dimensional flexible panels is observed
when the panels are oscillated at a frequency that yields a Strouhal number in the
optimal range (0.25 < St < 0.35) predicted by the two-dimensional Triantafyllou et al.
(1993). The global maximum efficiency, at least for this data set, is then achieved in
the two-dimensional case by tuning the frequency to the structural resonant frequency
while still operating in the optimal Strouhal range. These observations help us to better
understand the previous results presented in the literature and suggest that applying a
linear stability analysis to the wakes of flexible pitching panels would prove beneficial
in uncovering the physical mechanisms leading to the observed optimal flexibility.

The propulsive characteristics of both rigid and flexible pitching panels of finite
aspect ratio are described well by considering the unsteady characteristics that
naturally arise for harmonically oscillating panels. Our results suggest that there are
two different stiffness regimes for the range of oscillation frequencies and structural
stiffnesses examined here. In the rigid limit (Πk > 104), the appropriate characteristic
force relates to the acceleration of the virtual mass and the time scale is given by
the unsteady time scale 1/f . When the stiffness is decreased (1 <Πk < 10) the elastic
forces become more important and the appropriate characteristic force is that due to
elastic forces and the time scale is given by the structural resonant frequency. Between
these regimes a continuum is likely to exist that is expected to be captured by the
parameter Πk, which represents the relative importance of the characteristic elastic
and fluid forces. Our conclusions are limited to cases where only the first beam
bending mode was excited, but we anticipate that for highly flexible panels (Πk � 1),
higher-order beam bending modes will be excited. This possible regime is a subject
for future work. Future efforts focused on determining the scaling of the structural
resonant frequency of the flexible panels would also prove beneficial because here they
were determined experimentally.
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