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Abstract. A transient, two-dimensional acoustic boundary element solver is developed using
double-layer potentials accelerated by the fast multiple method for application to multibody, ex-
ternal field problems. The formulation is validated numerically against canonical radiation and
scattering configurations of single and multiple bodies, and special attention is given to assessing
model error. The acoustic framework is applied to model the vortex sound generation of schooling
fish encountering 2S and 2P classes of vortex streets. Vortex streets of fixed identity are moved
rectilinearly in a quiescent fluid past representative schools of two-dimensional fish, which are com-
posed of four stationary NACA0012 airfoils arranged in a diamond pattern. The induced velocity
on the fish-like bodies determines the time-dependent input boundary condition for the acoustic
method to compute the sound observed in the acoustic far field. The resulting vortex noise is exam-
ined as a function of Strouhal number, where a maximum acoustic intensity is found for St ≈ 0.2,
and an acoustic intensity plateau is observed for swimmers in the range of 0.3 < St < 0.4. In
the absence of background mean flow effects, numerical results further suggest that the value of
Strouhal number can shift the acoustic directivity of an idealized school in a vortex wake to radiate
noise in either upstream or downstream directions, which may have implications for the the study
of predator-prey acoustic field interactions and the design of quiet bio-inspired underwater devices.

1 Overview

Animal collectives such as schools of fish can generate flow-induced noise from the wake production of
individuals members and by the scattering of these wakes by their neighbors [5,13]. Hydrodynamic loco-
motion of fish for engineering applications continues to attract attention [7,14,18,21], while the literature
on flow-induced noise generation by fish and fish schools remains relatively unexplored. In contrast, many
techniques exist to estimate the scattered acoustic field off of a fish school produced by a prescribed pulse,
primarily for determining its population size [1,6,13,20]. The distinct approach here seeks to estimate
the hydrodynamic self-noise due to vorticity production of single swimmers and swimming collectives.
An improved understanding of the noise generation of fish may enable strategies to mimic the vortex
self-noise signature of an animal in an underwater vehicle(s). Alternatively, an improved understand-
ing of fish noise signatures may help detect and distinguish bio-robotic underwater vehicles from their
biological counterparts.

The reduction of this complex physical problem, involving acoustic interactions among multiple bod-
ies, to a predictive numerical model requires a rapid framework to assess multiple configurations effi-
ciently. To this end, a transient, two-dimensional acoustic boundary element method (BEM) is developed
to solve for the acoustic field resulting from a vortical field or distribution of acoustic sources scattered by
the solid bodies in a collective. To accelerate this numerical framework, the boundary element solution
and subsequent evaluation of the resulting acoustic field are computed with the fast multipole method
[22]. This method reduces the computational cost of the boundary element solution in two spatial di-
mensions from O(n2) to O(n log n) for n elements and is accompanied by a large reduction in memory
cost [16], which would otherwise hamper the boundary element approach in the case of many elements
and/or bodies, as well as future extensions to three spatial dimensions. To effect a transient solution,
the acoustic solver aggregates individual frequency-domain solutions to produce a time-domain solution
using the convolution quadrature method [10,17]. The present study implements distributions of Gaus-
sian cores with fixed identity and prescribed movement to represent the vortical field and its transient
interactions with nearby solid bodies [15]. The induced velocity of the vortical field is then fed forward
into the boundary element solver to produce the acoustic field. The novelty of the acoustical numerical
framework presented lies in the development and implementation of a transient double-layer potential
accelerated by the fast multipole method.

The present work outlines the development, validation, and application of a transient, two-dimensional,
acoustic boundary element solver to multibody, external field problems, including application to a model
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school of fish. Section 2 details the acoustic boundary element formulation with a double-layer potential
and its acceleration via the fast multipole method. Section 3 validates the numerical method against a
canonical scattering configuration with an analytical solution and further demonstrates the capability of
the method to handle multiple scatterers and transient forcing. Section 4 applies the acoustic framework
to a model fish schooling arrangement encountering 2S and 2P classes of vortex streets and examines the
resulting vortex noise as a function of Strouhal number. Concluding remarks from this study are made
in §5.

2 Boundary element method

The propagation of linear waves through domain V with a boundary Sb is described by the non-
dimensional wave equation:

∂2
t p−∇2p = 0 in V,

p(x, t = 0) = ∂tp(x, t = 0) = 0,

p = g(t) on Sb, (1)

where x is the position in the exterior domain V, t is time, g is some prescribed forcing function on the
boundary, and p is the acoustic pressure. The combination of the Green’s function solution to the wave
equation in an infinite domain with Green’s second identity yields a general solution for the pressure
field external to a body or a set of bodies expressed as a boundary integral equation [12]:

p(x, t) =

∫ t

0

[∫
Sb

m(x− x′, t− τ)η(x′, τ)dSb −
∫
Sb

l(x− x′, t− τ)∂η
∂n

(x′, τ)dSb

]
dτ, (2)

t ∈ [0, T ].

Here η is the vector potential associated with a single-layer potential, and the normal derivative, ∂η/∂n,
is associated with the double-layer potential, m and l are respectively single and double-layer retarded
time potential operators, x′ is a source point, n̂ is the outward normal of the body surface, and τ is a
temporal dummy variable.

The substitution of boundary condition (1) into the fundamental solution (2) produces the time-
varying boundary value problem,∫ t

0

[∫
Γ

m(x− x′, t− τ)η(y, τ)dSb −
∫
Sb

l(x− y, t− τ)∂η
∂n

(y, τ)dSb

]
dτ = g(t), x ∈ Sb, (3)

which is to be solved by the boundary element method. For the two-dimensional wave equation, the
fundamental solutions of the single-layer and double-layer potentials are

M(r, κ) =
iH

(1)
0 (κr)

4
, (4)

L(r, κ) =
iκH

(1)
1 (κr)

4

n · r
r
, (5)

where H(1)
n are Hankel functions of the first kind of order n. The operators M and L, are Laplace

transforms of the retarded-time potentials, m and l. Here r = x− x′, is position vector from a source
to an observer, r = |r|, and κ is the wavenumber. The frequency-domain potential operators (4) and (5)
are used by the convolution quadrature method [10] to generate a time-stepping procedure to solve (3).

Imposing a velocity on the boundary, the frequency-domain double-layer indirect formulation of (3)
becomes (

−1

2
I + L′(r, κ)

)
η = −Vi, (6)

Pfield = Lfield(r, κ)η, (7)

where I is the identity matrix, Vi is the incident velocity on the boundary, L′ is the adjoint of the
double-layer operator using the outward normal at the observation point instead of the normal of the
source, and Pfield is the pressure at an observation point in the field.
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2.1 Time discretization

The retarded-time potential operators found in (2) are evaluated as convolution integrals. The Laplace
transforms of the single-layer and double-layer potential operators, (4) and (5), respectively, are con-
volved with an associated potential field. The potential field is evaluated by a convolution quadrature.
The quadrature has an associated weight that is defined by a power series. This methodology of time
discretization can be achieved via a convolution quadrature method put forth by Lubich [17]:

V
∂Φ

∂t
=
∫ t

0
v(t− τ)φ(τ)dτ.

Here V represents a Laplace transform of the v operator, a characteristic differential operator of the
transient wave equation, and φ is some known potential distribution. The interested reader can look to
[10] for a detailed explanation of the convolution quadrature method. For problems with a form similar
to (3), the retarded-time operator is a convolution that can be discretized as

v(x, t− τ)φ(τ) =
∫ t

0

V (x− x′, t− τ)φ(τ)dτ. (8)

Splitting the time domain into N + 1 time steps of equal spacing, ∆t = T/N and tn = n∆t for n =
[0, 1, ..., N ], the discrete convolution can be viewed as a sum of weights of the V operator at discrete
times of φ:

V
∂Φ(tn)

∂t

∆t

=

n∑
j=0

ω∆tn−j(V )φ∆t(tj), (9)

where the superscript ∆t indicates the weight for a specific time-step size. The series expansion can be
arranged to solve for the convolution weights, ω:

V

(
γ(ζ)

∆t

)
=

∞∑
n=0

ω∆tn−jζ
n, |ζ| < 1, (10)

ω∆tn−j =
1

2πi

∮
C

V (γ(ζ)
∆t )

ζj+1
dζ, (11)

where C is a circle of radius 0 < λ < 1 centered at the origin. A second-order backwards difference
function, γ(ζ) = (1 − ζ) + 1

2 (1 − ζ)
2, is used to define the spacing of the integration. A review of other

integration methods that can be incorporated into the convolution quadrature method is presented in
[10]. Employing a scaled inverse transform, the weights become

ω∆t,λn−j (V ) =
λ−j

N + 1

N∑
l=0

V (sl)ζ
lj
N+1, (12)

with

ζN+1 = exp

(
2πi

N + 1

)
(13)

being the temporal quadrature spacing, and

sl = γ(λζ−lN+1)/∆t (14)

is the accompanying time dependent complex wavenumber that is generated. The value of sl is different
for each time step and provides the link between the frequency-domain solver and a transient boundary
integral equation such as (3). For this formulation, λ = ∆t3/N is selected based on the error analysis of
Banjai and Sauter [2].

Placing (12) into the boundary value problem (3) yields

λ−j

N + 1

N∑
l=0

M(sl,x)η̂l(x)ζ
lj
N+1 =

λ−j

N + 1

N∑
l=0

ĝlζ
lj
N=1 (15)
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for a double-layer boundary representation. Here gn is a discrete representation of the boundary con-
ditions. This transformation can be applied to other potential distributions, such as the double-layer
potential, in the same manner. The inverse of the convolution transform of (12) is

φ̂l =

N∑
j=0

λjφλj ξ
−lj
N+1. (16)

By applying a discrete Fourier transform to (16), a system of N + 1 equations is generated:

K(sl,x)η̂l(x) = ĝl(x). (17)

The convolution quadrature method [2] is employed to discretize the wave problem into a system of wave
equations that are uncoupled in time. This discretization allows one to solve N+1 independent problems
in the frequency domain using wavenumbers that are generated via the convolution quadrature method.
The time-domain solution is recovered by applying the inverse Fourier transform (16).

The convolution quadrature method is applied to (3) and a velocity-based boundary condition is
applied. This approach allows the use of the indirect Neumann condition double-layer formulation seen
in (6), which then is used to define the test problems presented in §3.

2.2 Spatial discretization

The boundaries of noise-scattering bodies are discretized here using equal-length line elements. The
boundary condition for the problem represented by the boundary integral equation (3) is enforced at
collocation points located at the midpoint of each element. The boundary elements are constant strength
elements in the current study, but Gaussian quadrature elements could also be easily implemented by
evaluating the integration points as collocation points and summing the products with the appropriate
weights for each element [12].

2.3 Fast multipole method

The boundary element system (17) creates a dense influence matrix when a direct calculation is performed
at each time step. Therefore, the total number of operations is O(Nn2), where N is the total number of
time steps and n is the number of boundary elements. The fast multipole method (FMM) put forth by
Rohklin and Greengard [9,22] reduces the order of operations needed to solve these types of systems to
O(Nn log n).

The reduction in computational effort is achieved by embedding the FMM into an iterative linear
equation solver. Figure 1 compares the computational speed of a direct solution of boundary values
against its FMM counterpart. This embedded approach removes the calculation of the dense matrix
and associated linear solve with a series of FMM calculations. FMM2DLIB is an open-source version
of the FMM that was implemented due to its easy implementation and multi-core optimization [8].
The FMMLIB2D library evaluates the potential field due to particle sources governed by the Helmholtz
equation in free space.

The FMM consists of several steps that make it an efficient algorithm for matrix-vector multiplication
to find a potential φ of the form

φ(xj) =
i

4

N∑
k=0

φ(xk)H
1
0 (sl|xj − xk|) +

∂φ(xk)

∂n
H1

1 (sl|xj − xk|)
κnk(xk − xk)
|xj − xk|

.

There are three main operations to making the FMM-BEM work. The first is an implementation of a
quad-tree structure onto the domain. The second is the definition of translation operators that are used
to relate different nodes of the quad-tree to each other. Finally, the FMM is coupled with an iterative
linear solver (e.g. bi-conjugate gradient, generalized minimal residual, etc.) to determine the strength of
each element. The generalized minimal residual (GMRES method) [23] is an iterative scheme to compute
the solution of a system of linear equations that approximates the solution by finding the vector that
produces a minimal residual error.At each iteration of GMRES, the FMM accelerates a matrix-vector
multiplication used to evaluate the convergence criteria of that iteration. The natural fit of FMM into a
GMRES solver is the main reason why this particular linear solver was selected. The GMRES, with a
tolerance of 10−5, is employed here to solve (17).
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Fig. 1. Comparison of a direct computation with its FMM counterpart for an increasing number of boundary
elements. The system used was set to T=1 with 100 time steps. A field of 256 points was evaluated at each time
step.

The discrete geometry is recursively subdivided by placing it into a quad-tree structure. The quad-
tree structure is constructed such that the quad-tree will descend to a set number of branches. Figure 2
shows the descent of a branch of an arbitrarily sized quad-tree with four levels. Once the data structure
is developed, the calculation of the method begins with the ‘upward pass’. A weighted summation of the
elemental potential strengths is computed into a moment at each terminal node. The moments of four
children nodes are translated up to the parent node. The upward translation process occurs until the
level before the tree’s root. Now each of the top four nodes contain the translated values of the potentials
of their children nodes in a single value. The values at this level are in effect a representation of how the
local nodes influence each other at each level in the quad-tree structure. The next step is to then cascade
these values back down into the tree structure. The ‘downward pass’ step passes the moments down the
tree structure. The ‘downward pass’ is calculated over nodes with adjacent but distinct parents and is
performed to the terminal node. The value that is passed into the terminal nodes is then translated to
all of the elements in the node. The prior steps define the far-field interaction between elements. The
potential of all elements found in a terminal node are deemed to be in the near field. The potentials of
near field elements are directly evaluated. The near field is defined by the tolerance set. For a low error
tolerance, the near field contains more elements. The use of these steps approximates far-field interactions
and thus a full matrix is not built for a matrix-vector multiplication. Note that here the near-field and
far-field designators in this section refer to the relationship between elements placements in the quad-tree
structure and not the acoustic near field or far field.

The translation operators necessary to pass information from source points to a far-field observer are
defined as multipole-to-multipole, multipole-to-local, and local-to-local, which are respectively shortened
to M2M, M2L, and L2L. All of these translation operators make use of an initial moment summation
that needs to be calculated only once. The GMRES solver is set to an error that is found to be less than
the model error and should therefore not impact the accuracy of the results [23].
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Moment

M2M

M2L

Fig. 2. Schematic of information transfer of the fast multipole method using a partial quad-tree structure. Small
green circles represent the collocation points of a discretized cylinder. The entire domain is recursively divided
into smaller and smaller squares, shown here as green, red, and then blue in decreasing size. The above quad-
tree shows a four-level tree. The depiction shows only a simplified version of the actual FMM, representing the
contribution of one far-field terminal leaf on the potential values at another terminal leaf.
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The translation and moments for the two-dimensional frequency domain problem are summarized in
Lui [16] and are reproduced here:

Moment :Mn(y
∗) =

i

4

∫
S
inJn(sl(y − y∗))η(y)dΓ (y)einα, (18)

M2M : Mn(y
′) =

∞∑
m=−∞

In−m(y − y′)Mm(y), (19)

M2L : Ln(x) =

∞∑
m=−∞

(−1)mOn−m(x− y)Mm(y), (20)

L2L : Ln(x
∗) =

∞∑
m=−∞

Im(x∗ − y)Ln−m(x∗). (21)

Here α is the angle from the source point to the center of the leaf at the terminus of the quad-tree,
sl is the wavenumber associated with each independent time step, and On(x) = inH

(1)
n (slr) exp (inα)

and In = (−i)nJn(slr) exp (inα) are auxiliary functions that translate the influence of the multipole
potentials over a distance r at angle α. In the auxiliary functions, Jn is a Bessel function of the first kind
of order n.

The fast multipole frequency domain operators (18-21) are sufficient for the present study, as the
convolution quadrature method transforms the time-domain problem into sets of frequency-domain prob-
lems. The quad-tree structure will remain constant at each time step, as the domain contains a static
rigid body or bodies in the scenarios considered in this work.

3 Validation and demonstration

This section presents the capability of the transient acoustic BEM to accurately simulate vortex-solid or
acoustic-solid interactions in single- and multi-body scenarios. A validation case of plane wave scattering
on a cylinder establishes the temporal and spatial model errors. The validation case is extended to include
multiple bodies to demonstrate how the model can compute many degrees of freedom rapidly and with
with the same order of error as the single scatterer study. A qualitative demonstration of a soliton wave
impinging onto an irregular arrangement of cylinders shows the capability of the solver to model the
interactions between scattering bodies. Each of the validation cases were selected to ensure that the
method is suitable for modeling noise generation due to wake-body interactions in an idealized school of
fish. The plane wave scattering study §3.1 demonstrates the capability of the solver to model wake-body
interactions and establishes the model error. The multiple-scatterer study §3.2 demonstrates that there
is no loss in model error when multiple body interactions are introduced. Finally, the capability of the
method to define transient acoustic interactions between multiple bodies is demonstrated in §3.3.

The accuracy of the BEM is measured by the absolute error in the acoustic field since exact boundary
potential values are not readily available for all of the validation cases considered. The error is determined
at 25 points in the acoustic field at locations shown in figure 4. The L2 norm is used to show the relative
error between the numerical and the analytic values at each time step. The maximum of these L2 values
for all simulated time is designated as the error.

EL2
= max

t∈T

(√∑
x |Pexact(x, t)− PBEM(x, t)|2√∑

x |Pexact(x, t)|2

)
(22)

The numerical problem is rendered dimensionless by using bulk modulus ρc2, radiator diameter 2a,
and parameter 2a/c as the pressure, length, and time scales, respectively, where ρ is the fluid density
and c is the speed of sound.

3.1 Plane wave scatterers

The capability of the method to model acoustic scattering by a solid body is now demonstrated and
validated. Figure 3 illustrates the model of a rigid circle of radius a placed at the origin that is bombarded
by a harmonic field of plane waves. The incident field of unit strength has the form

Pi(x, t) = exp[i(κr cos θ − ωt)],
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where ω is the angular frequency, κ is the wavenumber, and x = r cos θ. The analytical result for the
scattered field is [11]

Ps(x, t) = eiωt
∞∑
n=0

εni
n

[
Jn(κa)−

J ′n(κa)Hn(κr)

H ′n(κa)
cosnθ

]
. (23)

The total acoustic field is the sum of the incident and scattered fields, Pt = Ps + Pi.

Fig. 3. Schematic of a harmonic plane wave, Pi impinging upon a rigid cylinder of radius a, to produce scattered
field Ps. The total field is the linear superposition of the incident field and the scattered wave, which includes a
reflected wave region ahead of the cylinder and a shadow region behind the body.

Fig. 4. Schematic of the arrangement of observation points used to evaluate error. Not drawn to scale.

The interaction of the harmonic incident field with the solid cylinder is as follows. The incoming plane
waves propagate in the positive x-direction and make initial contact with the cylinder at (r, θ) = (a, π).
In the area in front of the cylinder, the plane waves are reflected back onto themselves. The waves reflect
at the front of the cylinder to create a shadow region aft of the body. The length of the shadow region
is dictated by the wavenumber, with larger values resulting in a smaller shadow region. An annular grid
of 25 observation points shown in figure 4 are used to sample all of the regions of the scattered field and
determine the L2 error norm.

Figure 5 compares the transient acoustic response at a point in the acoustic field to the analytical
solution to harmonic wave forcing. Here ω = 1, κ = 2, and arbitrary point (r, θ) = (5, π9 ) are selected for
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Fig. 5. A comparison of the analytical to BEM results of the plane wave scatterer study. The image on the left
shows the fully developed scattered field. The observation point, denoted by a black circle in the left image, is
placed at the arbitrary point (r, θ) = (5, π

9
). The right image compares the time history of the scattered field at

the observation point. ω = 1 and κ = 2.

this example. Note the absence of a signal in the BEM solution until the initial scattered wave reaches
the observation point, after which the numerical solution quickly converges to the analytical result.

Temporal and spatial discretization independence of the numerical solution are shown in figure 6
for the indirect double-layer formulation (6). For the spatial convergence study, a period of T = 4π is
divided into 256 equidistant time-steps. An increasing number of elements on the boundary were used
to compare the BEM solution with (23). The temporal convergence study (figure 6-b) had a boundary
of 1024 equal length elements over a total period of T = 4π. The total period is divided into increasing
numbers of equidistant time steps. Spatial convergence occurs at approximately 512 elements, showing
a relative error of less than 0.1% when using more than 256 time steps.

Fig. 6. Spatial and temporal convergence of the indirect double-layer formulation for a single scatterer. The sam-
ple of 25 points in the field is compared to the analytic solution of the plane wave case for this spatial convergence
study. The L2 norm is calculated at time steps after the field becomes fully developed at the observation location.

3.2 Multiple scatterers

To underscore the capabilities of an FMM-accelerated BEM solver, a problem involving many degrees
of freedom is now proposed. The model problem consists of a ring of cylinders arranged into a circular
pattern that is bombarded impinged by a plane wave from the acoustic far field. If the spacing between
cylinders is sufficiently small and the ring is acoustically compact, then the resulting scattered field will
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be qualitatively similar to the plane wave study of §3.1. A spatial convergence study is performed across
the scattered field in a manner similar to §3.1.

The ring of cylinders is composed of 36 cylinders each with a radius of a/20, as shown in the schematic
of figure 7. The vertical and horizontal spacing between cylinders is the same as the radius of the
individual cylinders. The radius of the system of cylinders is approximately unity, a ≈ 1. The indirect
double-layer distribution defined by (6) is used to find the boundary strengths. Table 1 shows system
convergence of relative error, where a reference case of 16,384 elements per cylinder was used to compute
the L2 norm. The multibody system requires considerably more elements to reach convergence than the
simple scatterer of §3.1. This increase in resolution should be expected, as the boundary must account
for the interaction of a cylinder with the incoming wave in addition to the scattered fields of the other
cylinders. The total time period of the simulation is T = 8π and is discretized into 128 equally spaced
time steps. The acoustic field calculation is performed over the annular grid found in figure 4. All of the
time calculations include the field evaluation step. The evolution of the acoustic field for the multiple
scatters can be seen in figure 7. The given wave speed and radial dimension of the multiple scatterers is
κa = 2, resulting in a scattered field similar to that of figure 5. The interior of the ring of cylinders can
be observed as the spacing of the system allows the plane wave to penetrate this area. A comparison of
the scattered acoustic field with the analytic solution (23) of a single scatterer is shown in figure 7.

Elements per cylinder Total Elements L2 norm Time(s)

128 3968 0.909 108

256 7936 0.498 155

512 15872 0.285 256

1024 31744 0.149 478

2048 63488 0.079 802

4096 126976 0.035 1642

8192 253952 0.012 3047

16384 507904 reference 5889
Table 1. A ring of 36 cylinders is bombarded by an incoming plane wave. The simulation has to have 128 time
steps over a period of 8π, and the number of elements doubles for each successive simulation. The most resolved
system is designated the reference solution to compute the relative L2 error for the less resolved cases. Each
simulation was computed with an IntelR© CoreTM i7-4930K CPU @ 3.40GHz with 64 GB of RAM.

3.3 Transient multibody scattering

Figure 8 depicts a system with four cylinders designed to illustrate the transient interactions among
multiple bodies. A single soliton wave is used for transient acoustic forcing instead of a harmonic field.
The wave has a form

Pi = 2 sin(ω(t− x)) sin(ωλ) exp

(
−
[
t− x
λ2

]2
)
/λ2,

where λ is the wavelength. The radius of the scatterers is equal to λ for the configuration shown in the
schematic of figure 8. The soliton wave has a single interaction with each rigid body, whose scattered field
then interacts with neighboring scatterers. Figure 8 illustrates the interactions between four irregularly-
placed rigid bodies. Primary scattering off of the two left-most bodies can be seen in images (a→ d). By
image (g), secondary scattering can be observed near the left-most body. The scattered waves continue
to reflect off of the other cylinders as the incoming wave completes its movement across the arrangement
of cylinders.

4 Noise production of a small idealized fish school

The validation of the acoustic solver in §3 enables the investigation of vortex sound generated by pre-
scribed wakes interacting with fish, modeled as two-dimensional rigid foils. The noise generation of
swimming schools of fish has historically received little attention due to the challenges associated with
recording reliable sound from specific species and the low amplitude noise associated with fish locomo-
tion [5]. Presented here is an approximation of the scattered noise due to interaction with the wake from
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Fig. 7. Image (a) shows a schematic of the multiple-scatterer problem. Image (b) is a comparison of (23) with
the BEM scattered field of multiple bodies at arbitrary observation point (r,θ) = (9.2,π

4
). After two periods,

the scattered wave reaches the observation point and good qualitative agreement is seen. Image (c) depicts the
progression of the scattered field due to a plane wave over one period is shown below, developing in order (a→f).
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Fig. 8. An incident soliton wave impingement onto a collection of staggered cylinders. Images (a→i) illustrate the
transient total acoustic field arising from primary and secondary scattering of a single wave by multiple bodies.
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a leading fish in an idealized school. The wake is treated as an acoustic forcing function for the BEM
described in §2, allowing observation of how the scattered acoustic field interacts in an idealized school.

An idealized model is now put forth to approximate a school of fish configuration and is used to find
the scattered noise due to wake interaction in the school. A school of four fish is set into a diamond shape
[25] at a distance of one chord between the fish [19]. A diamond arrangement of three static NACA 0012
airfoil cross-sections are used to define the solid boundary of the school of fish. The spacing of the fish is
set to one fish length [19], at 45◦ from the tail of a swimmer to the follower’s front. The wake generated
by a fish swimming rectilinearly would not impinge on its body, allowing the replacement of the leading
fish with a characteristic wake.

The characteristic wake of an individual fish is approximated here as a vortex street that would be
observed downstream [4]. Two common wakes that can be observed downstream of a fish are the 2S wake
(two single vortices per stroke cycle, also known as a reverse von Kármán vortex street) and a 2P wake
(two pairs of vortices per stroke cycle) [24]. The strength and spacing of the vortices in the prescribed
wake can be expressed as a function of the Strouhal number, St = fA/U , where A is the amplitude
of motion, f is the frequency of tail beats, and U is the velocity. For the study, a length of 0.1 m, a
velocity of 1 m/s, and an amplitude-to-length ratio of 0.2 are used to model the fish and the kinematics
of the lead fish. The strength and distance of the vortices are based on these values and the Strouhal
number. The strength of circulation (Γ = 2π tan−1(π St)), frequency (f = U∞ St/b), and the horizontal
(a = U/f) and vertical (b = A) spacings are the parameters for the study.

Fig. 9. A schematic of a the 2S vortex street interaction is shown. The leading fish is a virtual body that is
replaced by the idealized vortex street. In the vortex street, blue indicates negative vorticity and red is positive
vorticity. The vortex blobs in the street are spaced horizontally by distance a vertically by distance b. The fish
have a length of L, which is used as the spacing between the fish.

Fig. 10. A schematic of a the 2P vortex street interaction is shown. The virtual leading fish creates an idealized
two pair, 2P, vortex street. In the vortex street, blue indicates negative vorticity and red is positive vorticity. The
vortex blobs in the street are spaced horizontally by distance a vertically by distance b. The pairs of vortices are
horizontally spaced by b, with each pair being the same distance from the centerline of the trailing fish. The fish
have a length of L, which is also the spacing between the fish.

Figures 9 and 10 show the setup of the frozen 2S and 2P vortex streets as they advect linearly
with the free stream past the other idealized fish. Vorticity in a vortex core is represented by a radially
symmetric Gaussian blob. The Biot-Savart law is applied to determine velocity components for each of
the vortices, yielding [3]:

u(x, t) =

N∑
i=1

−x′ Γi
2πr2

(
1− exp

(
−r2

2r2
cut

))
, (24)
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v(x, t) =

N∑
i=1

x Γi
2πr2

(
1− exp

(
−r2

2r2
cut

))
, (25)

where rcut = ∆tU∞ is the cut-off radius of the blobs, Γ is the circulation of the vortex blob, and
r = x2 + x′2 [15]. The time step is chosen to ensure the core of a vortex does not intersect the solid
geometry. At each time step the velocity induced by the vortices is defined by the Biot-Savart law. The
velocities induced by the vortex street are then used as the boundary condition to the BEM formulation
in §2. The motion of the vortices are idealized, as a more realistic model would feature vortex motions
that are directly influenced by the flow induced by each of the rigid bodies.

The limitations of the present numerical approach are listed here. The vortex street is defined and
then translated at fixed speed over the idealized school of fish. Therefore, the dynamical interaction
between the vortices and bodies is neglected. The numerical model also neglects several potential acoustic
features that would be found in an actual school of fish. The most notable of these features is the lack
of a background flow, which would generate a boundary layer and subsequent trailing-edge noise as well
as require a Kutta condition and a wake behind swimmers, which would affect the overall school noise
signature.

The system of foils is subject to an semi-infinite vortex street, that starts and ends at ±15U∞∆t from
the front and back of the school of fish. This ensures that the end of the vortex street does not have an
effect on the velocity induced onto the bodies, allowing the school to reach a steady state. Each of the
foils, acting as a proxy to a fish, is approximated by 4096 boundary elements. A series of 16 vortex pairs
are allowed to pass through the system. Each period, 1/f , is discretized with 32 equidistant time steps.

When a steady state is achieved, a time-average of the acoustic intensity is determined by

< I >=
1

T

∫ T

0

|p(τ)|2

ρc
dτ, (26)

where T is the period of a passing 2S or 2P vortex system, corresponding to a cycle of fish tail motion.
The increasing circulation does not necessarily correspond to a greater intensity, as can be seen in

figure 11. Figure 11 plots an average intensity that is scaled by the square of the circulation , with the
2P being scaled by 4Γ 2(St) as the system has twice as much circulation per pair. The 2S system shows
a decreasing intensity as the Strouhal number rises, while the 2P system shows a maximum intensity
for St ≈ 0.2. The 2P street configuration initially has a lower intensity than the 2S, then it rises to a
maximum intensity at St ≈ 0.2, before decreasing as the Strouhal number increases similar to the 2S
street. A plateau of acoustic intensity is seen for the 2S street for 0.3 < St < 0.4 in figure 11, where
the 2P street has a slightly greater intensity than the 2S counterpart. A similar, but not as prominent,
plateau is seen for the 2P street configuration in the range of 0.3 < St < 0.4. The observation of an
intensity plateau for that range of Strouhal numbers is interesting as this is the regime of Strouhal
numbers where efficient swimming typically occurs. A rapid decrease for both street configurations is
observed for St > 0.4, which is outside of the Strouhal range of what is generally considered an efficient
swimmer [4].

Figure 12 shows an example of a near-field scattered pressure field of a 2S wake interacting with
the foil arrangement at St = 0.3, which is a common wake structure and Strouhal number observed
in swimming fish. The definition of prescribed circulation results in increasing values with increasing
Strouhal number. The bottom row of figure 12 show the directivity of the average acoustic intensity for
the 2S and 2P streets over the range of Strouhal numbers. The directivity is measured at 10 fish lengths
from the center of the school. The 2S vortex streets are dominated by forward scattering of noise, which
decreases as the Strouhal number increases. For intermediate Strouhal numbers, (0.275 < St < 0.325), a
many-lobed directivity pattern is observed. The pattern is created when the middle two foils scatter the
pressure wave as it propagates from the rear foil. Figure 12 (b→ d) shows directivity plots for different
ranges of Strouhal number where it can be observed that there is a switch from a front scattering to a
backward scattering pattern as the Strouhal number increases. Although these are only idealized results
that neglect some noise sources, further investigations into the noise production of fish could help to
deepen our knowledge of predator/prey interactions. If predators swim at higher Strouhal numbers,
(St > 0.35), they could scatter noise backwards, effectively making them silent to any prey in front of
them. In addition, the field in front the predator would be less polluted by noise scattered off of their own
body, making the back scattered noise of low Strouhal number swimmers easier to detect. Similarly, these
directivity patterns could be used in the design of silent bio-inspired underwater vehicles. Modulating
the Strouhal number of swimming a school of bio-robotic devices could dramatically alter their sound
directivity from forward to back scattering, providing a silent region behind or in front of the device.
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Fig. 11. A scaled maximum intensity for a range of Strouhal numbers are shown for a Strouhal range, 0.1 < St <
0.5. The scaling is n2Γ 2(St), with n = 1 for the 2S street and n = 2 for the 2P street. The average intensity
is found after steady-state is reached. Three sections of the plot are labeled (b → d) , which correspond to the
directivity plots of figure 12.

5 Conclusions

This chapter presents a rapid transient, two-dimensional acoustic boundary element method based upon
a double-layer formulation developed to examine the sound field produced by idealized vortex wakes of
schooling fish. The resulting time-domain solver is validated and demonstrated to predict the scattered
noise and the acoustic interaction between several rigid bodies. The time-domain boundary element
method was accelerated with a fast multipole method to enable rapid evaluation of the acoustic field
interactions generated by many bodies.

The boundary element method is further applied to examine the sound produced by an idealized school
of fish. The wake of a virtual leader fish is fixed and moved past a formation of three rigid, static foils (fish)
in the absence of a background mean flow. The simplified model presented demonstrates how the leading-
edge noise of an idealized school varies over a range of Strouhal numbers that are typical of swimming
fish. The directivity of the noise has a large variation within the range of Strouhal numbers examined.
At lower Strouhal numbers (0.1 < St < 0.25) a forward scattering of the wake dominates the field while
the directivity pattern transitions to a back scattering pattern for higher Strouhal numbers (St > 0.3).
The acoustic intensity decreases as the Strouhal number increases for the 2S street configurations, with
a similar pattern for 2P streets occurring after a maximum intensity is found at St ≈ 0.2. The Strouhal
range of 0.3 < St < 0.4, commonly considered part of the range of efficient swimming, exhibits a plateau
of acoustic intensity. Outside of the range of efficient swimming a sharp decrease in acoustic intensity is
observed. Future work will examine the impact of a background flow, the formation of unsteady wakes
from the swimmers, and the three-dimensionality and viscous effects of the flow.
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