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Unsteady propulsion near a solid boundary
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Experimental and computational results are presented on an aerofoil undergoing pitch
oscillations in ground effect, that is, close to a solid boundary. The time-averaged
thrust is found to increase monotonically as the mean position of the aerofoil
approaches the boundary while the propulsive efficiency stays relatively constant,
showing that ground effect can enhance thrust at little extra cost for a pitching
aerofoil. Vortices shed into the wake form pairs rather than vortex streets, so that
in the mean a momentum jet is formed that angles away from the boundary. The
time-averaged lift production is found to have two distinct regimes. When the pitching
aerofoil is between 0.4 and 1 chord lengths from the ground, the lift force pulls the
aerofoil towards the ground. In contrast, for wall proximities between 0.25 and 0.4
chord lengths, the lift force pushes the aerofoil away from the ground. Between these
two regimes there is a stable equilibrium point where the time-averaged lift is zero
and thrust is enhanced by approximately 40 %.
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1. Introduction
Airfoils have long been known to achieve higher lift-to-drag ratios when operating

near the ground, a phenomenon commonly called ‘ground effect’. In steady flight,
ground effect has been extensively studied (see, for example, Coulliette & Plotkin
1996), and it has inspired the design of a number of aircraft (Rozhdestvensky 2006).
Many animals are also known to use ground effect to improve their cost of transport
and increase gliding distance, including herring gulls (Baudinette & Schmidt-Nielsen
1974), brown pelicans (Hainsworth 1988), black skimmers (Withers & Timko 1977),
mandarin fish (Blake 1979), steelhead trout (Webb 1993), and flying fish (Park & Choi
2010). However, our understanding of ground effect is largely restricted to steady flow
over fixed lifting surfaces, and the unsteady ground effects experienced by swimmers
and flyers that oscillate their wings or fins have not been widely studied.

The first analytical approach to unsteady ground effect was taken by Tanida (2001),
who applied the linearized Euler equations to a fluttering plate in a wind tunnel.
There were two impermeable boundaries, one above and one below the plate, and
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this enforced symmetry does not represent the usual ground effect where only one
wall is present. The study by Iosilevskii (2008) used asymptotics to predict the lift
and drag on oscillating wings in weak ground effect, that is, where the ground
proximity d is much greater than the chord length c, and the more interesting case
where d6 c was not considered.

While several numerical studies of unsteady ground effect exist, only two have
considered streamwise forces: Moryossef & Levy (2004) and Molina & Zheng
(2011), who both examined an inverted Formula One car front wing undergoing
heave oscillations. These studies focused on a velocity regime where the streamwise
forces were mostly due to viscous drag, although the time-averaged drag was found
to decrease near the ground and even switch to thrust at sufficiently high heaving
frequencies.

Empirical evidence for unsteady ground effect is limited to a single recent study,
that of Blevins & Lauder (2013), who measured the self-propelled swimming speed of
a flexible fin modelled after a freshwater stingray. The fin underwent heave and pitch
oscillations at the leading edge and was observed at two distances from the ground:
d≈ 0.2c, and d≈ c. Over most conditions considered, no propulsive advantages were
reported for near-ground swimming. However, some trends may have been due to
flexibility, three-dimensionality, heave versus pitch considerations, or a combination
thereof. The current study examines a simpler propulsor over a wider range of
ground distances, the goal being to isolate the effect of ground proximity on unsteady
propulsion.

An improved understanding of unsteady ground effect would help quantify the
performance of swimmers and flyers in nature, and aid the design of unsteady
propulsors, that is, thrust-producing devices that make use of unsteady hydrodynamics.
Dual-foil propulsors, for example, consist of two aerofoils pitching in close proximity
to each other, 180◦ out of phase, and Liu et al. (2010) have recently demonstrated
that such propulsors show high levels of thrust and efficiency over a wide range of
operation.

Motivated by such observations, we present new experiments and computations on
the ground effect for a rigid aerofoil pitching near a planar boundary. We consider
two main questions: to what extent do the advantages of steady ground effect apply
to unsteady propulsors, and how is the wake behind such propulsors affected by the
presence of the boundary?

2. Problem formulation
2.1. Experimental methods

Following Godoy-Diana et al. (2009), we use a foil with a semicircular leading
edge that tapers along straight lines to its trailing edge (see figure 1). This shape
was chosen for its symmetry and geometric simplicity. The foil was constructed of
anodized aluminium with chord length c = 79.35 mm and span s = 280 mm. The
maximum thickness of the foil, b, was set such that b/c= 0.1.

The foil is actuated so that its pitch angle follows θ = θ0 sin(2πf t), where θ0 is
the maximum pitch angle, f is the oscillation frequency, and t is time. The ground
proximity d is taken as the distance between the ground and the leading edge. The
pitch oscillations dictate the peak-to-peak amplitude of flapping, a = 2c sin θ0. We
define the non-dimensional amplitude of oscillation A∗ ≡ a/c, the non-dimensional
ground distance D∗ ≡ d/c, and the Strouhal number St ≡ f a/u∞, where u∞ is the
free-stream flow speed.
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FIGURE 1. Length-scale definitions near the solid boundary. The relevant dimensions are
chord length c, thickness b, pitching amplitude a, and ground proximity d. The origin is
placed on the ground at the trailing edge, with y being the ‘lateral’ direction and x the
‘streamwise’ direction.
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FIGURE 2. Parameters considered in the existing unsteady ground effect literature:
Moryossef & Levy (2004) (M), Molina & Zheng (2011) (◦), and Blevins & Lauder (2013)
(�), as well as those considered in this study (•).

The foil was pitched about its leading edge using a servo motor (Hitec HS-7945TH),
and its position was measured using an optical encoder (US Digital S1). In all
experiments, the oscillation amplitude and the frequency varied from their input
values by less than 0.5 % and 0.1 %, respectively. Data were taken at six flapping
frequencies, equally spaced between 0.5 and 1.25 Hz, and three flapping amplitudes:
15, 20 and 25 mm (A∗= 0.19, 0.25 and 0.31, respectively). Each case was considered
at eight ground proximities, seven ranging evenly from D∗= 0.25 to 1.01, and one at
D∗ = 2.90, which will be denoted D∗� 1. These D∗ values were chosen to include
those observed by Blevins & Lauder (2012), who quantified the kinematics of live
freshwater stingrays swimming near a substrate. Figure 2 illustrates where the current
study fits in with previous work in terms of Strouhal number and D∗, and we see
that the present investigation is the first to consider high net thrust conditions where
0.25< St< 0.45.

The experiments were conducted in a closed-loop, free-surface water channel with a
test section measuring 0.46 m wide, 0.29 m deep, and 0.244 m long. The foil spanned
the entire depth of the water channel to minimize three-dimensional effects. The free-
stream velocity was set to 0.06 m s−1, giving a chord-based Reynolds number of
4700± 3%, chosen to facilitate comparison with previous measurements in this facility
and to be within the range experienced by the blue gill sunfish (see Drucker & Lauder
2001). The uncertainty reported is the standard deviation across the 2000 images used
to calculate the free-stream velocity.

To measure the thrust produced, the actuation assembly was mounted on two air
bushings (New Way Air Bearings S301901) which slid parallel to the free-stream
flow direction (see figure 3). This arrangement allowed the assembly to press freely
against a lever arm, which in turn pressed against a single point load cell (Omega
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FIGURE 3. (Colour online) Experimental setup. The inset depicts the actuation mechanism.

LCAE-600). Further details are given by Buchholz & Smits (2008). The reaction
torque ξ on the motor was measured using a torque sensor (Omega TQ-202) and
the angular velocity θ̇ was found using the optical encoder. The power input to the
system is then given by f

∫ t0+1/f
t0

ξ θ̇ dt, where t0 is a reference time after which
equilibrium swimming is assumed. For all cases considered, t0 was set equal to 10
flapping cycles. To determine the power required to overcome the mechanical friction
in the system, power data acquired with the foil removed were subtracted from all
other power measurements. The average thrust T̄ and power input to the fluid P̄ were
determined by integrating over 300 oscillation periods. The experimental variance
was calculated for each condition by comparing 24 independent preliminary trials,
and was found to be less than 7 % on T̄ , and 15 % on P̄.

The force sensor measures the net streamwise force F̄x, equal to the thrust produced
by the foil minus the drag imposed by the flow. We will use the term ‘thrust’ (T)
in place of ‘net force in the negative x direction’ (−Fx), but in the strictest sense
we always mean the latter. Similarly, the ‘power’ reported (P) is more precisely the
‘power input to the fluid’.

To study the wake behaviour, particle image velocimetry (PIV) data were acquired
for each case using a Nd:YAG laser (Litron Nano L 50-50) and a hybrid CCD/CMOS
camera (LaVision, Imager sCMOS). The flow was seeded with neutrally buoyant
hollow ceramic spheres with an average diameter of 10 µm. At the beginning of
each oscillation period, a digital pulse was sent to a programmable timing unit
(PTU) that triggered the laser and camera system. For phase-averaged data, the PTU
discretized the oscillation period into eight phases which were averaged over 30
oscillation periods. For time-averaged data, 20 phases were used over 12 oscillation
periods. Each data set therefore consisted of 240 image pairs. The velocity field
was calculated using Davis 8.1.3, the spatial cross-correlation algorithm developed
by LaVision Inc. (Stanislas et al. 2005). In total, four passes with 50 % overlap
were conducted on the 2560 × 2160 pixel images: one with 128 × 128 pixel
windows, one with 64 × 64, and two final passes with 32 × 32. The resulting
velocity field consisted of 160 × 135 vectors. In quadrature, the average velocity
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fields are estimated to have an uncertainty of 2.7 %, the instantaneous velocity errors
are estimated to be 1 % to 5 % (Sciacchitano, Wieneke & Scarano 2013).

2.2. Computational methods
To model the flow over the foil, an unsteady two-dimensional potential flow method
is employed where the flow is assumed to be irrotational, incompressible and inviscid.
We follow Katz & Plotkin (2001), in that the general solution to the potential flow
problem is reduced to finding a distribution of doublets and sources on the foil
surface and in the wake that satisfy the no-flux boundary condition on the body at
each time step. The elementary solutions of the doublet and source both implicitly
satisfy the far-field boundary condition. We use the Dirichlet formulation to satisfy the
no-flux condition on the foil body. To solve this problem numerically, the singularity
distributions are discretized into constant-strength line boundary elements over the
body and wake. Each boundary element is assigned one collocation point within the
body where a constant-potential condition is applied to enforce no flux through the
element. This results in a matrix representation of the boundary condition that can
be solved for the body doublet strengths once a wake shedding model is applied.
At each time step a wake boundary element is shed with a strength that is set by
applying an explicit Kutta condition, where the vorticity at the trailing edge is set to
zero so that flow leaves the aerofoil smoothly (Willis, Peraire & White 2007; Zhu
2007; Wie, Lee & Lee 2009; Pan et al. 2012).

At every time step the wake elements advect with the local velocity such that the
wake does not support any forces. During this wake rollup, the ends of the wake
doublet elements, which are point vortices, must be de-singularized for the numerical
stability of the solution (Krasny 1986). At a cutoff radius of ε/c = 2.5 × 10−5, the
irrotational induced velocities from the point vortices are replaced with a rotational
Rankine core model. The tangential perturbation velocity over the body is found by
a local differentiation of the perturbation potential. The unsteady Bernoulli equation
is then used to calculate the pressure acting on the body. The aerofoil pitches
sinusoidally about its leading edge, and the initial condition is for the aerofoil
trailing edge to move upward at θ = 0.

The presence of the ground is modelled using the method of images, which
automatically satisfies the no-flux boundary condition at y = 0 (see figure 4). At
the smallest value of D∗ considered (0.25), Strouhal numbers greater than 0.325
resulted in wake panels intersecting the foil boundary, and these conditions will not
be reported here. Convergence studies found that the thrust and efficiency changed
by less than 1 % and the power changed by less than 2 % when the number of body
panels N (= 250) and the number of time steps per cycle Nt (= 150) were doubled.
The computations were run for eight flapping cycles and the time-averaged data are
obtained by averaging over the last cycle. After eight flapping cycles there was less
than 1 % change in the thrust, power and efficiency when averaging over the seventh
or eighth cycle. The numerical solution was validated using canonical steady and
unsteady analytical results. The convergence and validation studies are described in
more detail in appendix A.

2.3. Viscous considerations
A principal reason for comparing the experiments with the results of a potential
flow solver is to help determine the conditions under which viscous effects become
important. The potential flow method neglects all such effects, but in the experiment
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FIGURE 4. (Colour online) Illustration of the potential flow method. Circles designate
the endpoints of doublet panels. The strengths of body panels are calculated at every
time step, while the strengths of wake panels are known from previous iterations. All
singularity elements are mirrored across the ground to satisfy the no-flux condition at y=0.
In the colour print, positive and negative vorticity in the wake are shown as red and blue,
respectively.

there exist boundary layers on the foil, and at large pitch angles leading-edge
separation may occur in the experiments (Kang et al. 2013). In addition, a boundary
layer with thickness δ develops on the ground upstream of the foil, undoubtedly
affecting the forces on the foil above a threshold value of δ/d. In the present study,
a boundary layer thickness of 37 mm was measured using PIV, leading to δ/d≈ 2 at
the closest approach. A comparison between experiments and computations will help
determine which ground effects are significantly affected by viscosity, and which are
primarily inviscid phenomena.

3. Propulsive performance

Figure 5 shows the time-averaged thrust C̄T and power C̄P coefficients for D∗= 0.63
and D∗� 1, with A∗ = 0.25, where

C̄T ≡ T̄
1
2ρu2∞cs

, C̄P ≡ P̄
1
2ρu3∞cs

, (3.1)

and ρ is the density of the fluid. As expected, the thrust and power are seen to
increase monotonically with Strouhal number. More interestingly, both methods predict
the thrust and power to rise monotonically as the foil approaches the ground. At St=
0.38, for example, the measured thrust coefficient, compared to its value at D∗� 1,
shows an increase of 4 % at D∗ = 1 (δ/d = 0.48), 19 % at D∗ = 0.63 (δ/d = 0.77),
22 % at D∗ = 0.5 (δ/d= 1), and 44 % at D∗ = 0.38 (δ/d= 1.3).

The potential flow results show similar trends, although the absolute thrust is
consistently overestimated by 20–30 % for St> 0.3 and up to 50 % for St< 0.3. The
discrepancy is too large to be due to experimental variance alone, and presumably
results from the computation excluding drag-producing effects such as skin friction
drag, leading-edge separation, and interference with the ground boundary layer. This
also leads to the relative gains in thrust being underestimated. As a comparison,
the predicted increases at St= 0.38 were 4 % at D∗ = 1, 10 % at D∗ = 0.63, 16 % at
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FIGURE 5. (Colour online) Time-averaged coefficients of thrust and power. A∗ = 0.25.
Experiment: M, D∗ � 1; N, D∗ = 0.63. Boundary element method: - - - - - -, D∗ � 1;
———, D∗ = 0.63.

D∗= 0.5, and 30 % at D∗= 0.38. The agreement between experiment and computation
is better for the power data at low Strouhal numbers, although at higher Strouhal
numbers the computation progressively underestimates the power input to the fluid,
suggesting that viscous effects play an increasingly important role in scaling the
moments on the foil.

Thus far the thrust and power coefficients were non-dimensionalized using the
dynamic pressure. For unsteady flows, it may be more insightful to seek a scaling
that expresses the unsteady characteristics of the flow. Theodorsen’s (1935) model
for a small-amplitude oscillating plate gives St2 as the leading coefficient of both C̄T
and C̄P (see appendix B for details). The model requires that A∗� 1, because O(1)
values lead to separated boundary layers along the foil and nonlinearly deforming
wakes that affect the downwash. At higher values of A∗, we could expect a transition
to a state where the lifting force on the foil L′ scales with the unsteady dynamic
pressure induced by the foil, that is, L′ ∼ ρ(cθ̇ )2cs, where cθ̇ is used as a typical
lateral velocity. This new regime may have little effect on the streamwise component
of lift (the thrust) because L′θ will integrate to zero over a flapping cycle due to the
orthogonality of θ and θ̇ 2 for sinusoidal motions.

The power, however, would scale differently. The moment on the foil scales with
L′c and so the power input scales with L′c θ̇ , leading to

P̄∼
∫ 1/f

0
L′cθ̇ dt∼ ρsc4

∫ 1/f

0
θ̇ 3 dt. (3.2)

By introducing Θ ≡ θ/A∗ and τ = f t, this can be written in non-dimensional form as

C̄P ∼ St3
∫ 1

0
Θ̇3 dτ . (3.3)

To account for this possible transition from a St2 to a St3 scaling in the power, we
propose a scaling of the form St2+α, such that α= 0 corresponds to the A∗� 1 scaling
and α= 1 corresponds to the A∗=O(1) scaling. We will verify this proposed scaling
by experiment.

We now turn to the ground proximity D∗. If we take as a starting point the
observation that the potential flow method is reasonably successful in representing
the flow, combined with the fact that the potential flow equations are linear, a simple
power law may apply to at least the leading-order terms of the time-averaged forces.
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FIGURE 6. (Colour online) Thrust and power scaling. Experiment: C, A∗= 0.19; M, A∗=
0.25; B, A∗ = 0.31. Boundary element method: - - - - - -, D∗ = 0.25; ———, all other
D∗. In the colour print, red corresponds to D∗ � 1 and blue corresponds to D∗ = 0.25,
with intermediate values shaded accordingly. Filled symbols denote D∗ = 0.25.

For the scaling to vanish far from the ground, we use 1+ D∗−β , such that the final
form of the proposed scaling is

C̄T ∼ St2(1+D∗−β) and C̄P ∼ St2+α(1+D∗−β). (3.4)

Figure 6 plots all the data in this form, where the values α = 0.7 and β = 0.4 were
determined empirically by minimizing the squared residuals. Overall, the collapse is
excellent for both the experiment and computations, particularly at higher Strouhal
numbers. However, the experiments and computations fall along curves with somewhat
different slopes, where the computations overpredict thrust at low Strouhal numbers
and underpredict power at high Strouhal numbers, as seen in the conventionally scaled
results given in figure 5.

The propulsive efficiency η ( ≡ C̄T/C̄P) represents the fraction of the total wake
energy that results in streamwise kinetic energy gains for the propulsor. It is only
defined in positive-net-thrust conditions when a propulsor is either accelerating or
overcoming the drag on a body to which it is attached. The scaling given in (3.4)
suggests that η∼ St−α and that it should not depend on the distance from the ground.

Figure 7 indicates that at Strouhal numbers greater than ∼0.25, the experimental
and predicted efficiency follows the trends which we expect from the scaling, that is,
it decreases with St and is independent of D∗. At lower Strouhal numbers, however,
circulatory forces and viscous effects cause the experimental efficiency to decrease, or
even become negative. In this low-thrust regime, no dependence on D∗ is observed,
although the scatter in η prevents making a more definitive conclusion. The potential
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FIGURE 7. (Colour online) Propulsive efficiency. Symbols as in figure 6. The line η =
0.1St−0.7 is also shown.

flow solver predicts η to be independent of D∗, except for the special case of D∗ =
0.25, where efficiency is predicted to increase slightly for St< 0.3.

Despite the differences mentioned above, the bulk of the experiments and
computations display similar qualitative trends. For all Strouhal numbers considered,
they both show a monotonic increase in thrust with decreasing wall proximity. For
St & 0.25, this increase follows the same power law for both data sets, which
suggests that the experiments show no strong dependence on δ/d in the regime
considered (with D∗ = 0.25 being a possible exception). Both data sets also indicate
that the efficiency is unchanged by ground proximity at high Strouhal numbers.
This observation has important consequences for near-ground swimming, in that by
operating near the ground a propulsor could cruise faster with little loss in efficiency,
or cruise at the same speed with increased efficiency. In general, it appears that the
benefits of ground effect can be explained with an inviscid argument, although the
magnitudes of the relative benefits clearly depend on viscous interactions.

4. Wake dynamics
The wake dynamics appear to be dominated by the vortices shed from the trailing

edge. Leading-edge separation was observed in the experiments for St > 0.2, but
vortices shed from the leading edge were significantly weaker than vortices shed
from the trailing edge. As the foil approached the ground, leading-edge vortices were
accentuated on the side closer to the wall, but they quickly became incoherent as
they interacted with the ground boundary layer.

Vortices shed from the trailing edge were coherent and formed a typical vortex
street when the foil was operated far from the ground (see figure 8a). In the figure,
we define ϕ as the phase of the oscillation such that ϕ ranges from 0 to 2π and
ϕ = 0 corresponds to the point in the cycle when θ = 0 and θ̇ > 0. A variety of
symmetric vortex streets have been observed behind flapping propulsors (see, for
example, Schnipper, Andersen & Bohr 2009), as well as some asymmetric ones
(Godoy-Diana et al. 2009). For the parameters considered here, only a 2S reverse
von Kármán street was observed far from the wall. Near the ground, however, this
symmetry was broken and the vortices instead formed pairs (see figure 8b). This
pairing was observed to some degree for all Strouhal numbers when D∗ < 1, though
was most prominent at high Strouhal numbers and low values of D∗. A similar
pairing was noted by Molina & Zheng (2011), but they attributed it to asymmetries
introduced by the camber of the foil. Here we have a symmetric foil, so that the
vortex pairs appear to be a general feature of near-ground wakes.
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FIGURE 8. (Colour online) Phase-averaged PIV data for A∗ = 0.25, St = 0.32 showing
contour plots of vorticity ω. (a) D∗� 1; (b) D∗ = 0.5. Foil is mid-upstroke (ϕ = 0).

2
2

0.8

0

0.8
(a)

(d)

(b)

(e)

(c)

( f )

0

2 2

0 0.4 0.8 0 0.4 0.80 0.4 0.8

4

0

–4

(d) (e) (f )

1
1

1

1

1 1

2

2

2

2

2 2

1
1

(s–1)

FIGURE 9. (Colour online) Vortex pairs at D∗ = 0.38 for A∗ = 0.25 and St = 0.32.
(a,b,c) Phase-averaged PIV data; (d,e,f ) potential flow computations. The phases shown
are when the foil is at maximum θ , mid-downstroke, and minimum θ : (a,d) ϕ = π/2,
(b,e) π, (c,f ) 3π/2.

The formation of vortex pairs is best explained using the method of images, where
each vortex has an opposite-signed image vortex equidistant beneath the ground to
satisfy the no-flux condition (see figure 4). Following the Biot-Savart law, the negative
vortices will advect slower near the ground while the positive vortices will advect
faster. The pairing process is shown in the data of figure 9 and illustrated using the
method of images in figure 10(a–c). Vortex 1 is slowed by its opposite-signed image,
so that it is still near the trailing edge of the foil when vortex 2 is shed. Then, driven
by their mutual induction, vortices 1 and 2 move downstream and away from the
ground before the cycle repeats (see figure 10). It is possible that the ground boundary
layer also contributes to the slower advection of vortex 1 in the experiments, but
since the behaviour of the vortex pairs is captured almost precisely by the inviscid
computations, the slower advection appears to be primarily an inviscid phenomenon.
Also shown in figure 9 is the distortion of the positive vortices. In both the PIV and
computational data, the strongly negative vortex 1 enhances the shear layer in the
wake of vortex 2, leaving a filament of positive vorticity trailing the vortex pair.
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FIGURE 10. (Colour online) Wake dynamics explained with the method of images.
(a,b,c) Moderate ground effect; (d,e,f ) extreme ground effect. Image vortices are labelled
with primes. Vortex strength is illustrated by its size. Grey arrows indicate regions of high
velocity. (a,d) ϕ =π/2, (b,e) ϕ =π, (c,f ) ϕ = 3π/2.

Vortices were found to form pairs for all near-ground conditions (D∗ < 1), but in
extreme ground effect (D∗6 0.38), they behaved slightly differently. Figure 11 shows
vorticity contours for D∗ = 0.25. In the experiment, vortex 1 was strong enough to
detach the boundary layer along the ground and form the satellite vortex 3 underneath
the trailing edge. Vortex 3 advects downstream in a wake that now contains three
vortices per flapping cycle. As in the D∗ = 0.38 case, a filament of positive vorticity
trails the vortex pair, but in this case the filament rolls up into the positive satellite
vortex 3. By comparing figures 9 and 11, we see that in moderate ground effect
the vortices advect away from the ground, whereas in extreme ground effect they
move approximately straight downstream. This discrepancy can be attributed to the
strength of vortex 1, which becomes increasingly stronger than vortex 2 as the
ground proximity decreases. This mismatch in magnitude causes vortex 2 to rotate
in a clockwise sense about vortex 1, thus reorienting the pair such that it advects
downstream (see figure 10).

The motion of the vortices leads to particular orientations for the time-averaged
momentum field. When the wake vortices advect away from the ground, the time-
averaged field displays a jet that angles upward, as seen in figure 12 for D∗ = 0.5,
where ū is the time-averaged streamwise velocity and Ū∗ = ū/u∞. This behaviour is
in contrast to the flow when the foil is far from the ground where the jet is directed
straight downstream. When the foil is closer to the ground, the reoriented trajectory of
the pair is such that the time-averaged jet angles back toward the ground, as seen in
figure 12 for D∗= 0.25. Note also the regions of low mean velocity between the foil
and the ground. This phenomenon is most pronounced at high Strouhal numbers and
is caused by the upstream flow that is present beneath the foil during the upstroke.
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FIGURE 12. (Colour online) Time-averaged velocity fields for A∗ = 0.25 and St = 0.32.
(a,c) D∗ = 0.5; (b,d) D∗ = 0.25. (a,b) PIV data; (c,d) potential flow computations.

The time-averaged jets also offer insight into the origins of thrust production.
Typical mean velocity profiles are shown in figure 13, including one taken in the
absence of the foil, ūBL(y). Note the increase in magnitude of the peak velocity with
increasing Strouhal number, and the regions of reduced velocity for y/c< 0.5. Such
profiles can be used to calculate the net streamwise momentum flux px by integrating
over a control surface. That is,

C̄px ≡
p̄x

1
2ρu2∞cs

=
∫ Y∗2

0
Ū∗2 dY∗ −

∫ Y∗1

0
Ū∗2BL dY∗ =

∫ Y∗2

0
Ū∗(Ū∗ − Ū∗BL) dY∗, (4.1)



164 D. B. Quinn, K. W. Moored, P. A. Dewey and A. J. Smits

0

0.5

1.0

1.5

5.10.15.0

FIGURE 13. Time-averaged streamwise velocity profiles taken at a location c/2
downstream of the trailing edge. Sample data are shown are for A∗= 0.25 and D∗= 0.875,
with St= 0.19 (�), St= 0.22 (O), St= 0.25 (�), and St= 0.28 (♦). The bold line shows
Ū∗BL, the non-dimensional time-averaged streamwise velocity when no foil is present.
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FIGURE 14. (Colour online) Streamwise momentum flux coefficient. C̄px is plotted with
the same scaling as suggested for the thrust coefficient. Symbols and notation as in
figure 6.

using mass conservation. Here, Y∗≡ y/c. This momentum flux differs from the thrust
by about a factor of two, in that it neglects pressure differences over the control
surface, and the shear stress applied by the ground. Nevertheless, figure 14 reveals that
C̄px/C̄T shows little dependence on St and D∗, suggesting that C̄px follows a similar
scaling as C̄T .

5. Lift production

The time-averaged angled jets impart momentum to the fluid in the cross-stream
direction, suggesting that there is a net lift force produced by an unsteady aerofoil in
ground effect even if its motion is symmetric. The lift force could not be measured
in the experiment, but we can obtain some insight from the computations. The
computations were run for 50 cycles since the lift converged more slowly than the
thrust, power or efficiency. After 50 cycles, the lift changed by less than 5 % after
doubling the number of cycles. Only one amplitude of motion, A∗= 0.19, is presented
for clarity. The other amplitudes show similar trends. Two extra cases at D∗ = 0.29
and 0.33 were added to show more continuous lift coefficient curves.

Figure 15 shows the time-averaged lift coefficient C̄L as a function of D∗ and St,
where C̄L= L̄/(ρu2

∞cs/2), and L̄ is the time-averaged lift averaged over the 50th cycle
of motion. Two regimes in lift production may be distinguished. When 0.4.D∗ . 1,
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FIGURE 15. (Colour online) Time-averaged lift coefficient. ⊗, St = 0.13; ⊕, St = 0.16;
�, St= 0.31; other symbols as in figure 13.

the lift force is negative and tends to pull the aerofoil towards the ground, and when
0.25.D∗. 0.4, the lift force is positive and tends to push the aerofoil away from the
ground. At D∗ ≈ 0.4 there is an equilibrium location where the time-averaged lift is
zero. It is a stable equilibrium location in that any perturbation downward will cause a
net positive lift and any perturbation upward will cause a net negative lift. It can also
be seen that with increasing Strouhal number the equilibrium location moves further
away from the ground, and within each regime the magnitude of the lift coefficient
increases. At this equilibrium location where D∗ ≈ 0.4, the thrust enhancement is
∼40 %.

6. Concluding remarks
In the range of ground proximities considered (0.25 < D∗ < 2.9), the thrust

capabilities of a pitching foil were shown to increase compared to its value far
from the ground, while the propulsive efficiency remained independent of D∗ within
the uncertainty of the experiment. It appears that ground effects are advantageous for
efficient thrust production using pitching foils, and could allow higher cruise speeds
with no loss in efficiency. This result suggests that animals whose fins oscillate
perpendicular to the ground, such as rays and skates, may experience benefits when
swimming near the sea floor.

The effects of viscosity reduced the thrust and increased the required power at all
Strouhal numbers tested, and the efficiency was reduced to about half its inviscid
level for St > 0.38. Nevertheless, over most of the conditions considered, thrust and
power were found to follow a power-law scaling described by 1 + D∗−β , with β =
0.4 for both the inviscid computations and the experiments. The result is that thrust
production increases monotonically as the foil approaches the boundary for D∗> 0.25.
This finding was found to be almost independent of pitching amplitude and Strouhal
number over the ranges 0.196 A∗ 6 0.31 and 0.256 St6 0.45.

The wake structures generated by near-ground pitching foils were found to be
markedly different from those observed far from the ground. The vortices shed into
the wake were found to form pairs behind the foil, and for D∗ > 0.38 they were
advected away from the ground and created angled jets of mean momentum. This
finding offers a more general explanation for the wake vortex structure attributed to
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foil camber by Molina & Zheng (2011). Additionally, filaments of positive vorticity
were observed trailing the vortex pairs. When D∗ 6 0.38, vortex pairs curved back
toward the ground, causing the momentum jet to point straight downstream.

Two regimes of lift production were identified in the computations. The first regime
occurred at ground proximities of 0.4 . D∗ . 1 where negative lift was generated
that pulled the aerofoil towards the ground. The second regime occurred at ground
proximities of 0.25 . D∗ . 0.4 where positive lift was generated that pushed the
aerofoil away from the ground. Between these two regimes a stable equilibrium
location exists where the time-averaged lift was zero and a thrust enhancement
of ∼40 % was measured. This stable equilibrium location may offer significant
performance gains for animals swimming or flying near solid boundaries.
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Appendix A. Potential flow method validation
The free parameters for the numerical solution were the trailing-edge Kutta

condition panel orientation and length, the desingularization radius for the wake
elements, the collocation point location, the number of body elements N, and the
number of wake elements per time step Nstep.

A trailing-edge doublet element is used to enforce the Kutta condition of finite
velocity at the trailing edge by having a strength that cancels the vorticity at the
trailing edge. The orientation of the element was set to be along a line that bisects the
angle of the trailing edge, which is typical for steady flow conditions (Katz & Plotkin
2001). Traditionally, the trailing-edge element length is set to 0.3–0.5u∞1t (Willis
et al. 2007), where 1t= 1/(f Nstep). Here a length of 0.4u∞1t was used since it gave
good solution convergence while maintaining solution accuracy for the validation
cases. The desingularization radius was set to ε = 2.5× 10−5c. A Dirichlet boundary
condition is applied where the velocity potential within the body is held constant,
which indirectly enforces the no-flux boundary condition through the aerofoil surface.
As such, the collocation points must be within the body. In our method, they were
located at the centre of the elements but moved into the body by 15 % of the distance
to the neutral axis of the aerofoil at that point, along the element normal vector.

Both the number of body elements and the number of time steps per cycle were
varied and the time-averaged thrust coefficient, power coefficient and propulsive
efficiency were tracked as shown in figure 16. The flapping parameters used for
convergence studies were c = 0.08 m, St = 0.3, A∗ = 0.25, u∞ = 0.06 m s−1 with
a 10 % thick teardrop aerofoil shape following Godoy-Diana et al. (2009). Eight
flapping cycles were run and the time-averaged quantities were taken over the last
flapping cycle. When the number of body panels was doubled from N = 250 to
N = 500 (with Nstep = 200) the coefficient of thrust and efficiency changed by less
than 1 % while the power coefficient changed by less than 2 %. When the number of
time steps was doubled from Nstep= 150 to Nstep= 300 (with N = 200), the coefficient
of thrust and efficiency changed by less than 1 % while the power coefficient changed
by less than 2 %. Therefore, for all calculations in this study, we used N = 250 and
Nstep = 150.
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FIGURE 16. Convergence of the numerical solution with (a) increasing number of body
panels N and (b) increasing number of time steps per cycle Nstep.

To validate the accuracy of the boundary element method a series of exact analytical
potential flow solutions were compared to the numerical calculations. First, the steady
pressure distribution over a two-dimensional van de Vooren aerofoil was used, which
has an analytical solution (van de Vooren & de Jong 1970) and it has a finite-angle
trailing edge as in our experiment. Figure 17 shows excellent agreement between the
analytical and numerical solutions. In these validation cases the time step was 1t =
6.67 s, u∞ = 5 m s−1, c = 1 m, with N = 150. The starting vortex from the time-
stepping solution was allowed to advect downstream 1000c before the coefficient of
pressure was calculated.

Second, the unsteady lift produced by a small-amplitude two-dimensional heaving
plate from the Theodorsen (1935) model was compared to the numerical solution. The
Theodorsen model for a pure heaving motion can be cast into a non-dimensional form,

CL =−2π2 St|C(k)| cos(2πτ + φ)−π2St k sin(2πτ) (A 1)

where CL = 2L/ρcu2
∞, h= h0 sin(2πτ), St= 2h0 f /u∞, k=πf c/u∞, and τ = f t.

Here, h is the time-varying heave, k is the reduced frequency, |C(k)| is the
magnitude and φ is the phase angle of the lift deficiency factor which is a complex
number. A 0.1 % thick teardrop-shaped aerofoil was used to simulate an infinitesimally
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FIGURE 17. (Colour online) Coefficient of pressure over the top and bottom surfaces of
a 15 % thick van de Vooren aerofoil. (a) α = 0, (b) 4◦, and (c) 8◦. ———, Analytical
solution; 4, numerical solution for the top surface; �, numerical solution for the bottom
surface.
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FIGURE 18. Lift coefficients during one pitching period T, for c= 1, u∞= 1, h/c= 0.01,
N= 350, Nstep= 250. (a) St= 0.001, k= 1.57. (b) St= 0.01, k= 15.7. ———, Theodorsen
model; ◦, numerical solution.

thin plate. The force measurements were taken from the eighth flapping cycle. A
frozen wake, which did not advect with the local velocity, was used to simulate the
assumptions in the Theodorsen model. As can be seen from figure 18, there was
excellent agreement between the analytical and numerical solutions.

Appendix B. Thrust and power scaling for A∗� 1

The lowest reduced frequency considered here is approximately 4.2. Typical lateral
velocities are therefore much higher than typical streamwise velocities, and we will
focus on non-circulatory lift forces (added mass forces) when scaling the lift or lateral
force L on the foil. Accordingly, we introduce a representative added mass m∗= ρc2s.
The accelerations of this added mass come from two sources. The first is due to the
lateral acceleration of the foil which is proportional to c θ̈ , and the second is due to
the time-varying circulation around the foil. From thin aerofoil theory, we expect the
velocity above and below the foil to scale with u∞(1 ∓ θ), and so the streamwise
accelerations will scale with u∞θ̇ . Because these are small-amplitude arguments, the
lift due to added mass is expected to vary with a linear combination of these two
contributions, that is,

L∼m∗(C1cθ̈ +C2u∞θ̇ ), (B 1)
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where C1 and C2 are constants. These are precisely the non-circulatory lift terms in
the Theodorsen (1935) model, here introduced via a scaling argument. Theodorsen
determined that C1 =π/4 and C2 =π/8.

The lateral force is of interest because it relates to the thrust and the power input
to the fluid. As originally noted by Knoller (1909) and Betz (1912), the thrust of an
oscillating foil is directly proportional to the lift: it is merely the component of lift in
the streamwise direction, that is, T = L sin(θ) ≈ Lθ for small angles. The moment
on the foil scales with Lc and so the power input scales with Lc θ̇ . The motions
considered here are purely sinusoidal, so that θ̇ is orthogonal to θ and θ̈ . This causes
the expressions for thrust and power to simplify greatly when time-averaged over one
flapping cycle, and we find

T̄ ∼
∫ t0+1/f

t0

Lθ dt∼m∗c
∫ t0+1/f

t0

θ̈ θ dt, (B 2)

P̄ ∼
∫ t0+1/f

t0

Lcθ̇ dt∼m∗cu∞

∫ t0+1/f

t0

θ̇ 2 dt. (B 3)

By introducing Θ ≡ θ/A∗ and τ = f t, this can be written in dimensionless form as

C̄T ∼ St2
∫ τ0+1

τ0

Θ̈Θ dτ and C̄P ∼ St2
∫ τ0+1

τ0

Θ̇2 dτ , (B 4)

so that that C̄T and C̄P are expected to scale with St2 for small-amplitude flapping.
The scaling for CT is consistent with Dewey et al. (2013), who used a similar added
mass argument to arrive at the first term in our expression for L. By introducing both
terms, we have accounted for orthogonality in our model and arrived at a different
scaling for CP.
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