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We present the linear stability analysis of experimental measurements obtained from
unsteady flexible pitching panels. The analysis establishes the connections among
the wake dynamics, propulsor dynamics, and Froude efficiency in flexible unsteady
propulsion systems. Efficiency is calculated from direct thrust and power measure-
ments and wake flowfields are obtained using particle image velocimetry. It is found
that for flexible propulsors every peak in efficiency occurs when the driving frequency
of motion is tuned to a wake resonant frequency, not a structural resonant frequency.
Also, there exists an optimal flexibility that globally maximizes the efficiency. The
optimal flexibility is the one where a structural resonant frequency is tuned to a wake
resonant frequency. The optimally tuned flexible panels demonstrate an efficiency
enhancement of 122%–133% as compared to an equivalent rigid panel and there is
a broad spectrum of wake resonant frequencies allowing high efficiency swimming
over a wide range of operating conditions. At a wake resonant frequency we find
that the entrainment of momentum into the time-averaged velocity jet is maximized.
C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4872221]

I. INTRODUCTION

Here we analyze new experimental results on the flow fields produced by flexible propulsors in
terms of a linear stability analysis on the mean flow in the wake. The analysis is then substantiated
using thrust and efficiency performance data obtained previously for the same flexible propulsors.1

The vortex wakes produced by swimming animals and pitching panels alike are formed by the
wrapping of shed vorticity into discrete vortex cores. This process is nonlinear, but the mean flow
is well-defined and a linear stability analysis can give considerable insight on the wake formation.
For example, Barkley2 and Thiria and Wesfreid3 show that the time-averaged velocity field behind
stationary cylinders producing a von Kármán vortex street is the steady solution to the forced Navier-
Stokes equations so that it is amenable to a linear stability analysis. Similarly, linear stability analysis
of the time-averaged flow has been applied to turbulent pipe flow to find the most amplified velocity
response.4

In the context of oscillating propulsors, a variety of different wakes can form,5–7 but they all
induce a wavy and unsteady velocity jet that imparts momentum to the fluid. Triantafyllou et al.8, 9

showed that the time-averaged velocity jet is convectively unstable and that there is a “preferred”
frequency at which the von Kármán instability was the most unstable. They further suggested that a
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single peak in efficiency was attained by tuning the driving frequency of motion to the frequency of
maximum spatial growth (the “preferred” frequency) of the velocity jet in a two-dimensional flow.

Moored et al.10 generalized this approach by introducing wake resonance theory, which supposes
that there may exist multiple frequencies at which the jets are maximally unstable. When the driving
frequency of a system is tuned to the most unstable frequency of its jet, however, it is expected that
a local peak in efficiency occurs. The specific frequency where the driving and the most unstable
frequency of the jet are aligned is called the wake resonant frequency. Also, the structure of some
vortex wakes changes when the instability mode of the jet at the driving frequency transitions to a new
instability mode. Moored et al. corroborated these elements of the theory by performing experiments
on an oscillating three-dimensional bio-inspired fin, which were analyzed without considering its
passive flexibility.

To extend wake resonance theory to unsteady flexible systems, which is the subject of the
present work, we postulate that in flexible systems the peaks in efficiency also occur at wake
resonant frequencies. That is, there are two important characteristic frequencies in flexible unsteady
propulsion: the structural resonant frequency and the wake resonant frequency. We therefore propose
that when the structural resonant frequency is tuned to a wake resonant frequency, the efficiency
performance will show an improvement. This postulate implies that operating at structural resonance
alone does not necessarily lead to a local peak in efficiency, and may help to explain some of the
divergent results obtained in previous studies. For instance, Vanella et al.11 numerically investigated
a two-dimensional, discretely flexible two-link propulsor to find that peak efficiency occurred at
f ∗
1 = 0.33, where f ∗

n = f/ fn , so that f is the driving frequency and fn is the nth structural resonant
frequency of the fluid-propulsor system. In contrast, the optimal efficiency of flexible propulsors
has been found to occur at f ∗

1 = 0.4,12 f ∗
1 = 0.35–0.5,13 and f ∗

1 = 0.7,14 using scaling arguments,
two-dimensional computations, and three-dimensional experiments, respectively. Michelin et al.15

found that for inviscid two-dimensional flow the efficiency had a maximum at f ∗
2 = 1, while for free

swimming conditions Spagnolie et al.16 and Alben et al.17 showed that optimal conditions occurred
at f ∗

1 ≈ 1 for both experiments and computations. Finally, Masoud et al.18 found that the peak
efficiency appeared at f ∗

1 = 1.2–1.3 for a three-dimensional wing at a net angle of attack, while Dai
et al.19 found a peak efficiency at f ∗

1 > 1 for a flexible pitching panel of finite aspect ratio.
Here, we present new experiments on nominally two-dimensional pitching panels with various

degrees of flexibility, and we demonstrate that the optimally efficient performance occurs for the
cases where the structural resonance is tuned to a wake resonance, thereby extending wake resonance
theory to flexible systems. By considering the entrainment of momentum into the time-averaged jet,
we provide further physical insights in wake resonance theory.

II. EXPERIMENTAL METHODS

The experimental arrangements are the same as those used by Dewey et al.,1 where further details
regarding the experimental apparatus and procedures may be found. Water channel experiments were
conducted using rectangular panels having a chord length C = 120 mm and a span of 280 mm. The
panels spanned the entire depth of the water channel to minimize the three-dimensional effects of
the flow. The panels were attached to a pitching shaft at their leading edge that was harmonically
oscillated by a HiTec HS 7940-TH servo motor. The chord length was selected to achieve a Reynolds
number of 7200 ± 2%, which is biologically relevant,20 at a flow velocity U∞ = 0.06 m/s. In total,
seven panel stiffnesses were considered, where the stiffness was controlled by altering the panel
thickness, h. Thin plates were selected in favor of hydrofoils to act as a simplified model of fish fins
as has previously been used by Green et al.21 and Lauder et al.22 Additionally, the flexural rigidity
(EI, where E is the modulus of elasticity and I is the area moment of inertia) of the panels ranged
from 4.2 × 10−4–1.1 × 10−2 Nm2, which matches well with the flexural rigidity of biological
propulsors studied by Lauder et al.22 For the effectively rigid panel, a 3 mm thick acrylic panel was
used. We will refer to the panels as P∞ for the rigid panel, and P1 to P6 for the flexible panels, where
subscripts 1 and 6 represent the most and least flexible panels, respectively.

The characteristic non-dimensional properties of the panels are given in Table I. As per Kang
et al.,12 the non-dimensional effective stiffness is �1 = Eh∗3/

[
12(1 − ν2

s )ρ f U 2
∞

]
, where h* = h/C,
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TABLE I. Physical properties of flexible panels. Superscript a indicates estimated value.

Panel P1 P2 P3 P4 P5 P6 P∞

�1 0.3 0.7 1.4 2.0 4.0 7.8 O(104)
h*(×10−3) 1.1 1.6 2.1 3.2 4.2 5.3 26.5
k1 1.3a 2.3a 6.3 6.9 9.4 12.6

νs is Poisson’s ratio and ρ f is the density of the fluid. The non-dimensional effective stiffness is also
the inverse of a Cauchy number.23 Here, k1 = 2π f1C/U is the reduced frequency at the first structural
resonant frequency where the length scale is based on the chord. The density ratio for each panel is
ρ* = 1.3, where ρ* = ρs/ρ f and ρs is the density of the panel. Altogether, 27 evenly spaced reduced
frequencies (k = 2π fC/U), ranging from k = 2.5–18.8, were considered for each panel. For all cases
examined, the maximum pitching angle of the leading edge, θ0, was held constant, and chosen such
that the peak-to-peak amplitude of the trailing edge motion for the rigid panel was A∞ = 0.25 C.
The amplitude of the trailing motion for the flexible panels, A, depends upon the passive response
of the panel and it is A that is used to define the Strouhal number, St = fA/U.

The analysis will be based on the wake mean velocity profiles. These profiles were measured
using particle image velocimetry (PIV), and they are presented here for the first time. The PIV
system consisted of a Coherent Innova 70C continuous wave argon-ion laser as the light source, a
Redlake MotionXtra HG-LE CCD camera with 1128 × 752 pixel resolution for the imaging, and
neutrally buoyant silver coated hollow ceramic spheres with a mean diameter of 93 μm for the
particle seeding (Potters Industries Inc. Conduct-O-Fil AGSL150 TRD).

PIV measurements were taken for all seven panel stiffnesses at a range of reduced frequencies
from k = 1.25–12.5, resulting in a total of 72 separate cases. The oscillation period of the pitching
panel was discretized into 25 phases by the LabView code controlling the system, and at each of
these 25 phases a timing-control system (Stanford Research System DG535) triggered the camera
to take a pair of images at a frequency of 80 Hz. Data were acquired for 24 oscillation periods
resulting in 600 image pairs. Two-dimensional velocity fields were computed by calculating local
spatial cross-correlations over two passes, with window sizes of 64 × 64 and 32 × 32 pixel windows
with 50% overlap.24 The resulting vectors were spaced 16 pixels apart for a spatial resolution over
the interrogation region of roughly 30 velocity vectors per chord length. Earlier tests25, 26 indicate
errors in velocity to be approximately 1%–5%.

III. PROPULSIVE EFFICIENCY

The Froude efficiency η is defined as the ratio of the useful power output to the power input
to the fluid, P , where the useful power output is the product of the time-averaged thrust T and the
swimming speed U∞, such that η = T U∞/P . Dewey et al.1 presented thrust, power and efficiency
measurements in the same apparatus for nominally two-dimensional pitching panels, as well as
pitching panels of finite aspect ratio, and found that flexible panels can give a significant amplification
of thrust production of O(100%–200%) and propulsive efficiency of O(100%) when compared to
rigid panels. We will use the propulsive efficiency results reported by Dewey et al., shown in
Figure 1, for the current analysis. Two of the major findings of Dewey et al. that are addressed in the
current effort are (1) that there was an optimal flexibility that maximizes efficiency (Figure 1(c)),
and (2) the peaks in propulsive efficiency could occur below, at, or above the resonant frequency of
the panel depending on the panel flexibility (Figure 1(d)).

IV. EXPERIMENTAL RESULTS

The spanwise vorticity fields acquired using PIV at the most efficient case (P3, k = 6.3) are
shown in Figure 2. The evolution of the wake is shown for the first half of the oscillation period,
Tp. At the start of the period, a shear layer is shed into the wake (Figure 2(a)). The shear layer rolls
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FIG. 1. (a) Efficiency as a function of Strouhal number. (b) Efficiency as a function of reduced frequency. (c) Maximum
efficiency, ηm, as a function of effective panel stiffness. (d) Efficiency as a function of reduced natural frequency. The peak
efficiencies fall into three regimes: (1) f ∗

1 < 1, (2) f ∗
1 = 1, and (3) f ∗

1 > 1. (a) and (b) Reprinted with permission from
P. A. Dewey, B. M. Boschitsch, K. W. Moored, H. A. Stone, and A. J. Smits, “Scaling laws for the thrust production of
flexible pitching panels,” J. Fluid Mech. 732, 29–46 (2013). Copyright 2013 Cambridge University Press.

up, and the vortex core propagates downstream, while still being connected to the trailing edge of
the panel by an extended shear layer (Figure 2(b)). As the pitching panel reverses its direction (Tp

= 0.25), the sign of the shear layer changes, and another vortex roll-up will occur so that a second
vortex of opposite sign is shed into the wake, as in Figure 2(c). The vortices align themselves into a
reverse von Kármán vortex street, and the induced velocity between subsequent vortices will have a
component in the streamwise direction indicating momentum addition to the fluid and a net thrust.

Time-averaged velocity profiles can be extracted by time-averaging the measured wakes of
the panels. Figure 3 shows the time-averaged velocity profiles at a location C/3 downstream from
the trailing edge for all panels at a frequency of k = 7.5. At this intermediate frequency, the most
flexible panel, P1, produces a velocity profile depicting a jet of fluid containing the least amount
of momentum. The peak jet velocity contained in the profile continues to increase with increasing

FIG. 2. Evolution of the vorticity field in the wake of panel P3 near the optimal efficiency case (k = 5.7, f* = 0.9). (a) t/Tp

= 0, (b) t/Tp = 0.25, (c) t/Tp = 0.5. Flow is from left to right; approximate location of panel is outlined with the curved line.
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FIG. 3. Time-averaged velocity profiles for k = 7.5 extracted at a location C/3 downstream of the trailing edge of the panels.

stiffness until a maximum peak velocity is obtained for panel P5. A further increase in stiffness, as
for panel P6 and the rigid panel P∞, yields a decrease in the peak velocity.

V. LINEAR STABILITY ANALYSIS OF VORTEX WAKES

The process that generates the vortex wake flow downstream of an unsteady propulsor is a
nonlinear one. However the mean flow is well-defined and its stability can be analyzed via a linear
analysis, as shown by Barkley2 and Thiria and Wesfreid3 in the context of the nonlinear von Kármán
vortex street behind a cylinder in uniform flow. Here we will closely follow the approach of Barkley2

in analyzing the wake formed by flexible, pitching panels.
Consider a reverse von Kármán vortex street in the wake of a pitching panel, a periodic flow.

The two-dimensional flow field can be decomposed into its respective time-averaged field and
time-varying fluctuation without loss of generality, so that

u(x, y, t) = ū(x, y) + u′(x, y, t),

P(x, y, t) = P̄(x, y) + P ′(x, y, t),

where

ū(x, y) = 1

T

∫ T

0
u(x, y, t) dt,

P̄(x, y) = 1

T

∫ T

0
P(x, y, t) dt.

Here, u is the velocity vector in the plane [x, y], P is the pressure, overbars denote time-averaged
quantities, and primes denote fluctuations. The period of vortex shedding is T. If the decomposition
is substituted into the Navier-Stokes and continuity equations and then time-averaged, the classical
time-averaged governing equations are developed:

(ū · ∇)ū = −∇ P̄ + 1

Re
∇2ū − 1

T

∫ T

0
(u′ · ∇)u′ dt, (1)

∇ · ū = 0. (2)

The far right term of Eq. (1) captures the effect of Reynolds stresses on the time-averaged flow,
where the stresses are associated with the vortex shedding. Now consider the forced Navier-Stokes
equation where the forcing F is due to vortex shedding from the pitching propulsor. That is,

∂u
∂t

+ (u · ∇)u = −∇P + 1

Re
∇2u + F. (3)

It is clear that the time-averaged fields satisfy the forced Navier-Stokes equation and therefore they
are amenable to a linear stability analysis. The time-averaged jet structures behind flapping foils are
only weakly nonparallel and of the convective type so that we use a spatial stability analysis.27
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FIG. 4. Example time-averaged velocity fields for (a) panel P1 and (b) panel P6 at the reduced frequency, k = 6.3. The solid
lines show the downstream range where velocity profiles were extracted for the linear spatial stability analysis. For panel P1

this range is 0.5 ≤ x/C ≤ 1 while for the other panels the range is 0.2 ≤ x/C ≤ 1.

To explore the connection between the efficiency measurements and the mean flow data, we
now apply wake resonance theory as described by Moored et al.10 First, a linear spatial stabil-
ity analysis is performed on the time-averaged flow field, which is taken to be locally parallel
(Figures 4(a) and 4(b)). A one-dimensional velocity profile, U = [U (y), 0], is then extracted
(Figure 3) from a downstream location of the time-averaged velocity field and used in the anal-
ysis, which in the case of the forced Navier-Stokes equations is the time-averaged flow. A small
perturbation, u = [u, v], is superimposed onto the base flow and substituted into the forced Navier-
Stokes and continuity equations. The equations are then linearized about the base flow and a traveling
wave form of the solution is assumed for the velocity perturbations, or equivalently, for the stream
function perturbations. Following Barkley,2 the Reynolds stresses are assumed to be unperturbed,
which presents a limitation of the present method.

The linearization results in the classic Orr-Sommerfeld equation for the complex amplitude,
φ(y), of the wave-like perturbation to the stream function, ψ(x, y, t), given by (with D ≡ d/dy){(

D2 − α2
)2 − i Re

[
(αU − k)

(
D2 − α2

) − αU ′′]} φ = 0, (4)

where

ψ(x, y, t) = φ(y) ei(αx−kt) ≡ φ(y)E . (5)

All parameters and variables are nondimensionalized using the characteristic length and velocity
scales C and U∞. The complex wavenumber is α = k/c where c is the complex phase velocity and
k is the reduced frequency. The Reynolds number is Re = ρ fU∞C/μ, where ρ f and μ are the fluid
density and dynamic viscosity, respectively.

For a spatial stability analysis the wavenumber is complex (α = αr + i αi) and the reduced
frequency is real. When αi is negative and x > 0 (downstream of the perturbations), the stream
function and velocity perturbations will grow in space. In an unbounded domain, the boundary
conditions ensure decay of the perturbations and their spatial derivative far away from the centerline
of a jet.

To solve the nonlinear eigenvalue problem, the Orr-Sommerfeld equation is expanded in powers
of α and then discretized over y ∈ [−Y, Y], along with the boundary conditions, for some large value
of Y. The discretized nonlinear eigenvalue problem is then cast into the companion matrix form,28–30

which produces a linear eigenvalue problem that can be solved using standard techniques. In the
analysis of the experimental data, 250 discretization points were used for the computations. Doubling
the discretization to 500 points caused a change of less than 1% of the real and imaginary parts of the
eigenvalues. The canonical problem of plane Poiseuille flow31 was used to validate the numerics.10

Each velocity profile was discretized into 250 points and the stability analysis was conducted
for 50 real perturbation frequencies, k, ranging from 0.5 < k < 17. The most unstable eigenvalue, αi,
for each perturbation frequency was compiled to form a stability curve for that velocity profile (see
Moored et al.10). For each stability curve there is a driving frequency at which the velocity profile
was physically generated and the most unstable frequency where the velocity profile is maximally
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FIG. 5. Rigid panel (left) efficiency data and (right) wake resonant frequencies as a function of downstream location. The
circle on the efficiency data marks the efficiency peak. The solid vertical lines denote the mean values of the wake resonant
frequency, the dashed lines represent the uncertainty.

unstable. If the driving frequency is tuned to the most unstable frequency of the velocity jet then
that frequency is termed a wake resonant frequency. This tuning process is nonlinear as the most
unstable frequency is a nonlinear function of the driving frequency.

To determine the resonance condition precisely can be laborious in cases where the stability
curves are sensitive to small changes in the driving frequency. Instead, a relaxed condition is applied
where the propulsor is said to “resonate” with the wake instability when the spatial growth rate, αi,
at the driving frequency is within 5% of the maximum spatial growth rate (occurring at the most
unstable frequency).

At resonance the perturbations experience their maximum amplification, and can act to enhance
entrainment of momentum into the velocity jet. We show in Sec. VII that the entrainment of
momentum near the trailing-edge of the propulsor is maximized at a wake resonance, thereby
enhancing the momentum flux and leading to higher efficiency. Thus a peak in the propulsive
efficiency is expected when the fin is driven at a wake resonant frequency. This argument is similar
to that used to describe optimal vortex formation from the viewpoint of the formation time,32 although
the connection between wake resonance and formation time has yet to be established.

The estimates of the wake resonant frequencies are subject to uncertainties in the PIV mea-
surements, and to the choice of downstream location. From a 1%–5% uncertainty in the velocity
measurements the estimated uncertainty in the calculation of the wake resonant frequencies is 1%–
3.5% (see the Appendix). For 0.2 < x/C < 1, the locally parallel flow assumption holds for all of the
jet structures produced by the panels except for the most flexible panel where the assumption holds
for 0.5 < x/C < 1. Locally parallel flow occurs when the velocity jet width, δ(x), changes slowly
over a typical instability wavelength, that is, ε = [λtip/δ(x)](dδ/dx) 
 1.33 In our case, we use the
condition that ε < 0.5. The most flexible panel has a value of ε = 1.19 in the range 0.2 < x/C < 0.5
for some of the frequencies leading to the omission of this range from the analysis.

Thirty-two downstream stations for each panel were examined within the prescribed range at
every frequency that PIV data was acquired. At each downstream location where a wake resonance
condition was met, that frequency was marked as a blue point in Figures 5 and 6 (right). The
mean values of the wake resonant frequencies within that range are the solid horizontal lines in
Figures 5 and 6 (right) while they are represented by the solid vertical lines in Figures 5 and 6 (left).
The minimum and maximum values of the wake resonant frequencies within the downstream range
are denoted by the grey regions bounded by dashed lines in Figures 5 and 6 (left). The grey regions
reflect the uncertainty in the measurement of the wake resonant frequency. There is also a variance
of 3%–15% in the full-scale measurement of efficiency marked by the error bars.

VI. ANALYSIS OF THE EXPERIMENTAL DATA

Figure 5 presents the efficiency data and the wake resonant frequency as a function of the
downstream location determined for the rigid pitching panel, where the structural resonant frequency
is effectively at f1 = ∞. For the rigid panel there is only a single wake resonant frequency detectable
at every downstream location examined. Within the range of downstream values, the wake resonant
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FIG. 6. Flexible panels (left) efficiency data and (right) wake resonant frequencies as a function of downstream location.
The solid vertical lines denote the wake resonant frequencies, the dashed lines represent the uncertainty in the wake resonant
frequencies and the dotted-solid vertical lines represent the structural resonant frequencies.

frequency aligns with the peak value of efficiency (Figure 5(a)) as expected,10 which in this case is
η = 16%.

Figure 6 presents similar data for the flexible pitching panels. It is evident that for each flexible
panel every primary peak in efficiency (marked by a circle) aligns with a wake resonant frequency
(marked by a solid vertical line), within the stated uncertainty. Many of the secondary wake resonant
frequencies may align with small local peaks that cannot be distinguished from the uncertainty in
the efficiency measurements. Nevertheless, it can be seen that the most flexible cases (panels P1 to
P4) have multiple wake resonant frequencies. Note also that panel P6 has a wake resonant frequency
for a drag production case. For the most efficient cases of panels P3 and P4, there are seven and four
wake resonant frequencies detected, respectively. The wake resonant frequencies are distinguishable
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since many of the them exist simultaneously at a given downstream location. For panel P3, which
represents the optimal flexibility, there is almost a continuum of wake resonant frequencies producing
a large region of high efficiency. This has broad implications on unsteady swimming with flexible
propulsors, in that at the optimal flexibility there exist numerous wake resonant frequencies so that
high efficiency swimming is possible over a wide range of operating conditions.

In contrast to the wake resonant frequencies, the structural resonant frequencies only closely
align with efficiency peaks in the cases of panels P3 and P4, where wake resonant frequencies also
coincide with the efficiency peaks. For flexible propulsors, therefore, each peak in efficiency occurs
when the driving frequency of motion is tuned to a wake resonant frequency, not to a structural
resonant frequency.

The cases that lead to global optimally efficient locomotion are panels P3 and P4 that exhibit
a 133% and 122% increase in efficiency (η = 38% and 36%), respectively, when compared to the
rigid panel (η = 16%). Here, the structural resonant frequencies of the panels are closely aligned
with their wake resonant frequencies. When this special condition is satisfied, flexible panels will be
described as “tuned” flexible panels. Conversely, when the special condition is not satisfied, flexible
panels will be described as “untuned” flexible panels.

For the untuned flexible panels, there is still an efficiency enhancement over the rigid panel
for every case examined in this study, of between 33%–88% (η = 22%–30%). As the structural
resonance frequency and a wake resonance frequency come closer together, the efficiency curves are
amplified, which can be seen when comparing panels P1–P3 and panels P4–P6. There is no particular
effect on the efficiency when operating at structural resonance alone as can be seen in the data for
panels P5 and P6. For these panels the efficiency is effectively flat when operating near structural
resonance and these frequencies are clearly not producing peak efficiency. The experimental data
covers a range of cases where the optimal driving frequency is f ∗

1 < 1 (the rigid panel, panels P5

and P6), f ∗
1 ≈ 1 (panels P3 and P4), and f ∗

1 > 1 (panels P1 and P2). This data set covers the entire
range of the cases seen in previous work.11–18 It seems clear that these divergent observations can
be explained by the fact that the primary mechanism to achieve efficient locomotion is to tune the
frequency of motion to a wake resonant frequency, while the secondary mechanism is to tune a
structural resonant frequency to a wake resonant frequency.

The efficiency data along with the detected wake resonant frequencies are shown in Figure 7
as a function of Strouhal number. Here, the Strouhal number of the wake resonant frequencies and
structural resonant frequencies are interpolated from the relationship between k and St for each panel.
Note that the seven wake resonant frequencies of panel P3 collapse to only four distinct frequencies
in St space. The wake resonant frequencies found in this study collectively cover a Strouhal range of
0.16 ≤ St ≤ 0.42. All of the identified wake resonant frequencies from the literature9, 10, 34 fall within
the range of this study. When including this literature, the range is derived from two-dimensional
computations and experiments as well as three-dimensional experiments with both rigid and flexible
propulsors, and offers the most comprehensive range of optimal Strouhal number in the literature that
is based on wake resonance principles. This range is close to the range of 0.2 ≤ St ≤ 0.4 determined
from statistical analysis of the Strouhal numbers exhibited by a collection of flying and swimming
animals.35 These ranges, however, must be used as only approximate estimates of an optimal St. For
instance, Clark and Smits36 observed efficiencies between η = 35%–55% in the range 0.16 ≤ St ≤
0.42; an approximately 50% variation within the “optimal” range. Thus, operating a device or an
animal within the optimal Strouhal range is an insufficient condition to determine whether it is tuned
to the resonance of its wake and hence whether it attains locally efficient propulsion. Nevertheless,
the alignment of the range of wake resonant frequencies and range of most flying and swimming
animals, suggests a unifying principle in biological locomotion (at least at Re � 1), namely, that
animals tune to the hydrodynamic resonance of their wakes regardless of whether their propulsors
are rigid or flexible.

VII. MOMENTUM ENTRAINMENT

We now examine the physical mechanism responsible for a peak in efficiency when operating at
a wake resonant frequency. We propose that when a propulsor is driven at a wake resonant frequency
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FIG. 7. All panels efficiency as a function of Strouhal number. The solid vertical lines denote the wake resonant frequencies,
the grey regions represent the uncertainty in the wake resonant frequencies and the dotted-solid vertical lines represent the
Strouhal number at which the structural resonant frequencies occur.

there is an increase in the entrainment of momentum into the time-averaged velocity jet. Importantly,
the problem is semi-infinite, that is, the jet flow forms at the trailing-edge and extends to infinity. As
such there is a formation region where shed vorticity is fed into rolling-up vortices. If an element
of shed vorticity were to move downstream across the formation region at a constant speed, then in
the time-average sense there would be no cross-stream velocity due to the canceling of the induced
velocity from the element at different times (assuming low diffusive losses over the time interval
of transit). However, in this region the stream-wise advection of the feeding shear layer vorticity
is faster than the stream-wise advection of the forming vortex cores, hence the concentration of
vorticity into cores. The stream-wise advection of an element of vorticity then slows down. This
leads to a non-zero time-averaged cross-stream velocity when an element of vorticity resides in
the downstream portion of the formation region for a longer period of time. Thus, over a finite
region behind the trailing-edge entrainment occurs (Figure 8(b)). As shown in Moored et al.10 (see
Figure 9) the mean flow superposed with the most unstable linear waves produces a perturbed
vorticity pattern with regions of stream-wise vorticity compression that will tend to accelerate
vorticity into the forming vortex cores shed from the trailing-edge. Thus, when operating at a wake
resonance we expect the time-averaged cross-stream velocity and the entrainment to be enhanced
due to an expedited rollup. The most unstable linear perturbations accelerate the vorticity toward
its final state, however, the rollup and entrainment processes are highly nonlinear. This is akin to
the linear waves of a Kelvin-Helmholtz instability compressing and transversely displacing vorticity
leading to the formation of vortices through a nonlinear Biot-Savart rollup.37, 38

To examine this postulate, the PIV data is analyzed by using a control volume (CV) with its
inlet located at the trailing-edge of the panel and its outlet is placed as far downstream as (positive)
entrainment is occurring. The sides of the CV are centered symmetrically around the peak velocity
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FIG. 8. Panel 5: k = 6.9 (Left) Schematic of the CV with the measured inlet and outlet profiles. Momentum is being
entrained through the sides of the CV to enhance the momentum of the velocity profile at the outlet. (Right) The product of
the instantaneous velocities u and v, showing where momentum is entrained into or expelled from the velocity jet.

FIG. 9. Data for the most flexible panels P1–P4: (Left) Velocity profiles at k = 6.3 for the inlet (dashed profile) and the
outlet (solid profile). The sides of the CV are marked with horizontal solid lines. (Right) Entrainment ratio as a function of
reduced frequency. The solid line represents the mean values of the wake resonant frequencies while the dashed lines are the
minimum and maximum values of the wake resonant frequencies.
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at the inlet at a location where the velocity has recovered to within 2% of the peak velocity of the
jet. The side locations of the CV are fixed for a given panel over the range of tested frequencies for
the frequency case that produces the widest CV. The CV width therefore increases with the panel
stiffness. For panels P1–P7 the ranges are yrange = [0.4, 0.5, 0.6, 0.6, 0.7, 0.725, 0.75] C.

The streamwise extent of the CV is set by considering the entrainment of momentum over the
sides. Figure 8(a) shows a CV with the inlet and outlet velocity profiles for panel P5 operating at
k = 6.9, which is operating near its wake resonant frequency. Figure 8(b) shows the product uv,
which indicates where momentum is entrained into or expelled from the velocity jet (u and v are
the streamwise and cross-stream components of velocity, respectively). From plots like this, we set
the outlet location of the CV at the boundary between the entraining and expelling regions. This
location is fixed for a given panel over the range of tested frequencies at the value that gives the
shortest entrainment region. The CV length therefore decreases with the panel stiffness. For panels
P1 and P2 the entrainment region extends to x/C = 1, for panel P3 it extends to x/C = 0.6, for panels
P4–P6 it extends to x/C = 0.5, and for panel P7 it extends to x/C = 0.45.

We now define the entrainment ratio, γ , as the ratio of the streamwise momentum flux entrained
through the sides of the CV to the momentum flux at the inlet, so that

γ =
∫

side uv dl∫
in u2 dl

, (6)

where the integration is along the perimeter of the rectangular CV. Figure 9 (left) shows the velocity
profiles at the inlet and outlet, as well as the side boundaries of the CV (horizontal solid lines) for

FIG. 10. Data for the least flexible panels P5–P7: (Left) Velocity profiles at k = 6.3 for the inlet (dashed profile) and the
outlet (solid profile). The sides of the CV are marked with horizontal solid lines. (Right) Entrainment ratio as a function of
reduced frequency. The solid line represents the mean values of the wake resonant frequencies while the dashed lines are the
minimum and maximum values of the wake resonant frequencies.
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panels P1–P4. All of the velocity profiles exhibit enhanced momentum flux at the outlet. Figure 9
(right) shows the calculated entrainment ratio where the uncertainty is estimated from a 3% error
in the velocity measurements. Within the uncertainties, all of the wake resonant frequencies are in
good agreement with the peaks in the entrainment ratio, with the single exception of the third wake
resonant frequency for panel P2. The enhanced entrainment for this case may be underresolved
because of the relatively coarse steps in frequency used to obtain the PIV data. Figure 10 shows
the velocity profiles and entrainment ratio data for panels P5–P7. Again, there is good agreement
between the wake resonant frequencies and the peaks in the entrainment ratio. It appears, therefore,
that at a wake resonant frequency the entrainment of momentum into the time-averaged velocity jet
is locally maximized, which concurrently leads to a local peak in propulsive efficiency.

VIII. CONCLUDING REMARKS

This work extends wake resonance theory to include flexible propulsors, and leads to a number
of original conclusions. First, it was found that for flexible propulsors each peak in efficiency
occurs when the driving frequency of motion is tuned to a wake resonant frequency, not a structural
resonant frequency. Second, the panel flexibility that attains global optimally efficient locomotion
is the one where a structural resonant frequency is tuned to a wake resonant frequency. Thus, the
primary principle to achieve efficient locomotion is to tune the frequency of motion to a wake
resonant frequency, while the secondary principle is to tune the structural resonant frequency to
a wake resonant frequency. We saw that the tuned flexible panels exhibit a 122%–133% increase
in efficiency over the rigid panel, while the untuned flexible panels exhibit an 33%–88% increase
in efficiency. All of the flexible panels displayed enhanced efficiency performance over the rigid
panel.

The physical mechanism for enhanced efficiency is identified as the maximization of the en-
trainment of momentum into the velocity jet. The entrained momentum enhances the momentum
flux of the jet and leads to higher efficiency. The Strouhal number range of the wake resonant
frequencies in this and previous studies (0.16 ≤ St ≤ 0.42) coincides with the Strouhal range of
most flying and swimming animals (0.2 ≤ St ≤ 0.4).35 Hence, we propose a unifying principle in
biological locomotion: animals tune to the hydrodynamic resonance of their wakes regardless of
whether their propulsors are rigid or flexible. Also, because the frequency of wake resonance is
finite, and the frequency of structural resonance of a rigid propulsor is infinite, the global optimally
efficient propulsion is guaranteed to occur for flexible propulsors and not rigid ones. Finally, it
is concluded that when the panel flexibility is optimally tuned there is a broad spectrum of wake
resonant frequencies that make it possible to achieve high efficiency swimming over a wide range
of operating conditions.
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APPENDIX: SENSITIVITY ANALYSIS

The sensitivity of the eigenvalue analysis to uncertainty in the PIV measurements was quantified.
Following Moored et al.,10 an ideal velocity profile was analyzed to find its resonant frequency:

U (y/C)

U∞
= 1 + sech2

(
7

y

C

)
from − 2 ≤ y/C ≤ 2. (A1)

All dimensional parameters are nondimensionalized by C = 0.12 m, U∞ = 0.06 m/s, and the
chord-based Reynolds number is Re = 7171 based on a kinematic viscosity of ν = 1.004 × 10−6 m2/s.
The resonant frequency was calculated to be k = 8.09. Random noise was added to the ideal velocity
profile with an amplitude between 1% and 5% of the difference between the peak velocity and the
free-stream velocity. This models the uncertainty in the PIV measurements. An example of an ideal
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FIG. 11. (a) An ideal velocity profile. (b) A velocity profile with noise added of an amplitude that is 5% of the difference
between the peak and free-stream velocities. (c) A velocity profile that is the average of twenty-four randomly generated
profiles with 5% noise.

velocity profile and a profile with 5% noise can be found in Figures 11(a) and 11(b). Twenty-four
randomly generated noisy velocity profiles were averaged to replicate the averaging that occurs in
the experiments over twenty-four oscillation cycles. An example of an averaged 5% noisy profile
can be observed in Figure 11(c). After an averaged noisy profile is generated, a moving average
filter is included to exactly emulate the processing procedure used on the experimental data. The
moving average filter is used to smooth out the second derivative of the velocity profile, U′′(y),
where the moving average is windowed over a interval that is 1% of the range −2 ≤ y/C ≤ 2.
Figure 11(c) has been processed with the moving average filter.

From ten randomly generated, averaged 1% noisy velocity profiles, the uncertainty in the most
unstable frequency of the profile was always less than 1% from the exact value while for averaged
5% noisy velocity profiles, the uncertainty was always less than 3.5% from the exact value. Thus,
the range of estimated uncertainty in the calculation of the wake resonant frequencies is 1%–3.5%
due to a 1%–5% uncertainty in the velocity measurements.
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