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The Analysis of Tensegrity
Structures for the Design of a
Morphing Wing
Current attempts to build fast, efficient, and maneuverable underwater vehicles have
looked to nature for inspiration. However, they have all been based on traditional pro-
pulsive techniques, i.e., rotary motors. In the current study a promising and potentially
revolutionary approach is taken that overcomes the limitations of these traditional
methods—morphing structure concepts with integrated actuation and sensing. Inspiration
for this work comes from the manta ray (Manta birostris) and other batoid fish. These
creatures are highly maneuverable but are also able to cruise at high speeds over long
distances. In this paper, the structural foundation for the biomimetic morphing wing is a
tensegrity structure. A preliminary procedure is presented for developing morphing
tensegrity structures that include actuating elements. To do this, the virtual work method
has been modified to allow for individual actuation of struts and cables. The actuation
response of tensegrity beams and plates are studied and results are presented. Specifi-
cally, global deflections resulting from actuation of specific elements have been calcu-
lated with or without external loads. Finally, a shape optimization analysis of different
tensegrity structures to the biological displacement field will be presented.
�DOI: 10.1115/1.2424718�

Keywords: tensegrity, morphing wing, actuation, force density, biomimetics,
optimization
Introduction
The family Myliobatidae can achieve large amplitude flapping

ype of locomotion and have been observed traveling at speeds
reater than 1 m/s over long distances. It is these characteristics
hat make them attractive to study and mimic. By mimicking the

ovements of these species, a new underwater vehicle design is
xplored. The goal of this research is to develop a structure that
an propel an underwater vehicle with the swift and silent motions
f the manta ray. To achieve this goal, a lightweight control sur-
ace, manipulated by an active tensegrity structure, with high out-
f-plane stiffness and a large range of motion under large restrain-
ng moments is being studied. Tensegrity structures are comprised
f a set of discontinuous compressed struts held together with a
ontinuous web of tensioned cables. They offer high strength to
ass ratios, low mechanical wear in dynamical applications, and

igh deformability with minimal input energy, which makes these
ystems excellent candidates for the structural layout of a mor-
hing wing. Actuation of the structure is achieved by replacing
assive cables and struts with actuators. Using these structures has
he potential to create a new generation of highly efficient, ma-
euverable air and sea vehicles. Steps towards designing and
uilding a highly deformable and versatile morphing wing, while
eeping a high enough stiffness to withstand environmental forces
nd perturbations, are presented.

Tensegrity Background
Around 1963, tensegrity structures �Fig. 1� were originally de-

eloped by Emmerich, Fuller, and Snelson, with Fuller coining
he word tensegrity as a contraction of the words “tensional integ-
ity.” In recent years, tensegrity structures became of engineering
nterest as their potential in load bearing applications was realized,
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but still today these structures have not been used in many prac-
tical circumstances. To create usable structures researchers have
devoted much time to the problem of form finding, which is a
procedure used to determine the spatial layout of the structure.

Initial efforts by Fuller �1�, Snelson �2�, and Kenner �3� focused
on using geometrical techniques to solve the problem of form
finding. However, the internal self-stress forces of the members
must be taken into account in order to have a correct theoretical
model for form finding. Pellegrino �4� showed for some polyhedra
that the geometric form-finding techniques were not accurate
when compared to a physical model. As a result of this discrep-
ancy several methods have been developed to accurately predict
the form of a tensegrity structure. They can be categorized into
two main groups: �i� kinematical methods and �ii� statical methods
�5�. The kinematical group includes analytical, nonlinear optimi-
zation, and dynamic relaxation techniques. These methods either
keep the struts lengths constant while shrinking the cables lengths
or vice versa, mimicking the physical assembly of a tensegrity
structure. The analytical methods give solutions for n-fold sym-
metric structures, i.e., prismatic tensegrities. The optimization and
relaxation methods can handle generalized structures, but they
become computationally intensive when asymmetries or many
nodal points are involved. The statical techniques encompass ana-
lytical solutions, the force density method, the energy minimiza-
tion method, and the reduced coordinates method. Again the ana-
lytical solutions are only viable for simple cases. The force
density method, first develop by Schek �6�, gives a set of linear
equilibrium equations that can analyze large structures as well as
asymmetric tensegrities. The energy minimization method is simi-
lar to the force density method, however the goal is to find the
equilibrium configuration by finding the minimum potential en-
ergy state of the members. The reduced coordinates method is an
approach that derives the equilibrium equations from the principle
of virtual work, giving a model that has more control than the
force density or energy minimization methods but requires more
extensive calculations. Recently, Masic �7� has developed a form-

finding procedure—based on the force density method—that gives
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dequate control as well as quick computational times. Masic’s
rocedure takes the force density method a step further by adding
hape constraints to the structure, allowing one to manipulate the
ntire shape of the structure. This adapted method presents an
pportunity to develop active structures, where the desired mor-
hologies are achieved through the changes in lengths of possibly
ll of the members.

ig. 1 Three strut, four strut, and six strut tensegrity unit cell
tructures
ef. �7�, but they differ due to the lack of member identifiers

ournal of Applied Mechanics
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3 Methods

Before the tensegrity static equilibrium equations are presented
some variables and operators must be defined.

DEFINITION 1. A nodal point, �k, k=1, . . . ,nn, where nn is the
number of nodes, is defined as a point where compressive mem-
bers and tensile members connect. The vector p= �xT ,yT ,zT�T is
defined as the vector of nodal point locations which is decom-
posed into the x, y, and z coordinates of the nodal points, where
x�Rnn�1, y�Rnn�1, z�Rnn�1, and p�R3nn�1.

DEFINITION 2. Element ei= ��k ,� j�, k� j, i=1, . . . ,ne radiates
from node �k and terminates at node � j. The direction of ei is
arbitrary, but once the direction is chosen for a given set of ele-
ments, then they must be used consistently.

DEFINITION 3. The cable connectivity matrix, Ccables
�Rnn�ncables, is
Ccables,ji = �0, if ei does not connect to � j

1, if ei terminates at � j

− 1, if ei radiates from � j

,
where i = 1, . . . ,ncables

j = 1, . . . ,nn

he strut connectivity matrix, Cstruts�Rnn�nstruts, is

Cstruts,ji = �0, if ei does not connect to � j

1, if ei terminates at � j

− 1, if ei radiates from � j

,
where i = 1, . . . ,nstruts

j = 1, . . . ,nn
he one-dimensional connectivity matrix, C1�Rnn�ne, is

C1 = �− Ccables Cstruts � �1�

he connectivity matrix, C�R3nn�3ne, is

C = �C1 0 0

0 C1 0

0 0 C1 � �2�

DEFINITION 4. The one-dimensional force density vector, �1

Rne�1, is

�i
1 =

f i

Li
= EiAi� 1

Lm,i
−

1

Li
	 �3�

is the Young’s modulus; A is the area of the member; Lm is the
nstressed manufacturing length of the member; and L is the final
quilibrium length of the member. L is a function of nodal point
ositions, p, and is the length of a member that is in static equi-
ibrium with the other members of the structure. The force density
ector, ��R3ne�1, is

� = ��1

�1

�1 � �4�

DEFINITION 5. The operator �∧� is a vector operator that diago-
alizes a vector

x̂ = diag��x1,x2, . . . ,xn�T� = �
x1 0 0 0

0 x2 0 0

0 0 � 0

0 0 0 xn

� �5�

These definitions are similar to those presented by Masic in
presented by Masic that describe whether a member is in com-
pression or tension. By not having member identifiers, negative
force densities are found for the compressive members and posi-
tive force densities for the tensile members. However, for the
purposes of this paper the identifiers are not necessary and are
therefore not presented in this formulation.

All of the statical form-finding methods for tensegrity structures
find a set of equilibrium equations that are either determined by
summing forces acting on a structure or using potential energy
considerations. The virtual work method �VWM� uses energy con-
siderations and the principle of virtual work to derive the equilib-
rium equations. The derivation is outlined in Ref. �8�. To obtain
the set of equilibrium equations used in this work the virtual work
method was employed. Once the set of nonlinear algebraic equi-
librium equations are obtained they can be represented in a com-
pact matrix form as the following

C�̂�p�CTp = fext �6�

This constitutes a set of 3nn unknowns, p, with the same number
of nonlinear equations. This set of equations can be solved nu-
merically using Matlab’s fsolve function. Since these equations
are in Cartesian coordinates, it is now simple to constrain any
node to a desired value. In doing this, as can be seen from the
virtual work approach, equations that are differentiated by a con-
strained coordinate are removed. This theoretical model gives
control over all of the elements in the structure. When determining
the form of a tensegrity structure using Eqs. �6�, one must first set
the external forces to zero to obtain the following set of equations

C�̂�p�CTp = 0 �7�

Solving the equilibrium equations with the forces equal to zero
guarantees that the structure has adequate self-stress to keep its

structural integrity after the external forces have been removed.

JULY 2007, Vol. 74 / 669
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or a more detailed study of the equilibrium equations and the
easibility conditions see Ref. �8�.

Geometric Construction of a Tensegrity Plate
The initial analysis into the design of a morphing tensegrity

ing examines a simple unit cell, specifically a four-strut pris-
atic structure �Fig. 1�. Based on this system, cells are connected

ogether to form a beam, with bar-to-bar connections between the
nit cells. Instead of recreating the connectivity matrix whenever
he number of cells in the beam is changed, a general connectivity

atrix has been developed for any number of cells in a beam
ade of four-strut bar to bar tensegrities—commonly referred to

s a Type 2 tensegrity structure. The generalized connectivity ma-
rix for a Type 2 beam composed of four strut unit cells can be
ound in Ref. �8�. A cellular plate structure is a structure com-
osed of many unit cells connected together that extend in two
ifferent directions. Plate structures can have many different plan-
orm shapes defined by the configuration vector �Fig. 2�. If the
ensegrity plate in composed of four strut unit cells with bar-to-bar
onnections the whole structure is considered a Type 4 structure
ince some nodal points have four struts connecting to them. To
chieve the type of bar-to-bar connections described, the ratio of
he radii of the bottom of the unit cell structure to the top of the
nit cell structure must be equal to the square root of two. In order
o give the structure a desired level of prestress and to solve for
he initial manufacturing lengths of the symmetric unit cell, a
imple force balance can be employed and is outlined in Ref. �9�.

Actuation Mechanism
Based upon the VWM, a technique has been developed to cal-

ulate the overall topology of a tensegrity structure that has the
bility to actuate strings and/or bars in an asymmetric reconfigu-
ation. In this method, the manufacturing length becomes the ac-
uation variable, so that, for example, a prescribed actuation strain
f 20% is defined as a change in the manufacturing length of 20%.
t should be pointed out that the final equilibrium length of the
able—after actuation—will not be exactly 20% different from
he initial equilibrium length, due to second-order effects.

Optimization
The VWM is of great use in determining the global displace-
ent field of a tensegrity structure under external loads with the

ctuation of individual members. By using the VWM as the foun-
ation for the analysis, a more useful design method has been
eveloped. Up to this point the question asked has been; what is
he displacement field due to the actuation of an individual mem-
er? Instead, the question that is addressed by the following opti-
ization routine is the inverse; which actuators are necessary to

each a given displacement field? To answer this question a direct

ig. 2 The configuration vector describes the structural layout
f a plate tensegrity structure composed of unit cells. Each
quare represents a unit cell.
earch method known as patternsearch in Matlab is utilized. This

70 / Vol. 74, JULY 2007
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method generates a mesh around an initial point, and the algo-
rithm tests each point for a better functional value than the initial
point �Fig. 3�. Once a better value is achieved a mesh is generated
around that point and the process repeats itself until the optimiza-
tion function value has converged to a minimum. The variables
for the optimization routine are the manufacturing lengths of the
cables or struts, whereas the optimization function depends on the
location of the nodal points.

The manta ray is the inspiration for designing a highly deform-
able morphing wing. However, data on the manta ray are rare
since they are not easily kept in captivity. An alternative is to
study the cownose ray, which is of the same family as the manta
ray. The deflections of a ray’s wing, as a function of time, is given
in Fig. 4 �10�. Although the flapping motion of the cownose ray is
asymmetric, these data present a good foundation for an optimi-
zation objective function.

The objective function is the difference between the nodal
points of the top of the structure and the shape of the cownose
ray’s deflected wing. To obtain an equation for the shape of the
cownose ray’s wing an exponential curve was fit to the ray data.
The following equation describes the upstroke of the ray

z = e0.1494x − 1 �8�

It has an R2 value equal to 0.9901. To make this equation useful
for a variety of structures of all different lengths and aspect ratios
this curve must be scaled up or down compared to the length of
the cownose ray’s wing, which is approximately 23 cm. First a
size ratio, S, comparing the spanwise length of the structure to the
spanwise length of the cownose ray is defined

Fig. 3 Flow diagram of patternsearch optimization

Fig. 4 Cownose ray wing curvature during a flapping cycle at
different time steps. 10/30 s is the upward extreme in a normal

forward propelling flapping cycle.

Transactions of the ASME
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S =
Lstruct

Lray
�9�

deflection ratio, D, is empirically found to be 0.6785. This ratio
s measured directly from the cownose ray data. It compares the x
ocation of the tip of the deflected wing to the x location of tip of
he flat wing. This ratio gives an approximate trajectory from the
at shape to the deflected shape

D =
xdef

xflat
�10�

his allows the displacement equation to be in terms of the x
ocations of the initial or flat shape and not the deflected shape. By
pplying the S and D ratios, the curve is scaled to the size of the
tructure and its x values are in terms of the flat shape. Finally, the
urve shifts upward to account for the initial height of the top
odes. When all of these adjustments are made to the shape equa-
ion, the following is obtained for an upstroke and downstroke,
espectively

z = Se0.1494�D/S�x − S + z0 �11�

z = − Se0.1494�D/S�x + S + z0 �12�
sing Eqs. �11� and �12� part of the objective function is obtained.
he other two parts come from the difference between the y val-
es of the nodes and their initial y states and the x values of the
op nodes and the matching deflected x values obtained from the
eflection ratio. Thus the objective function is the following for a
ownstroke

1

4

i=1

ntop

�xi − Dxi,flat� +
1

4

i=1

n

�yi − yi,0�

+
1

2

i=1

ntop

�zi + Se0.1494�D/S�xi,flat − Si − zi,0� �13�

he z terms of the function must be weighted more than the y
erms so that the optimization does not want to converge to the
nitial shape—this happens because there are more y errors being
omputed than z errors. Also note that S is in both scalar and
ector form, where the vector form is the scalar value multiplied
y a ones vector, i.e., S*�1 ,1 ,1 . . .1�T.

To extend the usefulness of the new optimization method, plate
tructures have also been studied. For a simple example a three

ig. 5 61% downward deflection of a seven cell beam due to
0% contraction of the spanwise bottom cables
ell by three cell plate structure has been examined. This Type 4

ournal of Applied Mechanics

aded 10 Sep 2007 to 128.112.35.31. Redistribution subject to ASME
plate structure consisting of 132 members and 40 nodes is actu-
ated into a twisted shape rather than a downward or upward de-
flection. In order to achieve a twist in the plate, the nodes on the
tip of the plate are matched up to a certain degree of twist. The
minimization function for the tip nodes is as follows

fmin =
1

9

i=1

n

�xi − xi,0� +
4

9

i

ntip

�yi − ygoal� +
4

9

i

ntip

�zi − zgoal�

ygoal = yi,0 cos �

zgoal = yi,0 sin � �14�

where xi,0 and yi,0 are initial x and y nodal point positions. The
summation from i to ntip implies summation over only the tip
nodal points and the weights on each summation are somewhat
arbitrary, but these values were given to reflect the relative impor-
tance of each goal. The angle � is the prescribed or desired twist
angle of the plate.

Either the deflection scenario or the twisting scenario can be
cast into the following nonlinear optimization problem:

Given

min
Lm

ptarget,C,Lm,E,A,us,uc,lc

fmin = 
 �p − ptarget�

such that

C�̂CTp = 0

�̂p = �̂p0

Lm,struts = us

lc � Lm,cables � uc �15�

where

us = Lm,struts lc = �̂Lm,cables uc = �̂Lm,cables

In this form-finding problem, � is a vector of zeros and ones
constraining certain nodal points to be fixed to their initial values;
� is a vector of values between zero and one; and � is a vector of
values between one and infinity. For most of the cases studied in
this paper �=0.8*ones�ncables ,1� and �=1*ones�ncables ,1�. If a
subset of strings is to be constrained from actuating, the �’s cor-
responding to the subset can be set to zero that constrains the

Fig. 6 Graph showing increased deflection capabilities of a
beam as a function of number of cells and length to height ratio
of the individual cell
manufacturing lengths of the strings to stay at their initial values.

JULY 2007, Vol. 74 / 671
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Results for the optimization of beams and plates to achieve
eflection and twisting requirements will be presented in the fol-
owing section.

Results
The VWM has been used to determine the global deflection of

ensegrity beams and plates when individual cables are theoreti-
ally actuated. Results from the optimization scheme, developed
o determine the optimal locations and contraction amounts for
ctuating cables, to obtain a desired displacement field, are also
resented.

7.1 Beam Structures. For the multiple cell beam case, a
even cell beam was developed that consists of periodic four strut
rismatic unit cells connected together bar to bar. This type of

ig. 7 34% downward deflection of a seven cell elliptical plate
ue to 20% contraction of the bottom spanwise cables

ig. 8 63% downward and 60% upward deflection of a 19 cell
anta ray shaped wing due to 20% contraction of the bottom

panwise cables and 20% contraction of the top cables,

espectively

72 / Vol. 74, JULY 2007
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structure—based on bar-to-bar connections—is classified as a
Type 2 structure. The generalized connectivity matrix was utilized
to generate this beam. Three nodes are constrained at a wall such
that the connected cells form a cantilever beam configuration, as
shown in Fig. 5. There are no external forces acting on the struc-
ture and the bottom spanwise cables are contracted 20% each.
This causes an overall downward tip deflection of 61% of the span
length compared to 55% for the cownose ray, showing that this
structure is capable of achieving the biological displacement field
to a first-order approximation. One thing to note is that a twisting
asymmetry can be seen in the final structural shape. A question
that must be addressed is whether these asymmetries will be of
importance in developing an actual wing. It can be seen from the
seven cell beam structure that the twisting is not large, but it could
have a significant effect on the fluid–structure interaction and may
necessitate the need to be compensated for through additional ac-

Fig. 9 „a… Optimal upward deflection of the unconstrained
three cell beam; and „b… comparison of the top surface of the
structure to the desired shape. With more cells or more allowed
actuation strain the desired shape can be easily reached.
tuation. Moreover, this asymmetry highlights the need for an op-

Transactions of the ASME
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imization method that can determine which actuators to activate
n order to minimize the asymmetries in the structure, while
eaching the deflection goal.

Beam structures from one to seven cells in length have been
tudied and the tip deflection resulting from a 20% contraction of
he spanwise cables have been compiled for given length to height
atios of the unit cells �Fig. 6�. This shows that the addition of
ells to the span will give a nonlinear increase in the maximum
eflection possible for a fixed amount of contraction. Since the
ercent deflection is defined as the difference between the de-
ected tip nodal point and the initial tip nodal point the amount of
ercent deflection is nonlinear because the structure begins to curl
n on itself. This result bodes well for future work on designing
ensegrity wings, as the amount of actuation needed to achieve a
iven deflection decreases with increasing cells. Deformability is
efined as the amount of tip deflection possible for a given
mount of actuation. This can also be controlled by varying the
mount of prestress in the structure or by varying the length to
eight ratio of the beam �Fig. 6�.

7.2 Plate Structures. In order to create a morphing structure
hat has a planform resembling a ray’s wing, the beam tensegrity
tructures must extend outward in the y direction as well as the x
irection, forming a plate tensegrity structure. This structure can
e thought of as a series of beam structures connected together. To
onstruct a plate tensegrity structure, composed of individual four-
trut unit cells with bar-to-bar connections, the generalized con-
ectivity matrix for a beam structure that was previously pre-
ented can be used. However, the connections between the beams
ust be taken into account to construct the correct connectivity
atrix. To characterize the configuration of the structure a con-
guration vector is prescribed, an example of which can be seen

n Fig. 2. The configuration vector can be used to construct the
ull connectivity matrix of the plate. This is done by creating the
onnectivity matrix for each element of the subvector that repre-
ents a beam structure, and then compiling all of the beam con-
ectivity matrices with the added connections between beams.
he structure can then be analyzed using Eq. �7�.
Two wing configurations have been studied for their actuation

apabilities. The first wing configuration �Fig. 7� has an elliptical
lanform shape with seven four strut unit cells connected together
Fig. 10 Contraction amounts of individual cables in unit cell de

ournal of Applied Mechanics

aded 10 Sep 2007 to 128.112.35.31. Redistribution subject to ASME
with bar-to-bar connections, classified as a Type 4 tensegrity
structure. This planform shape has a configuration vector of
�2 3 2 �T. To determine the actuation potential of the structure,
the bottom cables are contracted by the standard amount of 20%
causing a 34% deflection in the–z direction.

The second wing configuration �Fig. 8� has a planform shape of
the cownose ray with 19 four strut cells with bar-to-bar connec-
tions, which consists of 279 members and is classified as a Type 4
tensegrity structure. This planform shape has a configuration vec-
tor of �1 2 4 6 3 2 1 �T. In this example the bottom cables
are contracted by 20% causing a 63% downward deflection and
the top cables are also actuated by 20% causing a 60% upward
deflection.

The results of this analysis demonstrate the potential for these
structures to mimic the kinematics of the cownose ray. However,
more needs to be done to accurately mimic the biological dis-
placement field. Moreover, if the manufacturing of one of these
structures were to be made practical in terms of power consump-
tion and cost, the structure should be designed with a minimized

Table 1 Errors between structural nodal points and biological
data.

Average X
error
�%�

Average Y
error
�%�

Average Z
error
�%�

Weighted
Average error

�%�

Upward
unconstrained

6.26 1.11 1.06 2.11

Downward
unconstrained

N/Aa 0.75 0.29 0.4

Upward
constrained

6.77 1.09 1.28 2.34

Downward
constrained

N/Aa 1.66 1.06 1.21

Designer’s
choice up

6.05 1.33 1.54 2.4

Designer’s
choice down

N/Aa 6.65 2.47 3.52

aN/A	not available.
termined by the optimization scheme for upward deflection

JULY 2007, Vol. 74 / 673
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umber of actuation elements. To reach the biological displace-
ent field and minimize the number of actuators, the optimization

cheme described in Sec. 6 was developed.

7.3 Optimization of Deflected Beams. Using the minimiza-
ion function described in Eq. �13� cantilever beams, constructed
rom up to four four-strut unit cells connected together, have been
tudied. The unit cells are connected bar-to-bar forming a Type 2
ensegrity structure. The maximum allowed contraction percent-
ge is set to 20% of the manufacturing lengths of specified mem-
ers. This new optimization design tool determines which actuat-
ng cables are required to contract and by how much, in order to
each a desired shape or displacement field, subject to predefined

ig. 11 „a… Optimal downward deflection of the unconstrained
hree cell beam; and „b… comparison of the top surface of the
tructure to the desired shape. Since the length of the top of
he structure to significantly larger than the length the
ownose ray wing in a downward deflection, the structure can-
ot achieve the same deflection. This accounts for the large
rror in the x direction.
onstraints. Four distinct cases have been studied. The minimiza-

74 / Vol. 74, JULY 2007
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tion function for the four optimization cases is strongly weighted
to ensure the smallest error occurs for the vertical deflections. As
the number of cells in the beam is increased, the structure’s ability
to achieve and resolve the desired shape strengthens—i.e., the
errors get smaller as the number of cells increase. This is an ex-
pected consequence as the number of degrees of freedom also
increases, allowing for finer shape changes.

The first shape optimization case is an upward deflection where
the top nodal points of a structure are matched to the cownose
deflected shape and the design space is unconstrained, meaning
that all of the cables are possible actuators. The unconstrained
problem reaches small minimization functional values, i.e., with
all cables being potential actuators; the shape of the structure will
be close to the desired shape. The actuation results for a three cell
cantilever beam can be seen in Fig. 9. The unconstrained case
gives excellent agreement to the cownose data with only three
cells connected together with the errors falling to less than 2% in
the z direction �Table 1�. The greatest source of error is in the x
direction which can be reduced by allowing for larger actuation
strains than 20% or by increasing the amount of cells in the span-
wise direction. An example of the contraction percentages of the
cables for the unconstrained case of a single cell beam are given
in Fig. 10, for an upward deflection.

For the second case study, the deflected shape of the top nodes
of the structure is optimized to achieve the downward deflected
shape of the cownose ray, given an unconstrained design space.
Figure 11 shows the deflected shape of a three cell beam. The
unconstrained problem produces some interesting results in terms
of which cables are actuated. As can be seen in Fig. 11, several of
the cables connecting the top and bottom layers of the structure
are actuated. This is to be expected due to the fact that it is the top
surface of the structure that is being matched to the downward
deflection field. Again, there is excellent agreement in the uncon-
strained case with the cownose data �Table 1�, except in the x
direction. As an example of the contraction percentages the un-
constrained case is shown for a single cell beam in Fig. 12, per-
forming a downward deflection.

The x direction error is listed in Table 1 as not applicable be-
cause the error between the desired shape and the structural shape
cannot be compared in the x direction. This inconsistency arises
because the top surface of the structure is matched to the desired
shape, while the structure is deflecting downward. In this situation
the length of the desired shape curve is significantly shorter than
the length of the top surface of the structure leading to a situation
where the structure can never reach the desired shape. Since the z
direction is the preferential direction in the minimization function
the optimization obtains results where the z direction error was
very small and the x direction error was very large. If one where
to prescribe the x direction as the preferential direction the opti-
mization would obtain results with a small x direction error and a
large z direction error. One way to achieve small errors in both the
x and z directions would be to scale up the size of the desired

Fig. 12 Contraction amounts of individual cables in unit cell
determined by the optimization scheme for downward
deflection
shape, however this is not consistent with the cownose ray data
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et. The best way to achieve small error in both directions is to
atch the bottom surface of the structure to the desired shape in a

ownward deflection. This relieves the structure of the physical
onstraint presented in the top surface optimization for a down-
ard deflection.
From the first and second cases the unconstrained problem is

hown to be an excellent starting point for determining which sets
f actuators are the dominant actuators for a given shape change
nd even in some cases the unconstrained design space may prove
easible in terms of manufacturability. However, the uncon-
trained problem typically is not practical since the optimization
roduces a structure with a large number of active members, mak-
ng it difficult to build and more expensive to operate. But a
onstrained optimization case can be used that limits the potential
ctuators to a certain subset of the members, i.e., the dominant
ctive members from the unconstrained case. The third and fourth
ases explore the constrained problem for the upward and down-
ard deflections.

ig. 13 „a… Optimal upward deflection of the constrained three
ell beam; and „b… comparison of the top surface of the struc-
ure to the desired shape
The third shape optimization case is an upward deflection

ournal of Applied Mechanics

aded 10 Sep 2007 to 128.112.35.31. Redistribution subject to ASME
where the top nodal points of the structure are matched to the
cownose deflected shape and the design space is constrained to the
top cables as potential actuators. The actuation results for a three
cell cantilever beam can be seen in Fig. 13. For the constrained
case the error between the desired shape and the optimized shape
increases slightly over the unconstrained problem, but still gives
very good agreement with the biological data �Table 1�.

The fourth case studied optimizes the deflected shape of the top
nodes of the structure to the downward deflected shape of the
cownose ray with a potential actuator space constrained to only
the bottom cables. Figure 14 shows the deflected shape of a three
cell beam. There is excellent agreement in the constrained case
with the cownose data �Table 1� and the errors are only slightly
higher than the unconstrained case.

Both the unconstrained and the constrained cases reach much
closer to the actual cownose shape than a designer’s choice of the
actuator locations and amounts �Table 1�. In order to evaluate the
overall performance of all design choices a weighted average er-
ror has been calculated. This error takes into account the weights

Fig. 14 „a… Optimal downward deflection of the constrained
three cell beam; and „b… comparison of the top surface of the
structure to the desired shape
of the minimization function, which gives the z direction the
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Downlo
trongest influence. Table 1 highlights the two main reasons for
sing this optimization method as a design tool: �1� when design-
ng a tensegrity structure to reach a specific shape it is not intui-
ive which members should be actuators and �2� when the active

embers are chosen it is not intuitive by how much they should
e actuated.

7.4 Optimization of a Twisting Plate. The minimization
unction presented in Eq. �14� is used to optimize the end nodes of

three cell by three cell plate structure to achieve a prescribed
wist angle of 15 deg. The results of this optimization are shown
n Fig. 15. The dotted lines represent the active cables, the solid
hin lines are the passive cables and the solid thick lines are the
truts. The average errors in the x, y, and z directions are 0.67%,
.36%, and 1.46%, giving an excellent agreement with the desired
hape. This example has shown the robustness of the optimization
esign tool developed in this paper. The method can handle any
tructural compositions as well as any desired shape by determin-
ng a new minimization function for each shape. Material property
onstraints may also be added once the materials are chosen.

Conclusions
This paper applies the virtual work method to the problem of

orm finding of tensegrity structures. By actuating individual ele-
ents using the virtual work method, deformation of single and
ultiple cell beams were studied. A new optimization design tool
as presented which can determine which elements in a structure
eed to be actuated and by how much in order to reach a desired
hape. In particular it was shown that a tensegrity beam structure
an match very closely to the biological displacement of the
ownose ray with only a few cells connected together. The opti-
ization tool is a necessary step in the design of a morphing wing
hen the shape of the activated wing must be close to a desired
isplacement field. As the desired displacement field becomes
ore complex this optimization method becomes more important.
owever, any intuitive approach can be improved upon by using

his design tool.
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Nomenclature
p 	 nodal point vector
x 	 x coordinate vector of nodal points
y 	 y coordinate vector of nodal points
z 	 z coordinate vector of nodal points

x0 	 initial x positions
y0 	 initial y positions
z0 	 initial z positions

fext 	 external force at a node
� 	 force density in a member

�1 	 one-dimensional force density vector
� 	 three-dimensional force density vector
f 	 internal force in a member
L 	 equilibrium length

Lm 	 unstressed manufacturing length
E 	 Young’s modulus
A 	 cross-sectional area

nn 	 number of nodes
ne 	 number of elements

C1 	 one dimensional connectivity matrix
C 	 three-dimensional connectivity matrix

Ccables 	 full cable connectivity matrix
Cstruts 	 full strut connectivity matrix
Lstruct 	 characteristic length of the structure

Lray 	 characteristic length of the cownose ray wing
S 	 size ratio
D 	 deflection ratio

xdef 	 deflected x coordinates of a structure
xflat 	 flat x coordinate of a structure
ntop 	 number of top nodes
ntip 	 number of tip nodes
fmin 	 minimization function

� 	 desired angle of twist
ptarget 	 desired nodal point positions

us 	 upper bound of the struts
uc 	 upper bound of the cables
lc 	 lower bound of the cables
� 	 constraint parameter
� 	 cable lower bound parameter
� 	 cable upper bound parameter
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