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A linear spatial stability analysis is performed on the velocity profiles measured in the
wake of an actively flexible robotic elliptical fin to find the frequency of maximum
spatial growth, that is, the hydrodynamic resonant frequency of the time-averaged jet.
It is found that: (i) optima in propulsive efficiency occur when the driving frequency
of a flapping fin matches the resonant frequency of the jet profile; (ii) there can be
multiple wake resonant frequencies and modes corresponding to multiple peaks in
efficiency; and (iii) some wake structures transition from one pattern to another when
the wake instability mode transitions. A theoretical framework, termed wake resonance
theory, is developed and utilized to explain the mechanics and energetics of unsteady
self-propulsion. Experimental data are used to validate the theory. The analysis,
although one-dimensional, captures the performance exhibited by a three-dimensional
propulsor, showing the robustness and broad applicability of the technique.

Key words: biological fluid dynamics, instability, swimming/flying, wakes/jets

1. Introduction
The phenomenon of unsteady propulsion has received considerable attention,

especially in the context of swimming (Lauder & Drucker 2002) and flying (Lewin
& Haj-Hariri 2003). Detailed studies of the force and moment production, and the
structure of the wake have been reported, for two- and three-dimensional fins and
aerofoils, using experiments and computations. What has been neglected, to some
extent, is the connection between the dynamics of the fin, and the structure of the
wake. In particular, we lack a full understanding of the conditions that lead to efficient
propulsion, and how this condition makes itself evident in the flow field. Here, we
examine the linear stability of the mean velocity profile in the wake of a undulating
three-dimensional fin to show that the most unstable eigenmodes correspond directly
to the wake structures observed in experiments, and that when the forcing frequency
lies close to one of the resonant frequencies of the wake a peak is observed in the
propulsive efficiency, ηp, where

ηp = TU∞
Pin

(1.1)
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while U∞ is the free-stream velocity, T is the time-averaged net thrust , and Pin is the
time-averaged power input to the fluid.

The work of von Kármán & Burgers (1935) was the first to connect the forces and
moments on a body to the momentum carried by the vortex system of the wake. In
the context of unsteady propulsion, Triantafyllou, Triantafyllou & Grosenbaugh (1993)
further investigated wake dynamics through a linear stability analysis of the time-
averaged wakes behind a two-dimensional rigid pitching aerofoil (Koochesfahani 1987)
as well as a two-dimensional heaving and pitching aerofoil. They only considered
the development of the reverse von Kármán vortex street wake, where two single
vortices are generated per flapping cycle (also called a 2S wake in the terminology of
Williamson & Roshko 1988) and found that the propulsive efficiency was determined
by the Strouhal number St , defined by

St = f A

U∞
(1.2)

where f is the linear frequency of motion, and A is the wake width. They found
that a single peak in propulsive efficiency occurred in the range 0.25 6 St 6 0.35 for
their experimental data, and they proposed that this peak occurred at the frequency
of maximum spatial growth of the instabilities of the velocity jet (Triantafyllou,
Triantafyllou & Gopalkrishnan 1991; Triantafyllou et al. 1993), which in the present
work is termed the hydrodynamic resonant frequency of the jet. At a fixed location
downstream of the trailing edge of a flapping fin, they suggested that the perturbation
waves will have the largest amplification (per unit input energy) at the resonant
frequency of the jet profile (where there is maximum spatial growth), and that this
will cause an expedient shear layer rollup and entrainment, and result in the strongest
momentum jet for a given input energy. Thus a peak in the propulsive efficiency is
expected when the fin is driven at the resonant frequency of the jet.

Although a survey of biological literature showed that many animals swim in
the proposed optimal Strouhal number range (Triantafyllou et al. 1993), there are
many cases where peak efficiency falls outside of this range (Anderson et al. 1998;
Taylor, Nudds & Thomas 2003; Clark & Smits 2006; Buchholz & Smits 2008).
Furthermore, elongated fish such as eels and lampreys typically generate 2P wake
structures meaning that two pairs of vortices are shed per cycle (Hultmark, Leftwich
& Smits 2007; Tytell et al. 2010). Fish with low-aspect-ratio propulsors such as rays
can exhibit both 2S and 2P wake structures depending upon the fin kinematics (Dewey,
Carriou & Smits 2011). Other more elaborate wake structures have also been observed
in the wakes of heaving and pitching aerofoils (Lewin & Haj-Hariri 2003; Lentink
et al. 2008).

For a two-dimensional heaving aerofoil, Lewin & Haj-Hariri (2003) utilized a linear
stability analysis to show that multiple peaks in efficiency were related to cases
where the driving frequency matched the resonant frequency of a jet where the jets
implicitly depended on the amplitude of motion. They concluded that the Strouhal
number alone was not sufficient to determine the conditions for efficiency, and what
was needed was a combination of the Strouhal number and the reduced frequency ω,
defined by

ω = 2π f L

U∞
(1.3)

where L is the chord length.
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FIGURE 1. (Colour online) (a) Schematic of a ray-like robotic pectoral fin and the
vortex wake structure in a laser-illuminated plane; (b) reverse von Kármán vortex street
inducing a wavy jet; and (c) time-averaged velocity field. The x and y coordinates are non-
dimensionalized with the chord length, L.

Here, we are interested in the performance of three-dimensional fins, in particular
the swimming performance of actively flexible fins modelling the pectoral fins of rays
studied by Clark & Smits (2006) and Dewey et al. (2011). In these experiments, the
fin was actuated in a travelling wave motion that propagated from the leading edge
to the trailing edge (see figure 1). Efficiency measurements were taken at two non-
dimensional travelling wavelengths of λ∗ = λ/L = 6 and 4, where λ is the wavelength.
For both cases, multiple peaks in efficiency were seen as the Strouhal number was
varied. Moreover, Dewey et al. (2011) found that at a fixed λ∗ the wake structure
transitioned from 2P to 2S with increasing Strouhal number. Although the analysis
presented in this paper is used to examine the connection between the performance
and the wake structure of bio-robotic ray-like fins, the theory is believed to be broadly
applicable to other flapping foils.

To examine these flows further, we extend the work of Triantafyllou et al. (1993)
and Lewin & Haj-Hariri (2003) to show that observed multiple peaks in efficiency, as
well as the transitions in the wake patterns, can be explained by using a linear spatial
stability analysis. This analysis provides a framework for assessing and achieving
efficient unsteady self-propulsion, which we will call wake resonance theory.

The instantaneous flow field is characterized by the formation of wavy jet
structures (figure 1b). In analogy with linear stability analysis applied to bluff bodies
(Triantafyllou, Triantafyllou & Chryssostomidis 1986; Karniadakis & Triantafyllou
1989), we will analyse only the time-averaged flow field (figure 1c). In most cases,
the jet can be considered weakly non-parallel, meaning that the characteristic length
scale of a velocity profile changes slowly in the downstream direction compared to
the instability wavelength (Chomaz 2005), and we will assume that such flows may be
analysed using a local spatial stability analysis.

Using wake resonance theory, it will be shown that: (i) local optima in
propulsive efficiency occur when the driving frequency of a flapping fin matches
the hydrodynamic resonant frequency of the jet profile; (ii) there can be multiple wake
resonant frequencies and modes corresponding to multiple peaks in efficiency; and (iii)
some wake structures transition from one pattern to another when the wake instability
mode transitions.

The analysis, although one-dimensional, captures all the major aspects of the
performance exhibited by a three-dimensional propulsor, demonstrating the robustness
and broad applicability of the technique.
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2. The eigenvalue problem
The linear spatial stability analysis follows standard procedures. A one-dimensional

(locally parallel) base flow is identified, U = [U(y), 0], and a small perturbation,
u = [u, v], is superimposed onto the base flow and substituted into the Navier–Stokes
and continuity equations. The equations are then linearized and a travelling wave form
of the solution is assumed for the velocity perturbations, or equivalently, for the stream
function perturbations. The result is the Orr–Sommerfeld equation for the complex
amplitude, φ(y), of the wave-like perturbation to the stream function, ψ(x, y, t), given
by (with D≡ d/dy):

{(D2 − α2)
2−i Re[(αU − ω)(D2 − α2)− αU′′]}φ = 0 (2.1)

where

ψ(x, y, t)= φ(y) ei(αx−ωt) ≡ φ(y) E, (2.2)

u(x, y, t)= ∂ψ
∂y
, (2.3)

v(x, y, t)=−∂ψ
∂x
. (2.4)

All parameters and variables are non-dimensionalized using the characteristic length
and velocity scales L and U∞, respectively. The complex wavenumber is α = ω/c
where c is the complex phase velocity.

In general both the wavenumber and frequency can be complex. However, a
spatial stability analysis can be performed when the wavenumber is complex and
the frequency is real, and a temporal stability analysis can be performed when the
wavenumber is real and the frequency is complex. Since the time-averaged jets behind
flapping foils are only weakly non-parallel and exhibit a convectively unstable region
(Triantafyllou et al. 1993), we use a spatial stability analysis (Mattingly & Criminale
1972). Since the frequency is real, the temporal growth rate is zero (that is, the
imaginary component ωi = 0), although the wavenumber is complex (α = αr + iαi). As
can be seen from (2.2), if αi is negative when x> 0 (downstream of the perturbations),
the stream function and velocity perturbations will grow in space (spatial instability).

The boundary conditions that ensure decay of perturbations away from the centreline
of a jet in an unbounded domain are the following:

φ(±∞)= 0, (2.5)
dφ
dy
(±∞)= 0. (2.6)

The spatial stability problem forms a nonlinear eigenvalue problem with the complex
eigenvalues α appearing up to and including the fourth power. The associated
eigenmode is φ(y). To solve the eigenvalue problem a numerical solution is necessary
(Orszag 1971).

3. Numerical solution
A general physical disturbance can be represented as a Fourier series that contains

all of the frequency content in a flow (Gaster 1965; Huerre & Monkewitz 1985).
Thus, one must solve for the eigenvalues over a range of real ‘excited’ frequencies,
ω, to determine which mode and thus which frequency is the most unstable. For each
velocity profile a range of ω is chosen and the eigenvalues are solved for each real
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FIGURE 2. Accuracy test of the canonical case of plane Poiseuille flow with N discretization
points. The dashed lines are the accurate values found by Orszag (1971). (a) The calculation
of αr using a spatial analysis with ωr = 0.269. (b) The calculation of ωr using a temporal
analysis with αr = 1.021.

frequency. To solve the nonlinear eigenvalue problem, the Orr–Sommerfeld equation is
first expanded in powers of α,

C0︷︸︸︷
(φ) α4 +

C1︷ ︸︸ ︷
(iRe Uφ) α3 +

C2︷ ︸︸ ︷(−2φ′′ − iRe ωφ
)
α2 + · · ·(

iRe U′′φ − iRe Uφ′′
)︸ ︷︷ ︸

C3

α + (φ′′′′ + iRe ωφ′′
)︸ ︷︷ ︸

C4

= 0, (3.1)

and then discretized over y ∈ [−Y,Y], along with the boundary conditions (2.5) and
(2.6), for some large value of Y .

The fourth-order nonlinear eigenvalue problem is linearized in α by casting it into
the companion matrix form (Gantmacher 1959; Bridges & Morris 1984a; Haj-Hariri
1988)


−C−1

0 C1 −C−1
0 C2 −C−1

0 C3 −C−1
0 C4

I 0 0 0
0 I 0 0
0 0 I 0

− α


I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I


 q=


0
0
0
0

 (3.2)

where

q= [α3φ, α2φ, αφ,φ]T, (3.3)

and the matrices Ci are the discretized versions of the operators Ci in (3.1) with N
discretization points.

The linear eigenvalue problem can be solved using standard techniques. The
accuracy of the eigenvalue numerical solution was established by benchmarking
against the eigenvalues of plane Poiseuille flow calculated by Orszag (1971), who
found a critical Reynolds number for which the imaginary parts of the frequency
and wavenumber are both zero and the real parts are ωr = 0.269 and αr = 1.021,
respectively. Figure 2 shows the convergence of the current numerical solution to the
previous solution for both the spatial formulation and the temporal formulation.
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FIGURE 3. (a) Eigenvalues (·) in the complex-α plane at 40 different frequencies and (b) an
extracted stability curve composed of the most unstable eigenvalues at each frequency. The
solid lines in (a) are the exact continuous spectrum while the dashed line is the empirical
boundary. Only the region of interest is searched for the most unstable eigenvalues. A
resonant frequency of a velocity jet occurs at a local minimum in the stability curve. When
the driving frequency matches the velocity-jet resonant frequency it is hypothesized that a
local peak in propulsive efficiency occurs.

In the analysis of the experimental data, 200 discretization points were used for
the computations. Doubling the discretization from 200 points to 400 points caused a
change of less than 1 % in the real and imaginary parts of the eigenvalues.

The solution of the companion matrix is a globally convergent solution that does not
need an initial guess. The numerical solution solves for the eigenvalue spectrum of the
discretization which is a subset of the entire physical eigenvalue spectrum, augmented
by spurious eigenvalues. The eigenmodes, φ, are recovered from q.

The numerical eigenvalue problem admits 4N eigenvalues which can be plotted
in a complex-α plane, as shown in figure 3(a). The physical eigenvalues fall into
two categories: the discrete spectrum, and the continuous spectrum. The discrete
spectrum corresponds to the proper eigenfunctions which are square integrable, and
which satisfy φ′(y)→ 0 as |y| →∞. In contrast, the continuous spectrum is composed
of improper eigenfunctions which are not square integrable because their behaviour at
large |y| is oscillatory and only bounded, as opposed to decaying (Grosch & Salwen
1978; Salwen & Grosch 1981). Therefore, use of the relaxed boundary condition

φ, φ′ bounded as y→±∞ (3.4)

leads to the simultaneous determination of a finite number of discrete eigenvalues
with associated eigenfunctions and a set of continuous eigenvalues and eigenfunctions
(Mack 1976). The numerical scheme utilizing the companion matrix recovers some
of the oscillatory continuous modes (Bridges & Morris 1984b; Haj-Hariri 1988).
Exact solutions for the four branches of the continuous spectrum have been found
by Salwen & Grosch (1981) by determining the asymptotic behaviour (y→∞) of the
Orr–Sommerfeld equation in an unbounded flow. Using a parameter k, the branches
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are given by

α1,2 =±
(
ω

γ

)
− iRe

[
1
2
(1∓ γ )∓ (ω/Re)

2

γ 3

]
and α3,4 =±i k (3.5)

where γ =
√

1+ 4k2/Re2 and 0 6 k 6∞.
The first and second branches of the continuous spectrum are found in the first

and third quadrants of the complex-α plane while the third and fourth branches are
found along the imaginary axis. As stated previously, the hypothesis is that driving
a fin at the frequency of the most unstable eigenvalue of the time-averaged jet
structure leads to a peak in efficiency. Thus the only solutions of interest are the
ones with unstable eigenvalues. The right half of the complex-α plane corresponds to
downstream-travelling waves where the waves are growing exponentially (unstable) if
αi < 0. The left half of the complex-α plane corresponds to the upstream-travelling
waves where the waves are growing exponentially (unstable) if αi > 0. In the case
of the flapping fin, only downstream solutions are of interest. As such, only the
fourth quadrant needs to be searched for eigenvalues. The continuous spectrum does
not fall into the region of interest but, due to the numerical approximation, some
spurious approximations of the continuous modes of the fourth branch do appear in the
fourth quadrant (see spurious eigenvalues in figure 3). To eliminate these unphysical
eigenvalues, a new search region is defined by the intersection of two regions:

(αr >−αi) ∩ (αi < 0). (3.6)

This relation is empirical in nature. All of the eigenvalues of the numerical scheme are
examined in the complex-α plane to ensure that none of the physical eigenvalues leave
the region of interest. In all of the cases presented in this paper, none of the physical
unstable eigenvalues venture outside this region.

The eigenvalues are computed from a single velocity profile at 50 different
frequencies with 200 discretization points admitting 40 000 eigenvalues. As can be
seen in figure 3(b), the most unstable eigenvalue as a function of frequency has the
largest spatial growth rate at a particular frequency, termed the ‘resonant frequency’
of that velocity profile. The eigenfunction that is the most unstable will change as
a function of frequency. Once the empirical relation is checked, then the relevant
information to extract from figure 3(a) is only the most unstable eigenvalue and
eigenfunction at each frequency, forming the stability curve (figure 3b).

4. Resonant frequencies and modes
4.1. Stability curves: efficiency condition

A stability curve is generated for each velocity profile. The first important point on the
stability curve is the driving frequency, which is the frequency at which the velocity
profile was generated. The second important point is the resonant frequency, which is
the frequency of maximal spatial amplification of the perturbation waves for that given
profile.

It has been suggested (Triantafyllou et al. 1993) that when the driving frequency and
the resonant frequency coincide then there is a local peak in the propulsive efficiency.
This observation is confirmed in our work. When the driving frequency is coincident
with the resonant frequency of a velocity profile we describe this unique frequency as
a wake resonant frequency.

If, as in figure 3(b), the driving frequency of the fin is lower than the resonant
frequency of the wake then increasing the driving frequency will bring the two
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points closer together. However, each time the driving frequency is changed, the
velocity profile is also changed and a new stability curve is generated. Thus the
only truly physically realizable point on the stability curve is the eigenvalue at the
driving frequency. Even though this is the case, an infinitesimal change in the driving
frequency will, in most cases, cause an infinitesimal change in the velocity profile
shape leading to the stability curve being only approximate in the neighbourhood of
the driving frequency. This is particularly important as the slope of the stability curve
at the driving frequency indicates whether the frequency needs to be tuned upward or
downward to attain resonance. Although the direction of the actual resonant frequency
is known, its location is unknown until the driving frequency matches the resonant
frequency. Otherwise the location of the resonant frequency is only approximate. In
particular, when the resonant frequency is far away from the driving frequency its
actual location is not well known.

4.2. Vorticity perturbations
For each eigenvalue there is an associated eigenfunction, φ(y). As mentioned
previously, the eigenfunctions relate to stream function perturbations and thus velocity
perturbations that must be superimposed onto the base flow. The linear vorticity
perturbation can also be obtained from φ(y) and captures many of the features of
the observed wake structures.

The wake acts as a tuned amplifier for disturbances. In the case where there is no
external forcing and the flow is convectively unstable, noise perturbations in the flow
are amplified and convected downstream. The perturbations with the largest spatial
growth rate (i.e. at a preferred frequency) will grow the fastest and dominate the
observed wake structure. Note that the velocity perturbations have both a streamwise
and cross-stream component.

In the case where there is external forcing (as in a flapping fin), a specific driving
frequency is prescribed. Linear stability analysis will determine at which frequency
there is a maximum amplification of the input perturbations, but the observed
frequency, that is, the shedding frequency, will be that of the driving frequency of
the fin. Thus we expect that the eigenvalue and eigenfunction at the driving frequency
will relate to the observed wake structures. The total velocity field uT is calculated as
the superposition of the base flow and the perturbation velocity field, as in

uT(x, y, t)= U(y)+ ε u(x, y, t) with u= [u, v] (4.1)

where u= Re{Dφ E} and v = Re{−iαφ E}, Re{·} denotes the real part of its argument,
and E is defined in (2.2). The small constant ε is set throughout this paper in the range
1× 10−5 6 ε 6 4× 10−5. The total vorticity field is given by

ΩT =−∂U
∂y
− εRe{(D2 − α2)φ E} (4.2)

where the chosen value of ε produces a vorticity perturbation with the peak vorticity
being small compared to the vorticity in the base flow.

5. Experimental setup
The data used for the stability analysis were obtained from the experiments by

Dewey et al. (2011). The experimental setup is shown in figure 4. An elliptical-
planform fin with an aspect ratio of 0.9 and a NACA0020 cross-section was fabricated
using a flexible PVC polymer (MF Manufacturing). Here the aspect ratio is given
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FIGURE 4. (Colour online) Experimental digital particle image velocimetry (DPIV) setup.

by b2/S where b is the fin span length and S is the fin area. Four aluminium spars
embedded into the fin are connected to a gear train that is driven by a DC motor
(Pittman GM-9236S015-R1). A differential offset between subsequent gears allows the
development of a chordwise travelling wave motion with wavelength λ, expressed in
non-dimensional form as λ∗ = λ/L, where L is the chord length at the root of the fin.
Pivot points located at the root of the fin generate sinusoidal motion of the spars as the
gear train is powered so that the amplitude of motion linearly increases along the span.

Experiments were conducted in a closed-loop water channel measuring 0.46 m wide,
0.3 m deep, and 2.44 m long. A free-stream flow velocity of U = 0.06 m s−1 was
imposed corresponding to a chord-based Reynolds number of 11 600. Two-dimensional
digital particle image velocimetry (DPIV) was conducted in the wake of the fin. The
DPIV system used 93 µm hollow silver spheres (Potters Industries Inc. Conduct-O-Fil
AGSL150 TRD) for flow seeding, a Spectra Physics 2020 continuous wave argon-ion
laser light source, and a Redlake MotionXtra HG-LE 8 bit monochrome CCD camera.
Software developed by Jiménez (2002) was used for the DPIV analysis, with tests
by Chan et al. (2011) giving an estimated uncertainty of 1–5 % in the velocity
measurements. The resolution of the camera and corresponding analysis yielded
approximately 60 velocity vectors per chord length. The DPIV system was triggered
using a timing-control system (Stanford Research Systems DG535) to acquire data
for 20 consecutive oscillation periods. The data across all of these cycles are then
averaged to yield time-averaged velocity fields.

The actual frequency of motion, not the nominal frequency, was experimentally
measured and reported. There was no significant error in this measurement. A 512
CPR quadrature encoder was utilized to measure the period of motion. After gearing,
this yielded a pulse train consisting of 6192 pulses per oscillation period. These
data were typically sampled at 1 kHz, producing uncertainties of the order of 6–10
pulses per revolution, indicating that the period of motion was accurate to well
within 1/100 s. For the lowest frequencies tested (0.3 Hz) the associated error in
the apparatus frequency is ±1 × 10−3 Hz. Further details of the experiment and data
analysis are given by Dewey et al. (2011).

5.1. Measurement location
The plane at the midspan of the fin was chosen to conduct the stability analysis. Since
the amplitude of motion of the fin increases linearly with spanwise extent, this plane
represents the average amplitude of motion for the fin. Also, Clark & Smits (2006)
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FIGURE 5. (Colour online) Time-averaged velocity fields for four different parameter sets:
(a) St = 0.2, λ∗ = 4; (b) St = 0.2, λ∗ = 2.4; (c) St = 0.3, λ∗ = 4; and (d) St = 0.3, λ∗ = 6.
The solid line is the velocity profile extraction location at 0.36 root chords downstream of the
trailing edge of the midspan section. Refer to figure 1 for the definitions of the x and y axes.
The x and y coordinates are non-dimensionalized with respect to the chord length, L.

and Dewey et al. (2011) noted that three-dimensional effects become more pronounced
towards the tip of the fin where spanwise flows were observed. Spanwise flow would
affect the direction of the maximally amplified perturbation waves such that they were
no longer in the DPIV plane (Stuart 1987), and so we restrict our study to the nearly
two-dimensional flow at the midspan of the fin.

The instantaneous velocity fields were time averaged and velocity profiles were
extracted at a location 0.36 chord lengths downstream of the trailing edge. This
downstream location was chosen as the nearest downstream location to the trailing
edge where the length scale of the velocity jet changed slowly in the downstream
direction, at least locally. This location was fixed for all of the cases in this paper.
Figure 5 presents four of the examined time-averaged velocity fields. The solid line is
the location at which the velocity profiles were extracted.

5.2. Sensitivity analysis
The sensitivity of the resonant frequencies to a change in downstream location was
explored. Downstream stations in the range 0.36 < x < 0.44 were analysed. This
corresponds to the range nearest the trailing edge where the locally parallel flow
assumption holds for the case of λ∗ = 4. The velocity-profile resonant frequency
variations were measured for St = 0.2 and St = 0.3. These two cases are found to be
the closest to the wake resonant frequencies discussed later. An average variation in
the wake resonant frequency of St = ±0.03 was found. The wake resonant frequency
uncertainty is reflected in figures 11 and 13.

The sensitivity of resonant frequencies to uncertainty in the PIV measurements was
also examined. An ideal velocity profile was analysed to find its resonant frequency:

U(y)= 1+ sech2(8y) for − 1 6 y 6 1. (5.1)
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FIGURE 6. (Colour online) The experimentally measured vortex wavelength (open circle,
solid line), perturbation wavelength at the driving frequency (open triangle, dashed line)
and the perturbation wavelength at the velocity-profile resonant frequency (open circle,
dashed line). The perturbation wavelength at the driving frequency closely matches the
experimentally observed vortex wavelength.

The resonant frequency was calculated to be ω = 9.337. Random noise was added
to the ideal velocity profile with an amplitude equal to a percentage of the difference
between the peak velocity and the free-stream velocity (up to 10 %). The analysis
procedure previously described was then applied to the noisy velocity profile. A
moving-average filter is included in this procedure to smooth out the second derivative
of the velocity profile, U′′(y), which is necessary for the eigenvalue solution. At a
noise amplitude of 10 % there was a 4 % variation in the resonant frequency.

6. Results
6.1. Time-averaged velocity jet and the observed wake

The formation of wavy jet structures is the hallmark of unsteady propulsion. The
connection between the time-averaged velocity profiles and the observed wake
structure will be established by first examining the vortex wavelength of the wake and
then by inspecting the wake pattern (2S or 2P). Both the experimental observations
and the linear stability calculations are shown to agree in both of these regards.

As discussed in § 4, stability curves display two important points: the driving and
the resonant frequency of the profile. The most unstable eigenvalues at each frequency
have been calculated for six different values of λ∗ and five different Strouhal numbers
for a total of 30 cases. The wavelengths of the wake perturbations are calculated from
the real part of the eigenvalues as λw = 2π/αr. The observed vortex wavelength, λw,
of the experiments is measured as the non-dimensional streamwise distance between
vortices shed one period apart. Figure 6 shows that the wavelength calculated at the
driving frequency matches the experiment closely, while the wavelength calculated at
the resonant frequency does not. Therefore the eigenvalues and eigenmodes at the
driving frequency are relevant to the physically observed wake structure, as expected.

To further motivate the use of time-averaged velocity profiles, the observed wake
patterns may be compared to the eigenmodes at the driving frequency. As detailed
examples, representative 2P and 2S wake structures will be examined from the
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is the thin dashed line and the modulus is the thick solid line. (d) 2S velocity profile
at St = 0.3, λ∗ = 6, (e) 2S stability curve and (c) 2S eigenmode, φ(y). The eigenmode
convention used in (f ) for the real part, imaginary part and modulus is the same as in (c).

experiment of Dewey et al. (2011). The clearest representation of each case can
be seen in figure 7. Figures 7(a) and 7(b) show the experimentally observed vorticity
patterns of the 2P and 2S wake structures for the parameters St = 0.2, λ∗ = 2.4
and St = 0.3, λ∗ = 6, respectively. Figures 5(b) and 5(d) show the corresponding
time-averaged velocity fields of the 2P and 2S wakes, respectively.

The velocity profiles, associated stability curves and the associated eigenmodes are
shown in figure 8. In the case of the 2S wake structure, the driving frequency and the
resonant frequency of the velocity profile are seen to be nearly coincident, indicating
that a peak in efficiency should occur at this parameter set (St , λ∗). This will be
examined in more detail later in the paper. In the case of the 2P wake structure, the
driving frequency does not coincide with the resonant frequency of the velocity profile,
indicating that sub-optimal performance is expected at these operating parameters.
Regardless of the optimality, the 2P wake structure shown in figure 7(a) is the clearest
example of such a structure, due to the distance downstream that the structure persists
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FIGURE 9. (Colour online) 2P wake (a) vorticity perturbations and (b) total vorticity.
The vortex pairs of the 2P wake are marked with dashed ellipses. 2S wake (c) vorticity
perturbations and (d) total vorticity. Vortex core locations are marked on the total vorticity
plot where regions of vorticity are compressed together and oriented to lead to a single vortex
core after nonlinear rollup.

and the near-equal circulation encapsulated in each of the vortex cores. In particular,
the driving frequency is seen to be lower than the resonant frequency of the velocity
profile. Presumably, if the driving frequency is increased then the fin could tune into
the resonance of this mode for locally optimal efficiency. The eigenmodes, φ(y), are
also shown for completeness.

Figure 9(a,c) shows the vorticity perturbations calculated at the driving frequency
from the eigenmodes, φ(y), and the travelling wave, E, at a fixed time. The vorticity
perturbations for the 2P and 2S modes are distinctly different, with five lobes of
vorticity and three lobes of vorticity, respectively, at a fixed downstream location. The
superposition of the base-flow vorticity and the perturbation vorticity, ΩT , is given in
figure 9(b,d). The total vorticity is the initial linear wake structure that will lead to
the observed wake structure through nonlinear Biot–Savart-induced rollup. This can be
seen clearly by examining the 2S initial linear wake in figure 9(d). The perturbations
cause the base vorticity to undulate in the downstream direction and to compress
and stretch regions of the vorticity. Regions of compression for the positive vorticity
can be seen at locations approximately 0.1 and 0.7 chords downstream. Regions of
compression for the negative vorticity can be observed at locations approximately 0.4
and 1 chords downstream. The regions of compression are paired with cross-stream
displacements of the vorticity with the combined effect of vorticity to roll up and
concentrate at these compression centres. This initial linear stage is akin to the linear
waves seen in Kelvin–Helmholtz rollup (Helmholtz 1868; Kelvin 1871).

When the compression centres are marked with a vortex of the appropriate sign, the
2S initial linear wake clearly leads to the 2S wake structure as observed in figure 7(b).
Figure 9(b) also has vortex centres marked even though the regions of compression are
less pronounced. When the wake structure evolves through nonlinear rollup it is clear
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that a 2P structure will develop. The induced velocity between the nearest vortex cores
of opposite sign produce a wavy jet pattern with a small component in the downstream
direction signalling thrust production.

The vorticity perturbations in figure 9(a) display five lobes of vorticity at each
downstream location, but two of the lobes are weaker than the other three. This
asymmetry in the eigenmodes develops from the asymmetry of the velocity profile in
figure 8(a). When the positive-coordinate data points of the velocity profile (figure 8a)
are mirrored about y = 0 then figure 10(a) is obtained. Mirroring the negative data
points about y = 0 will give figure 10(c). The vorticity perturbations for both cases
are calculated and displayed in figure 10(b,d). When the profile is symmetric, the
five lobes are symmetric about the origin and of nearly equivalent strength. The
presence of five lobes of vorticity in the cross-stream direction will be regarded as the
characteristic perturbation of a 2P wake structure.

We conclude that the time-averaged velocity fields retain much of the information
about the measured flow field, in that both the observed wavelength and the wake
pattern are recovered from a linear stability analysis of the time-averaged fields. We
believe these results justify the use of linear stability analysis to help understand the
physics of efficient unsteady propulsion.

6.2. Resonant frequencies, wake transitions and efficient propulsion
An important phenomenon observed by Clark & Smits (2006) was the existence of
multiple peaks in propulsive efficiency with increasing Strouhal number. Later, Dewey
et al. (2011) observed wake structure transitions from 2P to 2S as λ∗ was increased
at a fixed Strouhal number, or as Strouhal number was increased at a fixed λ∗. We
are now in a position to connect these two observations, and to help explain the
underlying physics.
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FIGURE 11. (a) Propulsive efficiency data of the elliptical fin measured by Clark & Smits
(2006) for λ∗ = 4. Dot-dashed lines denote the resonant frequencies found by the linear
stability analysis. The solid lines denote the regions of uncertainty in the wake resonant
frequencies. (b) Stability curves for five velocity profiles taken from DPIV data measured by
Dewey et al. (2011). The × mark the resonant frequency of a stability curve while the o mark
the driving frequency used to generate the velocity profile.

Figure 11(a) shows the efficiency data at λ∗ = 4 measured by Clark & Smits (2006).
Two peaks in efficiency can be observed at St = 0.2 and 0.3. The efficiency of a
propulsor is an important performance metric; however, the thrust coefficient is also
important. The thrust coefficient is defined as

CT = T̄
1
2ρSU2∞

. (6.1)

The propulsor planform area is S.
At the first efficiency peak St = 0.2,CT = 0.55 and at the second efficiency peak

St = 0.3,CT = 1.8. Five velocity profiles were extracted from the DPIV data of Dewey
et al. (2011) at five different frequencies corresponding to five St values evenly
spaced between 0.15 6 St 6 0.35. The corresponding stability curves are shown in
figure 11(b). The jet resonant frequencies are plotted (×) as well as the jet driving
frequencies (o).

In the cases where the driving frequency is nearly coincident with the jet resonant
frequency, a peak in efficiency is expected. At St = 0.2 the driving frequency is
nearly coincident with the resonant frequency and the two frequencies are also nearly
coincident at St = 0.3. In figure 11(a), two dot-dashed lines have been plotted that
show these two cases and they are labelled as the wake resonant frequencies. The two
wake resonant frequencies from the linear stability analysis match closely to the two
observed peaks in efficiency. This confirms the previously measured efficiency data
as well as offering two insights: (i) when the driving frequency of the fin matches a
wake resonant frequency a peak in efficiency occurs; and (ii) when multiple peaks in
efficiency occur there are multiple wake resonant frequencies.

The vorticity eigenmode at the first peak in efficiency (St = 0.2) is presented
in figure 12(b). This vorticity perturbation matches the characteristic 2P vorticity
perturbation with some asymmetry. There are three weak lobes of vorticity in the
negative-y range and three strong lobes of vorticity in the positive-y range. The two
lobes of vorticity closest to the y origin have the same sign and therefore can be
considered as a single lobe, giving the five characteristic lobes of vorticity seen in
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FIGURE 12. (Colour online) Observed wake structures for λ∗ = 4 at: (a) St = 0.2; (c)
St = 0.25 and (e) St = 0.3. The respective vorticity perturbations are shown in (b), (d) and (f ).
A transition from a 2P wake to a 2S wake (dot-dashed line) is observed.

the 2P perturbations. Indeed, the observed wake structure displays a 2P wake structure
in the near wake (x < 0.5). In fact, this wake structure displays a bimodal behaviour
within the field of measurement. Figure 5(a) shows the time-averaged velocity field.
Near x = 0.5 a transition from 2P to 2S is occurring, which is reflected in the
time-averaged velocity field. Figure 6 of Dewey et al. (2011) highlights the case where
λ∗ = 4, St = 0.2 to be the first instance where a 2P structure emerges in the near wake
as λ∗ is decreased from λ∗ =∞ with St = 0.2.

The wake structures and vorticity eigenmodes for St = 0.25 and 0.3 shown in
figure 12(c–f ) display the characteristics of a 2S wake structure. Each of the wake
resonant frequencies can now be associated with a specific wake mode. There is a
resonant frequency for the 2P wake mode and a resonant frequency for the 2S wake
mode (labelled in figure 11a).

We now examine the efficiency data at λ∗ = 6 measured by Clark & Smits (2006),
as shown in figure 13(a). At the estimated efficiency peak St = 0.175,CT = 0.3 and
at the second efficiency peak St = 0.3,CT = 2. The stability curves calculated for the
range 0.15 6 St 6 0.35 are displayed in figure 13(b). One fin resonant frequency is
found near St = 0.3. By examining the vorticity eigenmodes at St = 0.3 (figure 14),
this resonant frequency is associated with a 2S wake mode. In terms of efficiency,
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FIGURE 13. (a) Propulsive efficiency data of the elliptical fin measured by Clark & Smits
(2006) for λ∗ = 6. Dot-dashed lines denote the resonant frequencies found by the linear
stability analysis. The solid lines denote the regions of uncertainty in the wake resonant
frequencies. (b) Stability curves for five velocity profiles taken from DPIV data measured by
Dewey et al. (2011). The × mark the resonant frequency of a stability curve while the o mark
the driving frequency used to generate the velocity profile.

there is excellent agreement at this Strouhal number, where the efficiency peak nearly
matches the wake resonant frequency calculated from the linear analysis.

The stability curves in figure 13(b) also admit an oddity. The case of St = 0.15
shows the driving frequency at a lower frequency than the velocity profile resonant
frequency. Tuning the driving frequency higher should decrease the separation distance
between the driving and resonant frequencies, but instead the separation increases
while the driving frequency remains at a value lower than the resonant frequency. This
result suggests that a wake resonant frequency was passed between St = 0.15 and
St = 0.2. Additional PIV data within this St range (not available in Dewey et al. 2011)
would be necessary to confirm this suggestion. On this basis an estimated 2P wake
resonant frequency has been added to the efficiency curve in figure 13(a), in the range
0.15< St < 0.2.

By examining the vorticity eigenmodes in figure 14, additional insight can be
obtained. The eigenmode at St = 0.15 is the characteristic 2P mode while at St = 0.2
it is the characteristic 2S mode. It is clear that this signals a wake transition in the
range 0.15 < St < 0.2, as reflected in the observed wake structures. The wake mode
transition further supports the conclusion that a 2P wake resonant frequency may have
been passed.

At first glance, the estimated resonant frequency does not appear to agree very
well with the experimentally measured peak in efficiency at St = 0.225. However,
Buchholz, Clark & Smits (2008) report the uncertainty in the experimental efficiency
measurements to be ±20 % at St = 0.2 and 0.225, so this may reflect the experimental
uncertainty in establishing the location of the actual peak.

6.3. Wake resonance theory
From the previous results, a theoretical framework is suggested to help explain the
physics of efficient unsteady propulsion. First, tuning the driving frequency to a wake
resonant frequency results in a local peak in efficiency. Second, there may be multiple
wake resonant frequencies relating to multiple peaks in efficiency. Third, some
observed wake structures will transition when the wake instability modes transition.
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FIGURE 14. (Colour online) Observed wake structures for λ∗ = 6 at: (a) St = 0.15; (c)
St = 0.2; (e) St = 0.25; and (g) St = 0.3. The respective vorticity perturbations are shown in
(b), (d), (f ) and (h). A transition from a 2P wake to a 2S wake (dot-dashed line) is observed.

It can no longer be claimed that a 2S wake structure is the only wake mode that
leads to efficient locomotion because other wake modes such as a 2P mode can also
lead to locally efficient propulsion. The global maximum in efficiency, at this point,
cannot be attributed to a particular wake mode. It is hypothesized that the globally
most efficient wake mode to utilize will be based on the kinematics of motion as well
as the shape of the fin or device. That is, for one set of kinematics and one propulsor
shape a 2P mode may be the most efficient wake mode to utilize, while for another set
of kinematics and another propulsor shape a 2S mode may be the optimally efficient
wake mode.

As a direct extension of the theory, other more elaborate wake modes (Lewin &
Haj-Hariri 2003; Lentink et al. 2008) are also expected to have their own wake
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resonant frequencies, although this has not been shown here. Caution must be used in
applying the spatial stability analysis to wakes with non-parallel flow, though, such as
the bifurcating wake in Dewey et al. (2011). Wakes that are locally non-parallel would
need to be analysed using a global stability analysis (Chomaz 2005).

7. Conclusions
Flapping fins shed a series of vortices in their wakes that produce a wavy jet

structure. In analogy to bluff-body wake analysis, the time-averaged jet structure can
be analysed for its most unstable frequency, described here as the hydrodynamic
resonant frequency of the velocity profile. When the driving frequency of the fin is
tuned to the resonant frequency of the velocity profile it is shown that a peak in
propulsive efficiency occurs at the wake resonant frequency. Moreover, there can be
multiple wake resonant frequencies and thus multiple peaks in efficiency as the driving
frequency is varied. Linear spatial stability analysis is utilized to also calculate the
linear vorticity perturbations at each driving frequency. It is shown that these modes
capture both the wavelength of the shed vortices and also the wake pattern found
in the experiment, motivating the analysis of the time-averaged jet flow. Furthermore,
different resonant frequencies were found to also correspond to different resonant
modes. When the wake instability mode transitioned it was found that the observed
wake structure also transitioned. In this study wake patterns beyond the reverse von
Kármán vortex street were considered. Both 2P and 2S wake modes were found to
be efficient modes of propulsion. Remarkable agreement with experimental data is
obtained by utilizing a one-dimensional analysis to study a three-dimensional wake
structure, thus showing the robustness and broad applicability of the technique.
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