
Computers and Fluids 167 (2018) 324–340 

Contents lists available at ScienceDirect 

Computers and Fluids 

journal homepage: www.elsevier.com/locate/compfluid 

Unsteady three-dimensional boundary element method for 

self-propelled bio-inspired locomotion 

K.W. Moored 

Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA 

a r t i c l e i n f o 

Article history: 

Received 16 March 2017 

Revised 12 January 2018 

Accepted 13 March 2018 

Available online 14 March 2018 

Keywords: 

Bio-inspired propulsion 

Boundary element method 

Panel method 

Self-propelled swimming 

Unsteady flows 

Vortex dynamics 

a b s t r a c t 

An unsteady three-dimensional boundary element method is developed to provide fast calculations of bi- 

ological and bio-inspired self-propelled locomotion. The approach uniquely combines an unsteady three- 

dimensional boundary element method, a boundary layer solver and self-propelled equations of motion. 

This novel implementation allows for the self-propelled speed, power, efficiency and economy to be ac- 

curately calculated. A Dirichlet formulation is used with a combination of constant strength source and 

doublet elements to represent a deforming body with a nonlinearly deforming wake. The wake elements 

are desingularized to numerically stabilize the evolution of the wake vorticity. Weak coupling is used 

in solving the equations of motion and in the boundary layer solution. The boundary layer solver mod- 

els both laminar and turbulent behavior along the deforming body to estimate the total skin friction 

drag acting on the body. The results from the method are validated with analytical solutions, compu- 

tations and experiments. Finally, a bio-inspired self-propelled undulatory fin is modeled. The computed 

self-propelled speeds and wake structures agree well with previous experiments. The computations go 

beyond the experiments to gain further insight into the propulsive efficiency for self-propelled undulat- 

ing fins. It is found that the undulating fin produces a time-averaged momentum jet at 76% of the span 

that accelerates fluid in the streamwise direction and in turn generates thrust. Additionally, it is discov- 

ered that high amplitude motions suppress the formation of a bifurcating momentum jet and instead 

form a single core jet. Consequently, this maximizes the amount of streamwise momentum compared to 

the amount of wasted lateral momentum and leads to a propulsive efficiency of 78% during self-propelled 

locomotion. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Boundary element methods (BEMs) are a class of numeri-

cal methods used to solve boundary value problems throughout

physics from electromagnetics [22] and fracture mechanics [36] to

fluid flows at both low [37] and high Reynolds numbers [3] . In

high Reynolds number flows they are classically described as panel

methods and have been well established in the study of aero-

dynamics over several decades [20,24,29] . High Reynolds number

BEMs assume that a fluid flow is incompressible, irrotational (ex-

cept at singular elements) and inviscid, that is, a potential flow.

This leads to simplified forms of the continuity and momentum

equations that govern the fluid flow. Yet, unsteady BEM solutions

are still rich with flow physics [39] and give accurate solutions at

computational times that are several orders of magnitude faster

than Navier–Stokes solvers [35,53] . 
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Unsteady three-dimensional BEM computations have been used

y many researchers to explore both biological and bio-inspired

ropulsion. The flight performance of birds [47] and the swim-

ing performance of fin whales [27] and fish [9] have been exam-

ned to reveal features of high efficiency locomotion. For example,

hu et al. [58] found that constructive or destructive interactions

an occur between the shed vorticity from finlet structures and

he caudal fin of tuna and giant danio. This can lead to enhanced

hrust production or efficiency, respectively, with maximum effi-

iencies of 75% being calculated. More recently, Zhu [56] showed

hat spanwise and chordwise flexibility can enhance both thrust

roduction and efficiency of a flapping wing. The benefit of flexibil-

ty was also found to be highly dependent upon the mass ratio be-

ween the wing and the surrounding fluid environment. Addition-

lly, Zhu and Shoele [57] , Shoele and Zhu [45,46] determined that

he flexibility of ray-finned fish caudal and pectoral fins also im-

roved their efficiency performance and reduced the time-varying

ateral forces acting on the fish. Importantly, none of these previ-

us studies have examined the locomotion of self-propelled swim-

https://doi.org/10.1016/j.compfluid.2018.03.045
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http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2018.03.045&domain=pdf
mailto:kmoored@lehigh.edu
mailto:kwm213@lehigh.edu
https://doi.org/10.1016/j.compfluid.2018.03.045


K.W. Moored / Computers and Fluids 167 (2018) 324–340 325 

Fig. 1. The inertial reference frame fixed to the undisturbed fluid is denoted by ( X, Y, Z ) while the body-fixed reference frame is denoted by ( x, y, z ). The local normal, 

streamwise and cross-stream unit vectors are denoted by ˆ n , ̂  s , and ̂  c , respectively. The body surface, S b , is layered with distributions of doublet elements of strength μ and 

source elements of strength σ . The wake surface, S w , is layered with distributions of doublet elements of strength μw . 
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ers nor the free-flight of flyers, yet these conditions are a critical

eature of bio-inspired locomotion. 

One complicating factor is that an inviscid BEM does not inher-

ntly calculate viscous drag. This gives no opposing force to bal-

nce the thrust production, which leaves out a necessary ingre-

ient for calculating a steady-state self-propelled speed. However,

iscous drag has been estimated in several other BEM studies by

sing a boundary layer momentum-integral approach on stream-

ise strips [28,41,50] . Even with a viscous drag estimate included

hese studies focused on fixed freestream velocity conditions. 

This work describes a novel implementation for computing the

elf-propelled performance of biological and bio-inspired propul-

ors within a BEM framework. There are three main components

hat must be combined to model self-propelled swimming: (1) a

hree-dimensional BEM fluid solver, (2) a boundary layer solver,

nd (3) an equations of motion solver. These components to the

ethod are described in Section 2 . Validation with several an-

lytical, numerical and experimental solutions are presented in

ection 3 . Finally, comparison of the BEM solution with a three-

imensional self-propelled undulating fin experiment is presented

n Section 4 . The free-swimming performance and wake structures

re shown to agree well with the experiments. Additionally, the

elf-propelled performance of cases that extend beyond the pre-

ious experiments are examined to provide novel physical insight

nto the self-propulsion of three-dimensional ray-inspired fins. 

. Computational methods 

.1. Governing equations and boundary conditions 

To model a high Reynolds number fluid flow around a

elf-propelled bio-inspired device or animal an unsteady three-

imensional boundary element method is employed. The flow field

s modeled as an incompressible, irrotational and inviscid flow,

hat is, a potential flow. For the self-propelled problem we define

he problem in an inertial frame of reference that is attached to

he undisturbed fluid (denoted by ( X, Y, Z ) in Fig. 1 ). As such the

elocity field, u , may be defined everywhere as the gradient of a

calar velocity potential, 

 = ∇ �∗, (1) 

here �∗ is defined in the inertial frame of reference and it is

nown as the perturbation potential. The pressure field, P , within

his fluid can be calculated from the unsteady Bernoulli equation,

 (X, Y, Z, t) = −ρ
∂�∗

∂t 

∣∣∣
inertial 

− ρ

(∇ �∗)2 

2 

, (2)
w  
hich is formulated in the inertial frame where the reference pres-

ure P ∞ 

= 0 and the perturbation potential at infinity is zero. Also,

is the fluid density. The time derivative of the perturbation po-

ential for a point on the surface of the body is then calculated by

sing a body-fixed Lagrangian frame (denoted by ( x , y , z ) in Fig. 1 )

9,35,54] , that is, 

 (x, y, z, t) = −ρ
∂�∗

∂t 

∣∣∣
body 

+ ρ( u rel + U 0 ) · ∇ �∗ − ρ

(∇ �∗)2 

2 

. 

(3) 

he translational velocity of a body-fixed frame of reference is U 0 

hile the relative velocity of a point on the surface of the body

o the body-fixed reference frame is u rel . Once the perturbation

otential is known, then the pressure on the body surface may be

ound and the forces can be calculated by integrating the pressure

nd shear stress, τ , acting on the body. 

 ( x, y, z, t ) = 

∫ 
S b 

(
−P ˆ n + τ ˆ s 

)
dS (4) 

The body surface is denoted as S b , the outward normal vec-

or from the body surface is ˆ n and the tangential vector along the

ody surface in the streamwise direction is ˆ s . This inviscid formu-

ation is coupled to a viscous boundary layer solver described in

ection 2.9 , which estimates the shear stress acting on the body

n the streamwise direction produced by the outer potential flow.

ote that the shear stress acting in the cross-stream direction

s not accounted for in the viscous boundary layer solver and is

herefore not present in Eq. (4) . The problem is then reduced to

olving for the perturbation potential throughout the fluid, which

s governed by Laplace’s equation, 

 

2 �∗ = 0 . (5) 

The boundary conditions that must be satisfied for an invis-

id fluid are that there is no fluid flux through the body surface

nd that the flow disturbances caused by the body must decay far

way, 

 · ∇ �∗ = n · ( u rel + U 0 ) on S b (6) 

 �∗
∣∣∣
| x |→∞ 

= 0 on S ∞ 

(7) 

here S ∞ 

is the surface at infinity bounding the fluid and x =
 

x, y, z ] 
T is measured from the body-fixed frame of reference. 

.2. Boundary integral equation 

A general solution to Laplace’s equation for the potential any-

here within the fluid domain, V, can be determined. This is done
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by considering the potential response at a point x = [ x, y, z] T due

to a source located at x 0 = [ x 0 , y 0 , z 0 ] 
T , that is, the infinite space

Green’s function which satisfies the Poisson equation with ho-

mogeneous far-field boundary conditions [19] . The infinite space

Green’s function in three dimensions is then, 

G (x ; x 0 ) = − 1 

4 π r 
, where r = | x − x 0 | , (8)

where r is the distance between the point of interest and the

source point. By invoking Green’s formula twice with respect to

the perturbation potential within the fluid volume, �∗, the inter-

nal perturbation potential within the volume enclosed by S b , �∗
i 
,

and the Green’s function and then adding the results, the follow-

ing boundary integral equations (BIEs) for the internal or external

perturbation potential are derived, 

�∗
i (x ) = 

� 

S b 

[
σ (x 0 ) G (x ; x 0 ) − μ(x 0 ) ˆ n · ∇ G (x ; x 0 ) 

]
dS 0 

−
� 

S w 

μw 

(x 0 ) ˆ n · ∇ G (x ; x 0 ) dS 0 (9)

�∗(x ) = 

� 

S b 

[
σ (x 0 ) G (x ; x 0 ) − μ(x 0 ) ˆ n · ∇ G (x ; x 0 ) 

]
dS 0 

−
� 

S w 

μw 

(x 0 ) ˆ n · ∇ G (x ; x 0 ) dS 0 (10)

where, 

σ ( x 0 ) = ˆ n · ∇ 

(
�∗ − �∗

i 

)
(11)

−μ( x 0 ) = �∗ − �∗
i (12)

−μw 

( x 0 ) = �∗
+ − �∗

− (13)

The surface boundary integral is broken up into an integral over

the body boundary, S b , the wake boundary, S w 

, and the far-field

boundary, S ∞ 

. To formulate the problem in an inertial frame of

reference attached to the undisturbed fluid the contribution to the

potential from the farfield boundary is set to zero, that is �∞ 

= 0 .

The potential jump μ( x 0 ) represents the strength of a dipole or

doublet while the jump in the normal derivative of the potential

σ ( x 0 ) represents the strength of a source. The wake boundary in

the limit as it becomes infinitesimally thin has a continuous nor-

mal derivative of the potential so it does not support a source dis-

tribution. The local potential jump between the top and bottom

surface of the wake is represented by μw 

( x 0 ), where �∗+ is the po-

tential above the wake and �∗− is the potential below the wake.

During the derivation of the boundary integral equation the source

and observation locations switch roles. Note that when this hap-

pens G ( x 0 ; x ) = G (x ; x 0 ) due to the reciprocity of the Green’s func-

tion, however, ∇ G ( x 0 ; x ) = −∇ G (x ; x 0 ) . 

The general solution to the potential flow problem in a fluid

domain V is now reduced to finding a distribution of sources and

doublets on the boundaries S b and S w 

that satisfy the bound-

ary conditions. Since the continuity and thus Laplace’s equation is

time-independent, all of the time-dependency comes from the un-

steady Bernoulli equation and the time-dependent boundary con-

ditions. 

2.3. Enforcement of the boundary conditions 

The elementary solutions of the doublet and source both im-

plicitly satisfy the far-field boundary condition. In this paper, the

no-flux condition on the body is satisfied with an indirect Dirich-

let formulation since it saves computational effort as compared to
he Neumann formulation [24] . For the Dirichlet problem, we set

he internal potential to a constant, which in our case is selected

o be zero 

∗
i = 0 . (14)

To enforce this condition the BIE must be satisfied with the left-

and side equal to zero. This condition also leads to the simplifica-

ion of the source and doublet strength equations, which become 

μ = �∗ (15)

= ∇ �∗ · n = ( u rel + U 0 ) · n . (16)

The perturbation velocity on the surface of the body is simpli-

ed and can be found by a local differentiation of the perturbation

elocity potential, 

 b = ∇ �∗
b = 

∂�∗
∂s 

ˆ s + 

∂�∗
∂c 

ˆ c + 

∂�∗
∂n 

ˆ n = −∂μ

∂s 
ˆ s − ∂μ

∂c 
ˆ c + σ ˆ n ,

(17)

here ˆ c is the tangential vector along the surface in the cross-

tream direction. The pressure over the body can also be found in

erms of the boundary element strengths, 

 b (x, z, t) = ρ
∂μ

∂t 

∣∣∣
body 

+ ρ( u rel + U 0 ) · u b − ρ
u b 

2 

2 

. (18)

Now, the problem is reduced to finding a distribution of sources

nd doublets that solve the BIE when the Dirichlet condition is ap-

lied. 

.4. Numerical solution 

To numerically solve this problem, the boundaries are dis-

retized into constant strength quadrilateral boundary elements

istributed over the body and wake. Then the boundary integral

q. (9) with the Dirichlet condition substituted ( Eq. (14) ) can be

iscretized into the summation over the boundary elements, 

N b 
 

j=1 

B i j σ j + 

N b ∑ 

j=1 

C i j μ j + 

N w ∑ 

k =1 

C w,ik μw,k = 0 (19)

ith, 

 i j = − 1 

4 π

∫ 
ele 

1 

| r ij | d S 0 (20)

 i j = − 1 

4 π

∫ 
ele 

ˆ n · r ij 

| r ij | 3 d S 0 (21)

 w,ik = − 1 

4 π

∫ 
ele 

ˆ n · r ik 
| r ik | 3 d S 0 (22)

nd r ij = x i − x 0 , j , r ik = x i − x 0 , k (23)

here N b is the number of body elements, N w 

is the number of

ake elements, ∫ ele represents the integration over a single bound-

ry element, dS 0 is the differential area of a boundary element, x i 
s the vector denoting the position of the i th collocation point, x 0, j 

s the vector denoting the position of a differential area of the j th

lement and x 0, k is the vector denoting the position of a differ-

ntial area of the k th element. Explicit solutions for the influence

ntegrals over the elements can be found in Katz and Plotkin [24] .

q. (19) must be satisfied at every point within the boundary S b ,
hich in the discretized form are satisfied at N b collocation points.

n the current method, the collocation points were located at the
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enter of the elements but moved into the body by 15% of the dis-

ance of the half-thickness of the body at that point, along the ele-

ent normal vector. The system of equations (19) , however, needs

o be modified by an explicit or implicit Kutta condition to allow

he support of bound circulation. Also, for time-stepping, a wake

hedding procedure must be used to satisfy Kelvin’s condition. 

.5. Wake model 

In this work an explicit Kutta condition is chosen for its sim-

licity. A trailing-edge element is the first element in the set of

ake doublet elements that connects the wake surface to the body

urface at the trailing edge and it is used to enforce the Kutta con-

ition of finite velocity there. This occurs by setting the strength

f the trailing-edge element such that it cancels the vorticity at

he trailing-edge. The strength of the trailing-edge element is then

ound at each time step from the difference in strengths between

he top and bottom body doublet elements that intersect the trail-

ng edge, i.e., 

w,T E = μt,T E − μb,T E . (24) 

The orientation of the trailing-edge element is set to be along a

ine that bisects the angle of the trailing-edge, which is typical for

teady flow conditions [24] . Traditionally, the trailing-edge element

ength is set to 0.3 – 0.5 U 0 �t [54] , where �t is the time step.

ere a length of 0.4 U 0 �t was used since it gave good solution

onvergence while maintaining solution accuracy with the valida-

ion cases. During each time step the trailing-edge element from

he previous time step is ‘shed’ a distance U 0 �t downstream and

t becomes the second wake element. The strength of that wake

lement is the same as the strength of the previous trailing-edge

lement and it remains constant for all subsequent time steps.

he trailing-edge element’s strength can be re-written in terms of

he unknown body element strengths using Eq. (24) and the dis-

retized BIE is then modified, that is, 

N b 
 

j=1 

A i j μ j = −
N b ∑ 

j=1 

B i j σ j −
N w ∑ 

k =2 

C w,ik μw,k (25) 

ith, 

 i j = 

{ 

C i j − C w,i 1 , j = bottom element 
C i j + C w,i 1 , j = top element 
C i j , otherwise 

Now, the body source element strengths and wake element

trengths are known. The linear set of equations may be solved at

ach time step for the body doublet strengths, μj , by an inversion

f matrix A ij . The trailing-edge element strengths are then directly

alculated from the body doublet element strengths. In the current

ethod, the number of unknown body doublet element strengths

s reduced in half by assuming left-right symmetry for the prob-

em and using mirror image elements to represent the left-half of

he body and the wake. 

.6. Nonlinear wake deformation 

The wake elements that are shed at each time step model the

hedding of vorticity from the body into its wake. These elements

annot support loads so they must be free to advect with the local

elocity field. At each time step the induced velocity at the cor-

er points of each wake element, u w 

, is determined. The wake el-

ment corner points are then displaced by �d = u w 

�t . Calculat-

ng the induced velocity at the wake element corner points will

ead to a numerically unstable solution if the doublet elements are

ot desingularized. Here we take advantage of the equivalence of
 constant strength doublet element and a vortex ring around the

dge of that element by using the desingularized Biot-Savart law, 

 (x ) = 

	

4 π

∮ 
s × r 

r 3 + δ3 
ds, (26) 

o calculate the induced velocity field [25] . Here, the circulation

f an element is 	 = −μ and the desingularization parameter, δ,

s a constant and a free-parameter for the method. Provided that

is large enough, the transfer of energy to high wavenumbers is

inimized thereby preventing solution breakdown [58] . The desin-

ularization parameter mimics the effect of viscosity in a real fluid

y giving each vortex ring element a core radius directly related to

. 

.7. Lumped wake elements 

A lumped wake element model is used to restrict the growth of

he problem size as the number of wake elements increases with

very time step. The lumped elements conserve the net circulation

n the wake such that Kelvin’s condition still holds. There is one

umped wake element for every trailing-edge element, with the

railing-edge elements acting as the wake element generators and

he lumped elements acting as wake element absorbers in the far-

eld. The strength of the lumped elements at the n th time step is

he summation of the circulation of the lump elements at the pre-

ious time step and the absorbed elements at the n th time step. 

n 
lump = 	n −1 

lump 
+ 	n 

w,absorbed (27) 

The lumped element corner point locations, p lump , are at the

eighted-average locations of the absorbed elements where the

eights are based on the magnitude of the increment of circula-

ion added to the lumped element compared to the total absorbed

agnitude of circulation, 

 

n 
lump = 

[
	n −1 

mag 

	n 
mag 

]
p 

n −1 
lump 

+ 

[ | 	n 
w,absorbed 

| 
	n 

mag 

]
p 

n 
absorbed (28) 

ith, 

n 
mag = 	n −1 

mag + | 	n 
w,absorbed | 

The lumped elements absorb wake elements such that the most

ecent N l oscillation cycles of wake elements remain to fully-

esolve the near wake. It is found that by measuring the time-

veraged forces on the body, the lumped wake solution is within

% of the fully-resolved solution if N l ≥ 4 for two-dimensional flows

nd N l ≥ 2 for three-dimensional flows. The lumped wake elements

re included in the third term of Eq. (25) . 

.8. Equations of motion 

To be able to calculate the self-propelled body dynamics and

erformance of a bio-inspired device or an animal, the equations

f motion for the body must be solved. For the results in this

ork, we only allow streamwise translation to be unconstrained

hile the other degrees of freedom undergo fully prescribed mo-

ions. To further simplify the implementation of the unconstrained

ody dynamics, a loose or one-way coupling with the fluid solu-

ion is used. That is, the forces from the solution of the BEM fluid

roblem are used as the driving forces in the equations of motion.

he body frame velocity and position is then explicitly determined

ithout sub-iterations between the fluid solver and the body dy-

amics solver. Following [5] , the loose-coupling scheme uses the

 -position of the body frame ( Fig. 1 ) and the body frame velocity

t the current time step, x n 
b 

and U 

n 
0 
, respectively, to explicitly solve

or the position, x n +1 
b 

, and velocity, U 

n +1 
0 

, at the subsequent time

tep, 

 

n +1 
b 

= x n b + 

1 

(
U 

n +1 
0 + U 

n 
0 

)
�t, (29) 
2 
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n +1 
0 = U 

n 
0 + 

F n x 

M 

�t. (30)

Here the streamwise force acting on the body at the current

time step is F n x and the mass of the body is M . 

2.9. Viscous boundary layer solver 

An estimate of skin friction drag is critical to computing self-

propelled body dynamics and performance as this is the main

source of drag for streamlined swimmers. Using the potential outer

flow solution, the boundary layer properties and the skin friction

can be estimated without an assumption on the form of a drag

law acting on a body. To calculate the boundary layer proper-

ties a two-dimensional von Kármán momentum integral analysis

is performed over streamwise strips along the body. Some three-

dimensionality is embedded into the analysis by using an effective

outer flow velocity at each chordwise station, q o , which is the mag-

nitude of the streamwise and cross-stream tangential velocities at

those locations, 

| q o | = 

√ 

q 2 s + q 2 c (31)

This analysis can be used to approximate the boundary layer

displacement thickness and the skin friction drag coefficient over

each boundary element based on the local outer flow alone. The

outer flow is coupled to the boundary layer solution in a loose

coupling, that is, there are no sub-iterations between the outer

flow solution and the shape of the body based on the displace-

ment thickness of the boundary layer. From the outer flow solu-

tion the stagnation point on the body is determined for each strip.

Then based on the stagnation point the surface is divided into an

upper and lower part where each boundary layer begins growing.

First, the method of Thwaites [41] is used to solve for the laminar

boundary layer properties where the momentum thickness, θ , can

be determined by, 

θ2 = 0 . 45 

ν

q 6 o 

∫ x 

x stag 

q 5 o dx. (32)

Here, ν is the kinematic viscosity, x stag is the location of the

stagnation point, x is a position along the upper or lower surface.

Additionally, Thwaites defined the non-dimensional pressure gra-

dient parameter as, 

λ ≡ θ2 

ν

dq o 

dx 
. (33)

This is used to determine where laminar separation occurs,

which happens when λ < −0 . 09 . When λ is limited to only have a

minimum value of −0 . 09 , then this limited dimensionless pressure

gradient parameter can be used to calculate the shear function, S ,

and the skin friction drag coefficient, C f , that is, 

S = (λ + 0 . 09) 0 . 62 (34)

 f = 

2 νS 

q o θ
(35)

where: (36)

 f ≡
τ

1 / 2 ρq 2 o 

(37)

Here τ is the shear stress acting on the body. 

Next Cebeci and Smith’s criterion [52] is used to determine the

location of transition to a turbulent boundary layer. This method

calculates the transition location from an empirical relation based
n the Reynolds numbers, Re θ = q o θ/ν, and Re x = q o x/ν . Transition

ccurs along an airfoil when, 

e θ > 1 . 174 

(
1 + 

22 , 400 

Re x 

)
Re 0 . 46 

x . (38)

Transition typically occurs over a short distance of an airfoil, so

e approximate the transition distance to be zero following [41] . 

Finally, to calculate the skin friction drag from the turbulent

oundary layer with pressure gradients, the Kármán momentum

ntegral relation, 

dθ

dx 
+ ( 2 + H ) 

θ

q o 

dq o 

dx 
= 

C f 

2 

, (39)

long with a skin friction empirical correlation, 

 f ≈
0 . 3 e −1 . 33 H 

( log 10 Re θ ) 
1 . 74+0 . 31 H 

, (40)

re used [52] , where H is the shape factor. In order to close these

elations a third equation must be introduced then the ordinary

ifferential Eq. (39) is solved for the momentum thickness. In the

urrent boundary layer solver formulation the shape factor is ap-

roximated as H ≈ 1.28, which comes from a one-seventh-power

aw velocity profile assumption that is accurate for flat plate tur-

ulent boundary layers with no pressure gradient [24] . It is noted

hat this simple approximation can be improved with more accu-

ate closure such as one based on entrainment relations [8] . 

.10. Method limitations 

The BEM is a fast numerical method that is useful for calcu-

ations that involve approximately inviscid flow physics such as

igh Reynolds number flows over streamlined bodies. Viscosity can

ntroduce two major complications for the BEM: (1) the gener-

tion of skin friction drag and (2) the separation of shear lay-

rs over a body. The former is addressed in the current study

y using a momentum integral analysis to calculate skin friction.

owever, it should be noted that this analysis assumes quasi-two-

imensional boundary layers, which may not be a good approx-

mation for all flows. Even if there are two-dimensional bound-

ry layers the boundary layer solution is highly sensitive to the

odel used to calculate the location of transition to a turbulent

oundary layer. The latter complication of separation over a body

s difficult to simulate with a BEM, although recent work with two-

imensional BEMs show great promise in this regard [35,40] . Mod-

ling separation in three-dimensional flows is more difficult, but

here has been some moderate success in the past [41] . Addition-

lly, conventional BEM implementations solve dense matrices with

omputational times that scale with the number of elements, N , as

(N 

2 ) . This can limit the number of elements that are used to re-

olve a flow, but the scaling of computational time can be reduced

o O(N) or O(N log (N)) with GPU or Fast-Multipole acceleration

54] . 

. Numerical method validation 

To validate the current boundary element method implemen-

ation a series of analytical, numerical and experimental results

re used to analyze the accuracy of the current numerical method.

he validation cases include a two-dimensional steady and un-

teady flow case, a two-dimensional unsteady waving plate case,

 three-dimensional steady and unsteady flow case, a skin friction

rag case, a self-propelled biological propulsion case and a self-

ropelled bio-inspired undulating fin case. 
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Fig. 2. (a) Schematic of a 15% thick van de Vooren airfoil at an angle of attack, α, in a steady flow, U ∞ . The coefficient of pressure over the top and bottom surface of the 

airfoil for three angles of attack: (b) α = 0 0 , (c) α = 5 0 and (d) α = 10 0 . The analytical solution for the top surface is represented by the solid red line while the numerical 

solution is represented by the red triangles. For the bottom surface, the analytical solution is represented by the solid blue line and the numerical solution is represented by 

the blue squares. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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.1. Two-dimensional steady flow 

The steady pressure distribution over a two dimensional van de

ooren airfoil is first examined. The van de Vooren airfoil shape is

hosen since there is an exact analytical solution for its pressure

istribution [49] and since it has a finite-angle trailing edge as op-

osed to the cusped trailing edge of a Joukowski airfoil. Cusped

railing edges are numerically difficult to obtain accurate solu-

ions when using a Dirichlet formulation. A detailed description of

he solution for the pressure distribution around a van de Vooren

haped airfoil can be found in Katz and Plotkin [24] . The analytical

olution uses the van de Vooren conformal mapping to represent

 finite thickness airfoil at an angle of attack in a potential flow

 Fig. 2 (a)). The flow around the airfoil is assumed to be inviscid,

rrotational and incompressible. Additionally, the starting vortex is

ssumed to be infinitely far away making the flow steady as well. 

The current unsteady three-dimensional formulation is used to

olve this two-dimensional steady flow problem by solving for the

ow over a van de Vooren wing with a rectangular planform shape

nd an aspect ratio of 10 0 0. The wing is discretized into 30 chord-

ise boundary elements for both the top and bottom surfaces and

0 spanwise boundary elements for a total of 30 0 0 body elements.

he computation is discretized into 10 timesteps with the elapsed

ime for each step being �t = 100 s. The starting vortex present

n the unsteady numerical solution is 10 0 0 chord lengths down-

tream of the wing since the total elapsed time for the simulations

s �t total = 10 0 0 s, the free-stream velocity is U ∞ 

= 1 m/s and the

hord length of the wing is c = 1 m. This is necessary since the

nalytical solution assumes that the starting vortex is infinitely far

way. 

The coefficient of pressure over the wing is calculated for the

ection nearest the symmetry plane or mid span of the wing where

he flow is nearly two-dimensional. Fig. 2 (a) shows a schematic of

he physical problem where a 15% thick van de Vooren wing is

laced in a steady flow of U ∞ 

and an angle of attack, α. Fig. 2 (b)–

d) compares the exact solutions (solid lines) to the numerical BEM

olutions (square and triangle markers). For α = 0 ◦, the pressure

oefficient is observed to stagnate at the leading edge ( C p = 1 ).

ubsequently, the pressure drops as flow is accelerated symmet-

ically over the top and bottom surfaces until a minimum pres-

n  
ure of C p = −0 . 5 is reached around x/c = 0 . 2 near the maximum

hickness. After the maximum thickness location there is a grad-

al pressure recovery of the flow to the trailing edge. For α > 0 °, a
rominent leading-edge suction peak can be observed that grows

ith increasing α. Importantly, there is excellent agreement be-

ween the analytical and numerical solutions over a range of an-

les of attack from α = 0 – 10 °. 

.2. Two-dimensional unsteady flow 

The unsteady lift produced by a two-dimensional thin air-

oil heaving with small amplitude motion is examined next.

heodorsen [48] provided an analytical solution to this problem

nd a schematic detailing the problem is shown in Fig. 3 (a).

heodorsen’s theory assumes that a thin airfoil is harmonically os-

illating in a potential flow where the flow is inviscid, irrotational,

nd incompressible. The theory also assumes small amplitudes of

otion and that the wake is non-deforming and planar, that is, it

ies along the x -axis. Under these assumptions a theoretical model

or the lift of a harmonically heaving airfoil can be derived and cast

nto a non-dimensional form, 

 l = −2 π2 St | C(k ) | cos (2 πt/T + φ) + π2 St k sin (2 πt/T ) (41) 

here, 

 l = 

L 

1 / 2 ρcU 

2 ∞ 

h = h 0 sin (2 πt/T ) St = 

2 h 0 f 

U ∞ 

k = 

π f c 

U ∞ 

ere, h is the time varying heave, h 0 is the heave amplitude, L is

he instantaneous lift, f is the frequency of motion, T is the period

f motion, | C ( k )| is the magnitude and φ is the phase angle of the

ift deficiency factor, which is a complex number. Also, St and k are

he Strouhal number and reduced frequency, respectively. A 0.1%

hick symmetric NACA airfoil was used to simulate an infinitesi-

ally thin plate. The parameters used were c = 1 m, U ∞ 

= 1 m/s,

 0 /c = 0 . 001 with two cases of St = 0 . 001 , k = π/ 2 and St = 0 . 01 ,

 = 5 π . The three-dimensional formulation is used to solve this

wo-dimensional unsteady problem by solving for the flow over a

ACA wing with a rectangular planform shape and an aspect ra-

io of 10 0 0. The lift coefficient from the numerical solution is then

ormalized by the planform area instead of the chord length as in
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Fig. 3. Comparison of the numerical solution marked by circles (o) with the Theodorsen model denoted by the solid line (–). The parameters of c = 1 , U ∞ = 1 m/s, h/c = 

0 . 001 were used for both graphs while the left graph used St = 0 . 001 and k = π/ 2 and the right graph used St = 0 . 01 and k = 5 π . The period of motion is T = 1 / f . 
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the Theodorsen model. The wing was discretized into 50 chord-

wise boundary elements for both the top and bottom surfaces and

40 spanwise boundary elements for a total of 40 0 0 body elements.

The computation was discretized into 50 time steps per oscilla-

tion cycle for 4 cycles. This gives a time step size of �t = 0 . 04 s

and �t = 0 . 004 s for the k = π/ 2 and k = 5 π cases, respectively.

The force calculations were taken from the fourth oscillation cy-

cle. A non-deforming wake was used to simulate the assumptions

in the Theodorsen model. Fig. 3 shows excellent agreement be-

tween the time-varying lift coefficients of the analytical and nu-

merical solutions. The BEM solution of the time-varying lift coeffi-

cient for a Strouhal number of St = 0 . 01 has a slightly lower peak

lift coefficient of C L = 1 . 505 compared to the Theodorsen model of

c l = 1 . 545 , which is also seen in other studies [54] . 

3.3. Two-dimensional unsteady waving plate flow 

Later in Section 4 , results from a three-dimensional undulat-

ing fin will be presented. In order to validate the accuracy of

the current BEM formulation to properly simulate the deforming

traveling-wave kinematics of an undulating fin, the numerical for-

mulation has been compared to Wu’s theory [55] . This theory an-

alytically solves for the time-averaged thrust, power and efficiency

of a two-dimensional waving plate with an arbitrary amplitude en-

velope. The theory has the typical potential flow assumptions, that

is, an incompressible, irrotational and inviscid flow. It also assumes

that the amplitude of the motion is small, the plate is infinitesi-

mally thin and the wake that is shed is non-deforming and planar.

Under these assumptions and the special case of a constant ampli-

tude envelope ( Fig. 4 (a)), Wu’s theory reduces to the following, 

c t = πA 

2 
0 ( ��∗ + QQ ∗) , (42)

c p = πA 

2 
0 

(
��∗ + QQ ∗ + 

{
F (k ) −

[
F (k ) 2 + G (k ) 2 

]}{
N 

2 
0 + N 

2 
1 

})
, 

(43)

η = c t /c p , c t = 

T 

1 / 2 ρU 

2 c 
, c p = 

P 

1 / 2 ρU 

3 c 
, (44)

where: 

� = ( k − k x ) [ F (k ) J 0 (k x ) + G (k ) J 1 (k x ) ] , �∗ = � + k x J 0 (k x ) , 

Q = ( k − k x ) { [ 1 − F (k ) ] J 1 (k x ) + G (k ) J 0 (k x ) } , Q ∗ = Q + k x J 1 (k x )
 0 = ( k − k x ) J 0 (k x ) , N 1 = ( k − k x ) J 1 ( k x ) , 

nd: 

(x, t) = 

c A 0 

2 

cos ( ωt −2 k x x/c ) , ω =2 π f, k x = 

πc 

λ
, k= 

π f c 

U 

. 

Here k is the reduced frequency, k x is the wavenumber, A 0 is

he non-dimensional wave amplitude, λ is the wavelength, c is the

hord length, f is the oscillation frequency, ρ is the fluid density,

 is the freestream velocity, F ( k ) and G ( k ) are the real and imagi-

ary parts of Theodorsen’s lift deficiency function, respectively, and

 0 ( k x ) and J 1 ( k x ) are Bessel functions of the first kind. 

In order to closely follow the assumptions of the theory a NACA

irfoil with a maximum thickness-to-chord ratio of b/c = 0 . 02 was

sed to simulate a flat plate. A 2% thickness was chosen to be

s thin as possible, but sufficiently thick so that there is a well-

efined leading-edge in order to avoid numerical sensitivity in

he thrust calculation. The parameters used were c = 1 m, U = 1

/s, A 0 = 0 . 03 and 0.05, k = 1 , 2 , and 3, and k x = 0 , 0 . 25 , and 0.5.

he reduced frequency and wavenumber ranges were chosen to

losely match the ranges used for the undulating fin described in

ection 4 . The three-dimensional formulation is used to solve this

wo-dimensional unsteady problem by solving for the flow over a

ACA wing with a rectangular planform shape and an aspect ra-

io of 10 0 0. The thrust and power coefficients from the numeri-

al solution is then normalized by the planform area instead of

he chord length as in the Wu model. The wing was discretized

nto 125 chordwise boundary elements for both the top and bot-

om surfaces and 40 spanwise boundary elements for a total of

0 0 0 0 body elements. The computation was discretized into 60

ime steps per oscillation cycle for 4 cycles. This gives a time step

ize of �t = 0 . 052 , 0 . 026 , and 0.017 s for the k = 1 , 2 , and 3 cases,

espectively. The force calculations were taken from the fourth os-

illation cycle. A non-deforming wake was used to simulate the as-

umptions in Wu’s theory. 

Fig. 4 (b)–(d) presents the propulsive efficiency, thrust coeffi-

ient, and power coefficient from the BEM simulations (markers)

ompared with Wu’s theory (solid lines). The triangle and square

arkers represent the non-dimensional amplitudes of A 0 = 0 . 03

nd 0.05, respectively. Additionally, the wavenumbers k x = 0 , 0 . 25 ,

nd 0.5 are represented with a gradient of colors from black to

hite where black is k x = 0 and white is k x = 0 . 5 . There is ex-

ellent agreement between the efficiency, thrust, and power of

he analytical and numerical solutions. The BEM solution slightly

ver and under predicts the power and efficiency, respectively, of
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Fig. 4. (a) Schematic of a waving plate and its wake. (b) Propulsive efficiency as a function of the reduced frequency. (c) Thrust coefficient as a function of the reduced 

frequency. (d) Power coefficient as a function of the reduced frequency. The solid lines represent the theory while the markers represent the computations. The triangle and 

square markers denote the small and large amplitudes of motion, respectively. The line and marker colors go from black to white to specify the wavenumbers from low to 

high values. 
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he theory. This is likely due to the numerical solutions using a

mall, finite thickness airfoil and small, but not infinitesimal ampli-

udes of motion. The theory and numerical solutions show that the

hrust and power coefficient increase with increasing amplitude,

owever, the efficiency is independent of the amplitude of motion.

n fact, the efficiency is only a function of the reduced frequency

nd wavenumber with higher wavenumbers being more efficient

or a fixed reduced frequency. This is true as long as the thrust re-

ains positive. Although it is not obvious in Fig. 4 (c), the thrust

witches to drag when k < k x , which is evident from the theory.

his comparison validates the accuracy of the current BEM formu-

ation in modeling fully prescribed deforming bodies. 

.4. Three-Dimensional steady flow 

The steady flow over a three-dimensional elliptical wing was

xamined to help validate the three-dimensional aspects of the

urrent formulation. Prandtl’s classic lifting line theory for ellipti-

al wings solves this problem analytically [30] . This solution as-

umes that the wing is immersed in an incompressible, irrota-

ional, and inviscid potential flow and that it can be modeled as

 lifting bound vortex line and a shed vortex sheet that is planar

nd non-deforming. The theory further assumes that the wing is

nfinitesimally thin, at small angles of attack, and that while the

ing is finite, the aspect ratio is high. To simulate the assumptions

f the theory, a teardrop shaped airfoil with a maximum thickness-

o-chord ratio of t/c = 0 . 02 was used to simulate a flat plate. A

% thickness was chosen to be as thin as possible, but sufficiently

hick so that there is a well-defined leading-edge in order to avoid

umerical sensitivity in the induced drag calculation. There were

0 chordwise elements on the top and bottom surfaces as well as

0 spanwise elements for a total of 70 0 0 body elements. The com-

utation used 4 timesteps with �t = 250 s. The freestream veloc-

ty and root chord length are U ∞ 

= 1 m/s and c = 1 m, respectively.

 non-deforming wake was used in the force calculations of this

alidation. Fig. 5 (a) and (b) presents the lift coefficient and the in-
uced drag coefficient, respectively, for four different aspect ratios,

hat is, AR = 5 , 10 , 15 , and 20. The numerical solutions are rep-

esented by the circle markers while the analytical solutions are

epresented by the solid lines. There is good agreement between

he analytical and numerical calculations. Based on the assump-

ions of lifting line theory it is expected that the numerical and

nalytical solutions would deviate for the lower aspect ratios of

R = 5 and 10. An example of the wake structure for a deforming

ake simulation is shown in Fig. 5 (c). In this example the wing

as an aspect ratio of AR = 5 and an angle of attack of α = 15 ◦. The

irfoil thickness-to-chord ratio is t/c = 0 . 2 to more clearly observe

he pressure distribution. There are 70 timesteps with �t = 0 . 07 s

etween them. At t = 4 . 9 s the wake shows a characteristic horse-

hoe vortex system connecting the tip vortices to the starting vor-

ex. On the body the colormap represents the pressure coefficient.

here is stagnation pressure near the leading and trailing-edges

hile there is a pressure minimum on the upper surface near the

eading-edge responsible for leading-edge suction and a majority

f the lift production. 

.5. Three-dimensional unsteady flow 

The unsteady flow problem of the lift on an oscillating three-

imensional wing is examined next. There is a numerical solution

o this problem presented by Katz [23] where he calculated the

ift generated by a heaving three-dimensional rectangular wing at

 negative angle of incidence using a boundary element method.

or this case the rectangular wing has an aspect ratio of AR = 4 ,

n angle of incidence α = −5 ◦ and a heave amplitude of h = 0 . 1 c ,

here c = 1 m is the chord length. The reduced frequency k =
f c/U ∞ 

is varied for three cases k = 0 . 1 , 0 . 3 , and 0.5 where f

s the oscillation frequency, T = 1 / f is the period of motion, and

 ∞ 

= 1 m/s is the free-stream velocity. In the current numerical

mplementation a 2% thick tear-drop shaped airfoil is used to sim-

late an infinitesimally-thin flat plate. A 2% thickness was chosen

o be as thin as possible, but sufficiently thick so that there is a
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Fig. 5. Calculated (a) lift coefficient and (b) induced drag coefficient of steady flow over an elliptical wing at varying angles of attack, α. The numerical solution is denoted 

by the circle markers while the analytical solution is denoted by the solid lines. There are four aspect ratios used in the calculations: AR = 5 , 10 , 15 , and 20. (c) Deforming 

wake solution at t = 4 . 9 s for the AR = 5 , α = 15 ◦ . 

Fig. 6. Wing oscillating under unsteady flow conditions. (a) Lift coefficient calculated with the current numerical method (solid lines) compared to a previous numerical 

calculation (open markers) by Katz [23] for k = 0 . 1 , 0 . 3 , and 0.5. (b) Boundary element wake deformation for k = 0 . 5 and t = 12 . 5 s. 
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well-defined leading-edge in order to avoid numerical sensitivity

in the force calculations. The top and bottom surface of the wing

is discretized into 30 chordwise and 50 spanwise elements for a

total of 30 0 0 body elements. The computation is discretized into

50 timesteps per cycle with �t = [0 . 63 , 0 . 21 , 0 . 125] s for each of

the reduced frequency cases respectively. A total of 4 oscillating

cycles are computed. Fig. 6 (a) shows the lift coefficient as a func-

tion of time over the fourth oscillation cycle. Excellent agreement

can be seen between the current numerical implementation (solid

line) and the numerical solution of [23] (open markers). As the re-

duced frequency is increased the magnitude of the unsteady lift is

seen to grow and there is a negative phase-shift in the lift oscilla-

tion as well. Fig. 6 (b) shows the rollup of the wake elements that

are free to advect with the local velocity field for the case where

k = 0 . 5 and at t = 12 . 5 s. As the airfoil heaves upward, the circula-

tion from the unsteady motion adds to the circulation due to the

angle of incidence and subsequently the tip vortices increase their

strength. When the airfoil heaves downward the circulation due

t

o the incidence angle and the downward motion counteract each

ther to produce weak tip vortices. The net effect is to produce

scillating regions of strong and weak upwash. 

.6. Viscous boundary layer solution 

The viscous drag over a NACA 0012 airfoil was examined next

y using the viscous boundary layer solver coupled with the

uter potential flow solution from the boundary element method.

ig. 7 (a) shows a wing with AR = 4 at an angle of attack α = 3 ◦

nd a Reynolds number of Re = 1 × 10 6 . The boundary elements

re colored with the value for the shear stress acting on each el-

ment. When the wing is examined up close, the shear stress is

een to be high at the minimum pressure location on the wing as

ow is accelerated around the leading-edge. Then the shear stress

ecreases downstream of the minimum pressure point until the

oundary layer transitions to a turbulent boundary layer. At this

ocation, the shear stress is seen to discontinuously increase and

hen slowly decrease toward the trailing edge. 



K.W. Moored / Computers and Fluids 167 (2018) 324–340 333 

Fig. 7. (a) Shear stress on the surface of a NACA 0012 wing in steady flow conditions. Drag coefficient calculated numerically (solid line) compared to experimental data 

(circles) from Abbott and von Doenhoff [1] : (b) Re = 3 × 10 6 , (c) Re = 6 × 10 6 , and (d) Re = 9 × 10 6 . 
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A wing with an AR = 10 0 0 was used to compare the calcu-

ated drag with experimental measurements published in Abbott

nd von Doenhoff [1] . The calculations spanned a range of an-

les of attack between −8 ◦ and 8 ° and three Reynolds numbers of

e = [3 × 10 6 , 6 × 10 6 , 9 × 10 6 ] . The top and bottom surface of the

ing is discretized into 50 chordwise and 50 spanwise elements

or a total of 50 0 0 body elements. The computation is discretized

nto 5 timesteps with �t = 200 s. The wake is non-deforming in

he computations. 

Good agreement can be seen between the calculated drag coef-

cient (solid line) and the experimentally measured values (open

ircles) for low angles of attack less than ± 4 ° where the calcu-

ated values are within 10% of the experimental values. For higher

ngles of attack, the drag coefficient is under-predicted by the nu-

erical solution. In the worst case examined here the calculated

rag is 22% lower than the measured value at α = 8 ◦. This dis-

repancy is likely due to the approximate closure relation used in

he boundary layer solver (see Section 2.9 ), which can be improved

ith entrainment relations [8] . Future work of incorporating a sep-

ration model may further improve the drag calculations. However,

n many fish swimming applications the bodies of swimmers, typ-

cally the main drag contributor, have small amplitudes of motion

nd subsequently small local angles of attack making the current

kin friction solver sufficient for many bio-inspired swimming cal-

ulations. 

.7. Self-propelled biological propulsion 

Recent work has examined in detail the forces and flow struc-

ures exhibited by a numerical manta ray swimmer by using the

ode presented in the current study [16] . In the previous work the

umerical method was not shown to be extensively validated as

s the case and the focus of the current work. From extensive bi-

logical data gathered in aquaria and in the field, the manta ray

wimmer ( Fig. 8 (a)) was modeled to be geometrically similar to

eal mantas and to oscillate its fins with the same kinematic mo-

ions of the rays (see [16] for further details). The swimming mo-

ions of the manta are three-dimensionally complex because of the

exibility of the propulsive pectoral fins. The manta propels itself
y vertically moving its enlarged pectoral fins in a flapping mo-

ion, combined with waves moving through the fins in both the

panwise and chordwise directions. The motion is thus both oscil-

atory, and shape-changing (undulatory), although the undulatory

omponent in the chordwise direction is small (the wavelength of

he undulation is greater than the chord length of the pectoral fin).

Fig. 8 (a) shows the vortex wake produced by a free-swimming

anta ray. The vortices are marked as isosurfaces of the λ2 criteria,

hich distinguishes pressure minima in a plane after discarding

nsteady straining and viscous effects [21] . The manta is seen to

hed a series of interlocked vortex rings with one set originating

rom each pectoral fin. 

The left axis line in Fig. 8 (b) shows the mean swimming speed

ormalized by the body length as a function of oscillation fre-

uency for the numerical manta ray. The right axis line further

ormalizes the mean speed by the oscillation frequency to high-

ight the near linear dependence upon the oscillation frequency.

he small blue points represent biological data of the swimming

peed of real manta rays as a function of their oscillation fre-

uency. Importantly, the present numerical method shows excel-

ent agreement with the biological data indicating that the cur-

ent method can predict the performance of real biological self-

ropelled swimmers. 

. Results 

To investigate the capabilities and limitations of the current

EM implementation in predicting the self-propelled performance

nd wake structure of a bio-inspired device, the undulatory ellipti-

al fin experiments of Moored et al. [31] are modeled. In these ex-

eriments a fin having an elliptical planform with an aspect ratio

R = 1 . 6 and a NACA 0020 cross-section was fabricated. The root

hord length of the fin was c = 0 . 254 m. The fin had four actuat-

ng spars that were embedded into a PVC polymer and were actu-

ted in such a manner as to produce a chordwise traveling wave

see [31] for the experimental details). The ratio of the traveling-

ave wavelength to root chord in the experiments was varied from

/c = 3 − 12 . In the computations, the two cases of λ/c = 6 and 12

ere modeled where λ/c = 6 was previously found to be the most
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Fig. 8. Reproduced from [16] . (a) Vortex wake of a manta ray swimmer identified by isosurfaces of the λ2 criteria. (b) Numerical calculations of the self-propelled speed as 

a function of frequency (solid lines with open markers) compared to biological data (filled markers). The left vertical axis shows the mean speed normalized by the body 

length while the right vertical axis shows the mean speed normalized by the frequency and body length. 

Table 1 

Simulation parameters used in the present study and experimental parameters used 

in [31] . Here, the wavenumber is based on the root chord length as k x = πc r /λ. 

Plate drag Carriage friction A (m) λ/ c k x 

Experiments Yes Yes 0.025 6 0.52 

Numerical case 1 Yes Yes 0.025 6 0.52 

Numerical case 2 No No 0.025 6 0.52 

Numerical case 3 No No 0.025 12 0.26 

Numerical case 4 No No 0.05 6 0.52 
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efficient case [10,32] . The fin had a linearly increasing amplitude

from root to tip in the spanwise direction with a peak-to-peak tip

amplitude of A pp = 0 . 05 m. The detailed kinematics of the fin mo-

tion are, 

x = x f (45)

y = y f cos [ θmax g(t) ] (46)

z = y f sin [ θmax g(t) ] (47)

where: 

g(t) = sin 

(
ωt − k ∗x x f /s 

)
, θmax = sin 

−1 

(
A pp 

2 s 

)
, ω = 2 π f, 

k ∗x = 

2 πs 

λ
. (48)

The x and y positions of neutral plane of the fin in a flat posi-

tion are x f and y f , respectively. The oscillation frequency is f , the

span length is s , the maximum rolling angle of the fin is θmax ,

and the wavenumber based on the span length is k ∗x . The computa-

tional model of the undulatory fin can be seen in Fig. 10 (a). The ex-

perimental fin was placed into a free-swimming water tank facility

where it was attached to a carriage that was supported by low-

friction carts on a rail system (Article No.: ME-9454; PASCO scien-

tific). This setup allowed for unconstrained motion in the stream-

wise direction. The root of the fin was located at the free-surface

where an acrylic plate was placed to dampen free-surface waves

generated by the unsteady undulations of the fin. 

To properly model this experiment several details must be con-

sidered. The free-surface and acrylic plate introduce a no-flux

boundary condition that is modeled by using a mirror image fin

connected at the root section. At the same time, the free-surface

can produce waves from the streamwise motion of the plate, how-

ever, the wave drag from this motion is neglected in the compu-

tations. The acrylic plate though has another drag source, that is,
kin friction drag from the production of its boundary layer. In

he computations, the plate geometry is modeled such that the

oundary layer solver calculates the skin friction drag from the

late as well as the submerged body. The forces acting on the

irror image body and mirror image plate are neglected in the

ree-swimming calculations. The low-friction carts actually have a

nite rolling friction coefficient, which has been measured to be

r = 0 . 0065 ± 0 . 0002 [34] . The friction coefficient was found to be

elatively independent of the speed, that is, it changed by less than

0% for speeds between 0 and 2 m/s. This speed range covers the

wimming speeds attained during the experiment, so the friction

orce resisting the motion, F f r = μr W, where W is the net weight

f carriage fin system. This rolling frictional force was included in

ome of the computations. The PVC polymer used to fabricate the

n is less dense than water and produces a buoyant force that

ounteracts the dry weight of the carriage and fin. The net weight

f the whole system when the fin is submerged is estimated at

 ≈ 15 N. 

.1. Self-propelled performance metrics 

There are several self-propelled performance metrics that are

eported in this study. Time-averaged quantities are marked by an

verbar and are always averaged over the last cycle of the compu-

ations. The time-averaged thrust coefficient, net thrust coefficient

nd power coefficient are defined as 

 T = 

T 

1 / 2 ρU 

2 
S 
, C T,net = 

T net 

1 / 2 ρU 

2 
S 
, C P = 

P 

1 / 2 ρU 

3 
S 
, (49)

espectively. The time-averaged swimming speed is U , the time-

veraged power input to the fluid is P , the planform area is S and

he fluid density is ρ . The time-averaged thrust force, T , is the

treamwise component of the force from pressure forces alone and

he force is considered positive when it is acting on the body in

he −x direction. The time-averaged net thrust force, T net , is the

ifference between the thrust force and the total drag force, which

ncludes all of the sources of drag that are present in a given com-

utation, that is, the skin friction drag over the fin and the wave-

uppression plate, and the rolling friction drag of the rail-carriage

ystem. 

In addition, the Strouhal number, reduced frequency, non-

imensional speed, propulsive efficiency and the swimming econ-

my are reported as 

t = 

f A 

U 

, k = 

π f c 

U 

, U 

∗ = 

U 

f c 
, η = 

T U 

P 
, ξ = 

U 

P 
, 

(50)
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Fig. 9. Right axes: convergence of the time-averaged swimming speed and the swimming economy for varying numbers of the body elements and time steps per oscillation 

cycle. Left axes: percent change (% �) in the swimming speed or economy when the number of body elements or time steps per cycle are doubled. For (a) and (b), the 

number of time steps per oscillation cycle is fixed at N step = 50 . For (c) and (d), the number of body elements is fixed at N = 800 . 
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espectively, where the frequency of oscillation is f , the tip ampli-

ude is A = A pp / 2 and T U is the time-averaged useful power out-

ut. The non-dimensional speed, U 

∗, represents the distance trav-

led in chord lengths over a period of oscillation and is effectively

he inverse of the reduced frequency. The propulsive efficiency is

he ratio of useful power output to power input, while the swim-

ing economy represents the distance that can be traveled with a

nit of energy. Both energetic swimming metrics are reported since

he economy is more readily measured in self-propelled swimming

xperiments, while the efficiency is non-dimensional and easily

omparable between different systems. 

.2. Discretization independence 

Convergence of the time-averaged swimming speed, U , and the

wimming economy, ξ , was tracked as the number of body ele-

ents and the number of time steps per oscillation cycle were

aried ( Fig. 9 ). The convergence computations are executed for 3

scillation cycles. On the right axes in Fig. 9 , good convergence of

he swimming speed and swimming economy are shown for both

ariations in the number of body elements and the number of time

teps per oscillation cycle. The left axes show the percent change

% �) in either the swimming speed or economy when the number

f body elements or time steps per cycle are doubled. It is deter-

ined that the free-swimming solution changes by O(1%) when

 = 3200 1 is doubled and by O(2%) when N step = 80 is doubled.

hese values for N and N step are fixed for all of the following re-

ults. 
1 More specifically, there are 40 chordwise elements for the top surface, 40 

hordwise elements for the bottom surface and 40 spanwise elements for the com- 

ined body of the fin and its image 

d  

c  

t  

t  

v  
.3. Pectoral fin locomotion 

The self-propelled performance of an undulating elliptical fin

s examined in detail to offer a direct comparison of the self-

ropelled three-dimensional unsteady boundary element imple-

entation formulated in this study with previously published ex-

erimental data. Additionally, the self-propelled performance of

ther cases that extend beyond the previous experiments are ex-

mined to provide novel physical insight into the self-propulsion

f three-dimensional bio-inspired ray-like fins. 

Rays have dorso-ventrally flattened bodies with enlarged pec-

oral fins that they use to propel themselves through the water

12,17,18,26] . They employ a kinematic motion that is a combina-

ion of large-amplitude flapping with spanwise curvature and a

hordwise traveling-wave motion [33] . Based on their kinematics,

ays have been classified along an undulation-oscillation contin-

um characterized by their non-dimensional wavelength of mo-

ion [44] . Undulatory motion defined as having greater than one

ave present on a fin [42] was termed ‘rajiform’ [7] while ‘mobu-

iform’ or oscillatory motions have less than half of a wave present

n a fin [51] . In recent years not only have biologists studied the

orm and function of ray-like motions, but also engineers have ex-

mined rays as an ideal platform to mimic in the design of bio-

nspired underwater vehicles [43] . For the next-generation of these

ehicles, improvements in speed and efficiency are highly desired

nd the chordwise traveling-wave component of the fin motions

as been identified as a key feature to attain high-efficiency swim-

ing [31] . In fact, the chordwise traveling motion of rays has been

irectly examined by a bio-robotic fin at a fixed-velocity in a flow

hannel with direct force measurements and dye flow visualiza-

ion to track shed vortex structures [10] . In these experiments,

he Strouhal number and the non-dimensional wavelength were

aried leading to a peak efficiency of 55%. However, the experi-
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Fig. 10. Numerical case 1 ( Table 1 ) where f = 2 Hz and t = 1 . 5 s when the initial velocity condition is the steady-state swimming speed. (a) Boundary element discretization 

of the wake. The fin surface colormap represents the pressure coefficient. (b) Vortex wake identified by isosurfaces of the λ2 criteria. The fin surface colormap represents the 

skin friction coefficient. (c) and (d) Isosurfaces of the time-averaged x -component of the velocity. The pink, red and purple isosurfaces are 5%, 7% and 10% above the mean 

swimming speed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ments were not self-propelled and only one non-dimensional am-

plitude of motion was considered, which was a factor of 2–3 times

smaller than that observed in the freshwater stingray [4] . Dewey

et al. [11] further quantified the three-dimensional wake structures

of an experimental undulating fin and determined that for ineffi-

cient motions bifurcating momentum jets formed in the near wake

of the fin. More recently, three-dimensional fin kinematics data of

the freshwater stingray have been acquired [4] and used in con-

junction with self-propelled CFD simulations to determine that a

leading-edge vortex forms and improves the swimming efficiency

of stingrays [6] . 

Considering this work, the current study uses the newly devel-

oped boundary element formulation to extend this previous work

in several directions. Instead of using the exact geometry and kine-

matics of rays as in the self-propelled CFD work of [6] , here an

idealized undulating elliptical fin will be used to systematically

probe the effect of independent wavenumber and amplitude varia-

tions on self-propelled swimming. The model follows the geometry

and kinematics of [10,11,31] , however, these studies are extended

by considering the effect of amplitude variation on an undulating

fin in a self-propelled swimming state. Finally, under these condi-

tions the performance of the fin is connected to the momentum

jet formation in its near wake. 

4.4. Wake structure and self-propelled performance 

The simulation parameters used for the four numerical cases

and the previous experiment data [31] are summarized in Table 1 .

The first numerical case models the exact experimental conditions

and parameters used in [31] . Numerical cases 2–4 examine differ-

ent parameter combinations of amplitude, A , and nondimensional

wavelength, λ/ c , under no plate drag and no carriage friction con-

ditions. Plate drag and carriage friction were necessary conditions

imposed by the experimental apparatus, however, these conditions

are not present in a self-propelled bio-inspired device. By elim-

inating these conditions in the numerical simulations, the actual

performance of a self-propelled fin can be directly examined. The

fin simulations were seeded with initial speeds close to the exper-

imental values and a simulation was run for six cycles. Then to

quickly converge to a solution, the steady-state mean speed was

estimated and another six cycles were run with the estimate as
he initial condition. These guess-and-check iterations limited long

imulations, which was important since the mass of the experi-

ent was large and the fin’s streamwise accelerations were quite

ow, otherwise leading to excessively long simulations. All of the

elf-propelled simulations have reached a steady-state condition,

hat is, the number of oscillation cycles was increased until the

ycle-averaged net thrust coefficient was C T,net = O(10 −4 ) . 

Fig. 10 presents the wake structure of the ellipitcal bio-inspired

n for numerical case 1 (see Table 1 ) with f = 2 Hz. Fig. 10 (a)

hows the wake doublet elements rolling up into coherent vortex

tructures, which is made evident with the λ2 isosurfaces high-

ighted in Fig. 10 b. It is clear that the elliptical fin is shedding a

eries of interlocked vortex rings through which fluid is acceler-

ted. In fact, the time-average of the streamwise velocity is shown

or isosurfaces of 5%, 7% and 10% above the free-stream velocity for

he pink, red and purple surfaces, respectively ( Fig. 10 (c) and (d)).

ote that the isosurface calculation begins at nearly the half-chord

f the fin. The time-averaged jet of fluid accelerated by the vortex

ings is observed to have its peak momentum flux at 76% of the

pan ( Fig. 10 (d)). This is in good agreement with previous experi-

ents [11] that found the peak momentum flux to occur at about

0% of the span. The surface of the fin is colored with the pressure

oefficient in Fig. 10 (a), which is defined as C p = P/ (1 / 2 ρU 

2 
). The

ressure distribution shows a clear leading-edge suction signature

ccurring near the fin tip that is coincident with the region of the

ighest momentum flux generated by the fin. The shear stress dis-

ribution computed from the boundary layer solver is shown on

he surface of the fin in Fig. 10 (b) and is nondimensionalized as a

kin friction coefficient, that is C f = τ/ (1 / 2 ρU 

2 
) . High shear stress

an be seen near the leading edge where the flow is accelerated,

ut the boundary layer remains laminar. The shear stress rises to

igh values near the quarter-chord of the fin due to a transition

n the boundary layer to turbulence. This indicates that a majority

f the skin friction acting on the fin is coming from a turbulent

oundary layer. All of the other cases show the same salient fea-

ures of the wake as well as the pressure and shear stress distri-

utions. 

Although all of the cases produce time-averaged momentum

ets, the structure of the momentum jets are quite different. Fig. 11

resents the time-averaged streamwise and cross-stream velocities
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Fig. 11. Time-averaged x -velocity (left) and z -velocity (right) in an x − z plane at 76% of the span for the four numerical cases. 
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n the x − z plane that cuts through the core of momentum jets at

6% of the span for all four numerical cases. The mean streamwise

elocity for cases 1–3 show bifurcating jets where the jet splits

nto two branches. Bifurcating jets have been implicated in poor

fficiency performance [11,13] . In fact, the time-averaged lateral ve-

ocity ( Fig. 11 right) highlights that there is excess lateral momen-

um such that some of the momentum added to the fluid does

ot perform useful work. In contrast, case 4 shows a single, non-

ifurcating momentum jet and minute amounts of excess lateral

omentum. By considering the magnitude of the lateral momen-

um relative to the streamwise momentum, the efficiency of each

ase could be predicted to be ordered from the least efficient to

he most efficient as case 1, 3, 2 and 4, respectively. Indeed, as can

e observed later in Fig. 13 this is exactly the ordering of the cases

ased on their efficiency. It can be further observed that as the

avenumber on the fin decreases the jet bifurcation moves closer

o the trailing edge as seen in [11] . Additionally, a key insight is

hat case 4 has twice the amplitude of motion of the other cases,

hich consequently leads to the suppression of the jet bifurcation

nd in turn high efficiency locomotion. 

Fig. 12 (a) presents the self-propelled swimming speed of the el-

iptical fin for a range of frequencies of f = 1 . 2 − 2 Hz. The exper-

mental data [31] shows that the swimming speed of the undu-

ating fin increases nearly linearly with an increasing frequency of

otion. Similarly, the numerical simulations show a nearly linearly

ncreasing swimming speed with increasing frequency, however,

ith a slightly lower slope. Regardless of this discrepancy, there is

till excellent agreement between the numerical simulations and

he experimental data further validating the self-propelled numer-
cal implementation presented in this study. It is expected that vis-

ous effects in the experiments such as small regions of separated

ow near the trailing-edge, the three-dimensional boundary layers,

r boundary layer thinning from the unsteady motions [14,15] can

ccount for the differences among these data. As expected, when

he experimental conditions of plate drag and carriage friction are

liminated (cases 2–4) the undulating fin is observed to have a

igher self-propelled swimming speed than case 1 at the same

requency of motion ( Fig. 12 (a)). When the nondimensional wave-

ength of motion is doubled from λ/c = 6 to λ/c = 12 there is a

light increase in the slope of the swimming speed curve, but oth-

rwise a negligible effect on the swimming speed. However, an-

ther key insight is that when the amplitude of motion is doubled

rom A = 0 . 025 m to A = 0 . 05 m, the swimming speed is nearly

oubled for all frequencies examined (percent increase of 93–97%).

Fig. 12 (b) presents the Strouhal number as a function of the

wimming speed. Again, the numerical data (case 1) is observed

o show excellent agreement with the experimentally measured

trouhal number and both curves show decreasing St with an

ncrease in the frequency of motion and in turn the swimming

peed. Cases 2–4 exhibit a nearly constant St , however, they show a

lightly decreasing trend with an increase in the swimming speed.

n fact for cases 2–4 the swimming speed does indeed increase

roportionally with the frequency leading to a nearly constant St .

n contrast, the additional friction from the carriage and additional

rag from the plate modify the swimming speed to be a nonlin-

ar function of the frequency that is not obvious in Fig. 12 (a), but

s made evident by the nonlinear relationship between the St and

he swimming speed. 
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Fig. 12. (a) Self-propelled swimming speed as a function of frequency. (b) Strouhal number as a function of self-propelled swimming speed. All subsequent experimental 

and numerical cases marker and line styles follow the legend in (a). 

Fig. 13. (a) Swimming economy as a function of the self-propelled swimming speed. (b) Propulsive efficiency as a function of the nondimensional swimming speed. 
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Fig. 13 a presents the swimming economy as a function of the

swimming speed. For all cases, as the swimming speed increases

there is an inverse relationship with the economy, that is, when

swimming faster the distance that can be travelled for a unit of en-

ergy is smaller. This trend has been observed in the self-propelled

swimming of manta rays [16] and in the self-propelled swimming

of heaving flexible panels [38] . However, this trend contradicts the

measurements of swimming economy observed in [31] and indi-

cates that there was likely an error in those power measurements

given the excellent agreement in swimming speed between the

numerics and experiments. Intuitively, one would expect the econ-

omy to, in general, have an inverse trend with swimming speed as

observed in the current study since the reverse would imply that

it would take little energy to swim a given distance for the fastest

swimming speeds, which seems unlikely. To support this intuition,

when the economy relationship is examined, 

ξ = 

U 

P 
= 

1 

1 / 2 ρU 

2 
S 

(
1 

C P 

)
, (51)

it can be observed that the economy has an inverse relationship

with the swimming speed and the power coefficient, which is

also a function of the swimming speed. Furthermore, experimen-

tal power measurements have been reported in [10] for the same

undulating fin as in [31] , except that the fin was held in a water

channel at a fixed velocity instead of operating in a self-propelled

swimming state. If these power measurements are comparable,

then [10] indicates a 5 fold drop in power when the Strouhal

number drops from St = 0 . 225 to St = 0 . 1 , precisely the St range

observed in [31] that in turn corresponds to the speed range of
 . 134 ≤ U ≤ 0 . 503 . Now, the highest speed, U H , in [31] relates to

he lowest speed, U L , as U H = 3 . 75 U L and the subsequent power

oefficients are related by C P,H = 1 / 5 C P,L . By forming a ratio of the

conomy at the highest swimming speed with the economy at the

owest swimming speed the trend in the economy can be esti-

ated as, 

 = 

ξH 

ξL 

= 

U 

2 

L C P,L 

U 

2 

H C P,H 

= 

5 

3 . 75 

2 
= 0 . 3556 (52)

When the ratio R < 1 the economy is estimated as having an

nverse trend with swimming speed and when the R > 1 vice

ersa . The ratio based on the previous power measurements from

10] is R = 0 . 3556 estimating that the economy should drop by

early one-third in the experiments over the tested speed range.

his estimate further supports the findings of the current numeri-

al study and the idea that the previous experiments have an error

n their power measurements. In fact, the ratio of economies using

he numerical data (case 1) from Fig. 13 is R = 0 . 4725 , which is

n good agreement with the expected ratio of economies from the

xperiments. 

Fig. 13 (b) presents the propulsive efficiency as a function of

he non-dimensional swimming speed. Even though the economy

s low for the high swimming speeds and for the high ampli-

ude case (case 4), the efficiency is the highest for these cases

ith a peak efficiency for case 4 of η ≈ 78%. A key insight is that

igh propulsive efficiency occurs when the amplitude of motion is

oubled, which, during self-propelled swimming, leads to nearly

wice the swimming speed and half of the reduced frequency

 k ≡π / U 

∗). Wu’s waving plate theory [55] would predict that for
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Fig. 14. (a) Thrust coefficient as a function of the nondimensional swimming speed. (b) Power coefficient as a function of the nondimensional swimming speed. 
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 fixed wavenumber the propulsive efficiency should increase as

he reduced frequency decreases as observed in the present cal-

ulations. Also, the peak efficiency for case 1 is η ≈ 50%, which is

n good agreement with the experimentally measured peak effi-

iency being η ≈ 55% [10] . Interestingly, if the experiments were

ully self-propelled without the additional plate drag and carriage

riction the numerical results indicate that a peak efficiency of

≈ 61% could be attained. Now, it is also clear that even though

he higher nondimensional wavelength ( λ/c = 12 , case 3) did not

roduce significantly different swimming speeds than case 2, it did

educe the propulsive efficiency to a peak value of η ≈ 54%. It can

e noted that since the swimming speeds are effectively the same,

o two are the reduced frequencies and Wu’s waving plate theory

55] would predict a reduction in efficiency with a decrease in the

avenumber. This is precisely what is observed in Fig. 13 (b). 

The trends in propulsive efficiency can be further decom-

osed by examining the thrust ( Fig. 14 (a)) and power coefficients

 Fig. 14 b) since η = C T /C P . It is observed that the thrust coefficient

or λ/c = 12 (case 3) is actually higher than λ/c = 6 (case 2) in-

icating that the swimming speed is not linearly proportional to

hanges in C T , but instead is proportional to the frequency and

mplitude of motion as proposed in [2] . It is clear though that

he power coefficient rise is greater than the thrust coefficient rise

eading to a lower efficiency. Additionally, the higher amplitude

otion (case 4) is observed to slightly reduce the thrust coefficient

s compared to case 2. At the same time the power is also signif-

cantly reduced leading to higher efficiency. Case 2 shows both a

igher thrust coefficient and a lower power coefficient than case 1

eading to an increase the propulsive efficiency. 

. Conclusions 

A novel boundary element method implementation is de-

eloped and presented to examine problems of biological and

io-inspired self-propelled locomotion. The formulation uniquely

ombines an unsteady three-dimensional boundary element fluid

olver, a boundary layer solver and an equation of motion solver.

he method is validated through a series of analytical, numer-

cal and experimental data that include comparisons with two-

imensional and three-dimensional steady flow solutions, two-

imensional and three-dimensional unsteady flow solutions, vis-

ous drag measurements, self-propelled biological field measure-

ents and self-propelled bio-inspired laboratory measurements.

he method is then employed to extend previous experimental re-

ults on a ray-inspired model of a self-propelled undulating fin.

ased on the key insights of this study, the following frame-

ork can be concluded. For undulating fins a decrease in the
avenumber on the fin will have no significant effect on the swim-

ing speed, but instead increase the power consumption and de-

reases the propulsive efficiency and vice versa . Additionally, as the

avenumber is decreased the bifurcation point of the momentum

et in the near wake will move closer to the fin also indicating

ecreased efficiency performance. In contrast, an increase in the

mplitude of motion will proportionally increase the swimming

peed, and consequently lower the reduced frequency. In accor-

ance with Wu’s waving plate theory [55] , this will improve the

ropulsive efficiency. At the same time, the bifurcating momen-

um jet in the wake will be suppressed and a single core jet will

e formed. This indicates improved efficiency performance as the

asted lateral momentum in the wake is minimized. 
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