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Abstract

Proper selection of kinematics and bending pattern of the
propulsive surfaces are the key elements for utilizing fast and
efficient propulsion. St number is one of the most important
kinematic input parameters to a flapping system and it has
been both experimentally studied and observed in nature that
0.2 < St < 0.4 is the most efficient propulsion range. However,
recent work has shown that for optimum efficiency, the St num-
ber of the system should be as high as possible without leading
any seperation from the propulsive surface. The drawback of
high St number flapping is that it leads to the deflection of the
vortex street for rigid propulsors which reduces the propulsive
performance. Nonetheless, it is reported that adding chordwise
flexibility flattens the deflected jets up to St→∞ limit. To study
the flow structures behind flexible airfoils at high St numbers,
a two dimensional boundary element fluid solver is developed
and strongly coupled with a torsional spring structural model.
The effect of the stiffness of the torsional spring and its location
on flow structures are investigated.

Introduction

Fishes control their flexible appendages either actively or pas-
sively to propel themselves. The flexibility of the appendages
has a major impact on the performance characteristics. A vast
number of studies are conducted to understand the effect of es-
pecially chordwise flexibility of the propulsors and the optimum
kinematics to drive them[see 14 for a review]. Gains of both
thrust generation and efficiency is observed with proper selec-
tion of kinematics and structural stiffnesses which eventually
dictates the bending pattern over the propulsor[2,12].

An important kinematic parameter of a flapping system is
Strouhal number, which is defined as St = f A/U , where f is
the flapping frequency of the propulsor, A is the amplitude of
motion and U is the cruising speed. Experiments and data col-
lected from nature suggested that St number of a system should
be within an interval of 0.2 < St < 0.4 for efficient propul-
sion[1,15]. However, Eloy in 2012 documented the St numbers
of marine animals and reported that some animals swim with St
numbers of well above 0.4 in their natural gaits[3]. Recently,
Quinn et al. conducted an experimental optimization study on
heaving and pitching panels and their observations extended the
previously stated St number conservation law[11]. They docu-
mented that the efficency is globally maximized when the St
number of the system is as high as possible without any sepera-
tion.

One drawback of high St number swimming is that velocity jet
becomes deflected at some angle to the free-stream direction
for St > 0.4[4]. This phenomenon reduces the performance of
rigid foils. However, using flexible flap extensions at the trailing
edge of the foils prevented deflected jets in the St number limit
of infinity[9,13].

The flexibility of the propulsors is mostly evaluated in terms of
the material properties such as elastic modulus or bending stiff-
ness. Nonetheless, nature exhibits a vast number of different
flexibility properties. It becomes complicated for engineers to

generalize the flexibility properties of biology and reverse en-
gineer it. In this respect, instead of generalizing the common
sense properties, Lucas et al. looked at the bending patterns of
various swimming and flying animals[7]. Based on their mea-
surements, they reported a universally observed propulsor bend-
ing pattern. The flexion ratio of the propulsor is confined to a
narrow interval of 0.55 <flexion ratio< 0.75, where flexion ra-
tio is defined as the ratio of the length from propulsor’s leading
edge to the inflexion point to the total length of the propulsor in
spanwise direction. Recently, Lucas et al. extended this find-
ing to the chordwise direction by conducting experiments on
functionally graded, heaving and pitching panels[8]. The op-
timum efficiency is observed for 2/3 rigid, 1/3 flexible panel
which gives a chordwise flexural stiffness of 2/3.

In light of the above observations, we conducted a computa-
tional study to compare the flow structures of rigidly heaving
airfoils and flexible-hinged pitching airfoils. Different hinge
points, as flexion ratios, and various flexibilities are investigated
to understand the neutralization of the deflected jet characteris-
tics.

Analysis

Computational Model and Validation

To model a high Reynolds number fluid flow around the airfoils,
the flow field is modeled as a potential flow. In the potential flow
approximation, the continuity equation reduces to the Laplace’s
equation, ∇2φ = 0. Following Katz&Plotkin, the solution to
Laplaces equation is found by distributing source and doublet
singularities on the problem boundaries[5]. The boundary con-
ditions of the problem are;(1) the velocity component normal
to the body’s surface must be zero(no-flux boundary condition),
(2) the disturbance created by the flow should decay far from
the body(far-field boundary condition). The elementary solu-
tions of the doublet and source both automatically fulfill the far-
field boundary condition. No-flux boundary condition requires
constant velocity potential inside the boundaries. Therefore, a
general solution to the Laplace’s equation can be written for an
arbitrary point(P) within the flowfield as;
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where σ and µ are the strengths of source and doublet elements
on the boundaries, respectively and φi(P) is the velocity po-
tential of an arbitrary point within the boundaries. Setting the
internal velocity potential to zero, φi(P) = 0, reduces the solu-
tion to finding the strengths of the sources and doublets over the
known boundaries. To solve the problem numerically, the ge-
ometry is divided into N panels, as shown in the Figure 1, and
the integration is performed for each panel such that;
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Figure 1: Illustration of a tear drop airfoil utilizing a pure pitch-
ing motion with the panel edge points are shown as dots on the
surface. Different sign vortices are shown with different colors.
The inflexion point where the spring is located is shown as a
square on the mid-chord line.

where

C j =−
1

2π

∫
panel

∂(lnr)
∂n

dS| j

and
B j =

1
2π

∫
panel

(lnr)dS| j

At every time step, a panel element with a known doublet
strength advects from the trailing edge with local velocity, rolls
up and forms vortices in the wake region(See Figure 1). During
the rollup process, the ends of the wake doublet elements, which
are point vortices, must be de-singularized for the numerical sta-
bility of the solution[6]. At a cutoff radius of ε/c = 2.5×10−4

, the irrotational induced velocities from the point vortices are
replaced with a rotational Rankine core model. The tangential
perturbation velocity is found by local differentiation of the ve-
locity potential. Then the pressure field acting on the body is
calculated using unsteady Bernoulli equation.

A torque balance is forced on the leading edge of the airfoil to
calculate the final position of the airfoil at each time step. Struc-
tural solver iterates the the airfoil position until the torque bal-
ance of inertial, fluid and spring forces is satisfied. An Aitken
adaptive under relaxation method is used to prevent numerical
instabilities and guarantee convergence.

The in-house developed solver is validated against an analytic
model, so called torsional flexibility model, where a torsional
spring is attached to the leading edge of a rigid airfoil. Nick
Moore obtained exact solutions for thrust and power by lin-
earizing incompressible Euler equations using small amplitude
motion assumption[10]. For the validation cases, we actively
controled the leading edge of the thin airfoil with a small am-
plitude heaving motion and trailing edge followed with passive
pitching. The results are shown in Figure 2 for 3 different K val-
ues, which is a non-dimensional parameter, measures the spring
stiffness compared with fluid forces; K = κ/ρU2

∞c2, where κ is
the torsional spring constant, ρ is the fluid density, U∞ is the
fre-stream velocity and c is the chord length. We observed a
remarkable collapse of our simulation results with the analyt-
ical model, for both thrust and power coefficients as the non-
dimensional driving frequency, σ, is varied, σ = π f c/U∞.

Problem Formulation

Computations are performed on two-dimensional 5% thick
teardrop airfoils undergoing pitching motion. The flow struc-
ture of functionally graded airfoils are compared against rigid
airfoils. Functionally graded airfoils are modelled as a rigid
leading edge side and a passively pitching trailing edge side. A
hinge point or the inflexion point, which is modelled with a tor-

Figure 2: Coefficent of thrust and power as a function of re-
duced frequency. Solid lines show the analytical results for 3
different K values and black dots are our simulation results

sional spring, is seperating the rigid and the passively pitcing
parts. Two different flexion ratios(0.3-0.7) are studied among
with the rigidly pitching airfoil at a fixed St number(0.5), where
St number is defined based on the rigid’s airfoil tip-to-tip am-
plitude. The torsional spring constant(κ) is also varied to under-
stand the effect of flexibility of the hinged portion on the flow
structures.

For all computations, frequency of pitching and free-stream ve-
locity are set to f = 1Hz and 0.1m/s, respectively. A virtual
drag law is applied on airfoils to satisfy a steady state solution
in an inviscid environment. For high Reynolds numbers, drag
law is D = 1

2CdSwU2 where ρ is the density of the fluid, Cd is
the coefficient of drag, Sw is the wetted surface area and U is
the free-stream velocity.

Results and Discussion

Jet deflection behind the airfoils at high St numbers reduces the
performance of propulsors. In literature, deflected jets started
to be seen for St numbers larger than 0.4[4]. To prevent jet
deflection at the operating St number of 0.5, we introduced a
hinge point to a rigid airfoil and study the functioanally graded
material effects on flow structures.

In Figure 3(a), for the rigid airfoil, it is clear that the vortex
street is at an angle to the horizontal axis. Two different flexion
ratios, 70% and 30%, and the flow field behind them are seen
in Figure 3(b) and 3(c), respectively. A K value of 6 is selected
for both cases. Two snapshots of the same airfoil represent two
phases that are π radians apart in the same cycle. The deflection
is recovered with the addition of the passively pitching part for
both cases. The mechanism of recovery, however, is different.
In the case 70% rigid airfoil, trailing edge amplitude is small
compared to the driving amplitude all over the cycle. Thus,
vortices form a straight street in between the narrow amplitude
range of the trailing edge. In the 30% rigid case, on the other
hand, trailing edge undergoes a larger amplitude motion. Initial
width of the vortex street is larger in compared to the 70% rigid



Figure 3: The comparison of a rigidly pitching airfoil(a), with
airfoils of different flexion ratios; 0.7(b) and 0.3(c). Two snap-
shots are taken π radians apart in the same cycle. St number is
fixed at 0.5 and a K value of 4 is used for the airfoils with the
hinge points

case and eventually jet width grows with a higher rate as well.
The flowfield resembles the Shinde and Arakeri’s experimental
observations[13]. The duration of the trailing edge excursion
from one end to the other is greater than the rigid airfoil’s travel-
ling time. This allows more time for the shed vortices to convect
further downstream which in turn prevents the dipole formation
and jet inclination. Furthermore, for both hinge point locations,
each time the trailing edge changes direction, one strong vortex
and a weak same sign vortex are shed.

Investigating the natural frequencies of the foils with different
inflexion points explains the contrast observed in trailing edge
amplitudes. Nick Moore documented a fast way to calculate the
resonant frequency of a flapping wing which, as well, can be
used in our case[10];

fr ∼
1
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where I is the airfoil’s moment of inertia and Ia is the added
fluid inertia for a thin plate rotated about an endpoint which
is approximated as Ia = 9πl4/128 in our case(l is the length
from the hinge point to the trailing edge). We found out that
the natural-resonance frequency of the 70% rigid airfoil is more
than 9 times larger than the driving frequency. This small ratio
of f/ fr leads to small amplitude pitching response of the trail-
ing edge. However, for the 30% rigid case, f/ fr ≈ 0.5 which
yields a maximum trailing edge amplitude of the same order
with the input driving amplitude.

Since the driving frequency is well below the resonance fre-
quency in the first set of simulations, we chose a lower K value
of 1 to understand the flow response at around resonance fre-
quency of the system. The same St number and inflexion points
are used for the next set of experiments. In Figure 4(a) and 4(b)
two snapshots are shown associated to the 70% and 30% rigid
airfoils. For the 70% rigid case, the f/ fr ≈ 0.6 which explains

Figure 4: Comparison of airfoils with two different flexion ra-
tios of 0.3 and 0.7. St number is fixed to 0.5 and a K value of
1 is used for both cases. Snapshots are taken π radians apart in
the same cycle.

the large amplitude pitching of the trailing edge. The flowfield
becomes staggered and for each time trailing edge changes di-
rection, a pair of relatively same strength vortices is being shed
which makes positive and negative angles to the horizontal axis.
Flow field resembles a 90◦ rotated growing v letters in down-
stream direction, where each v is associated to another oscilla-
tion cycle.

For the 30% rigid case, f/ fr ratio goes above 1 and is approx-
imately 1.4. Once the driving frequency passes the resonance
frequency of the system, flow field becomes more stable. At ev-
ery extreme of pitching, one strong vortex is being shed. Over-
all, flow field resembles a reverse Bernard von-Karman vortex
street.

Conclusion

In conclusion, in consistent with the previous literature, we ob-
served that adding a flap like passively pitching portion to a
rigid airfoil prevents the jet deflection. The mechanisms stabi-
lize the vortex street, however, are different. Driving the airfoil
well below its resonance frequency leads to a narrow jet due to
the small amplitude motion of the trailing edge. This, in turn,
restricts the vortex shedding to a small width and flattens the
jet. On the other hand, driving the airfoil at or around the res-
onance frequency of the structure leads to a wider wake. Since
the trailing edge excursion is larger in compared to the rigid
airfoil case, this extra time in between successive sheddings,
allows the vortices to be apart of each other. This mechanism
eventually prevents the dipole formation and jet inclanation.

As f/ fr is systematically decreased an interesting pattern is ob-
served on the flow structures. Once the ratio is on the order of
0.5 or smaller, a strong and a weak same sign vortices are shed
at every time trailing edge changes direction. Further increas-
ing the ratio, flow field first resembles 90◦ rotated growing v
letters where a pair of counter rotating vortices at the extremes
of the oscillations. Finally, going above the structural resonance
frequency leads the flow field to become a reverse Bernard von-
Karman vortex street.
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