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Effect of Nonuniform Flexibility
on Hydrodynamic Performance
of Pitching Propulsors
Many aquatic animals propel themselves efficiently through the water by oscillating flexi-
ble fins. These fins are, however, not homogeneously flexible, but instead their flexural
stiffness varies along their chord and span. Here, we develop a simple model of these
functionally graded materials where the chordwise flexibility of the foil is modeled by one
or two torsional springs along the chord line. The torsional spring structural model is
then strongly coupled to a boundary element fluid model to simulate the fluid–structure
interactions. We show that the effective flexibility of the combined fluid–structure system
scales with the ratio of the added mass forces acting on the passive portion of the foil and
the elastic forces defined by the torsional spring hinge. Importantly, by considering this
new scaling of the effective flexibility, the propulsive performance is then detailed for a
foil with a flexible hinge that is actively pitching about its leading edge. The scaling
allows for the resonance frequency of the fluid–structure system and the bending pattern
of the propulsor to be independently varied by altering the effective flexibility and the
location of a single torsional spring along the chord, respectively. It is shown that
increasing the flexion ratio, by moving the spring away from the leading edge, leads to
enhanced propulsive efficiency, but compromises the thrust production. Proper combina-
tion of two flexible hinges, however, can result in a gain in both the thrust production and
propulsive efficiency. [DOI: 10.1115/1.4041976]

1 Introduction

Flying and swimming animals propel themselves rapidly and
efficiently through a fluid using flexible propulsors. A substantial
line of work has already confirmed that flexible propulsors are
advantageous to rigid ones in aquatic locomotion, specifically
with regard to propulsive efficiency [1–4]. Some have argued that
the interactions between the fluid and the structure deform the foil
in the direction of the fluid. These deformations lead to curvature-
induced thrust increases [5] as well as a favorable phase lag
between the pitching and heaving motions of the foil, which in
return enhances propulsive efficiency [6,7]. In addition, the occur-
rence of resonance is argued to play an important role in enhanc-
ing propulsive performance of flexible foils. Previous studies have
shown that the efficiency is maximized at or near the resonance
frequency of the combined fluid–structure system [3,4,8]. The res-
onance frequency of the combined system is a function of the
inertial properties of the structure as well as the added mass aris-
ing from inertia of the fluid. However, when the flexibility is vari-
able along the chord, the scaling of the resonance frequency of the
fluid–structure system is nontrivial, a topic that we will attend to
in this study.

The propulsive appendages of swimming and flying animals are
made of functionally graded materials where the flexibility varies
both along the chord and span. In fact, Combes and Daniel [9]
measured the flexural stiffness of several insect wings and found
that it declines sharply from the wing base to wing tip, in the span-
wise direction, and from the leading edge to the trailing edge, in
the chordwise direction. Similarly, the flexibility of the propulsive
surfaces of swimming animals (such as fluke, fin, and tail) appears
to be nonuniform and declines from the leading to trailing edge
and from the center to the edges [10–12]. Inspired by these obser-
vations, a number of recent studies have suggested that the distri-
bution of the flexibility along the foil, in addition to its overall
flexibility, may play an important role in enhancing the propulsive

performance. Comparing different distributions of flexibility
along a two-dimensional thin foil undergoing small amplitude
heaving motions, Moore [13] has suggested that the concentration
of the flexibility at the leading edge enhances thrust production. In
another study, Riggs et al. [14] have tested the thrust production
of a flexible fin with a standard NACA0012 cross-sectional shape
alongside fins with stiffness profiles mimicking that of a Pumpkin-
seed Sunfish. They showed that biomimetic fins generate more
thrust regardless of the overall stiffness of the fin, showing that
the performance improvement is due to the stiffness profile itself
and not the flexibility alone. Similar conclusions were found by
Kancharala and Philen [12] in an experimental study on the pro-
pulsive performance of robotic fins with variable chordwise flexi-
bility. They found that fins with variable flexibility outperformed
the fins with uniform flexibility with regard to both thrust produc-
tion and propulsive efficiency.

Here, we aim to probe the effect of the distribution of flexibility
on the propulsive performance of a pitching foil by separating the
effect of the overall flexibility of a pitching foil from that of its
bending pattern. We model the chordwise flexibility of the foil
with a series of torsional springs with varying flexibility. The
effect of the bending patterns is modeled via changing the location
of the spring along the chord. First, we investigate the propulsive
performance of a pitching foil with a single flexible joint. We
detail the effect of both the overall flexibility and the bending pat-
tern of the foil. Next, we repeat our numerical experiment on a
pitching foil with two flexible joints. This time the location of the
flexible joints is fixed but the distribution of the flexibility is var-
ied. This study is a primary step toward understanding the role of
the functionally graded materials on the propulsive performance.
The results of this study can also inspire design of innovative and
nontraditional propulsors.

2 Problem Definition

All the numerical experiments are performed on a two-
dimensional foil where the leading edge of the foil is actively
pitching with a peak-to-peak amplitude of 2h0¼ 10 deg. There are
either one or two flexible joints along the chord modeled by tor-
sional springs (Fig. 1). The distance of the flexible joint from the
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leading edge, normalized by the chord length, is quantified by the
flexion ratio, k. The flapping frequency and swimming velocity
are kept constant across these simulations at 2.87 Hz and 0.1 m/s
resulting in a reduced frequency of k¼ 2.87 (defined as k ¼ fc=U)
for a chord length of c¼ 0.1 m, and a Strouhal number (defined as
St ¼ fA=U) of 0.5. This St is defined for a rigid foil without a flex-
ible joint. However, the real St of the flow is an output of the sys-
tem and varies with the trailing edge amplitude, which itself is a
function of the flexibility and flexion ratio.

For materials with similar densities as those of the surrounding
fluid (in the present study qs¼q), the flexibility of the combined
fluid–structure system is a function of the added mass forces of
the fluid and the elastic forces of the structure. We define Pk as
the ratio of these forces, which characterizes the effective flexibil-
ity of the combined fluid–structure system

Pk ¼ 1� k2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qbc4f 2

kh

s
(1)

where q, f, c, and kh, respectively, are the fluid density, pitching
frequency, chord length, and the spring stiffness. The numerator is
the added mass force represented as a cylinder of fluid with a
diameter equal to length of the passive portion of the foil multi-
plied by a characteristic acceleration. When only added mass
forces are modeled, Pk is directly proportional to the ratio of the
driving and resonance frequencies.

Both flexibility and flexion ratio are changed, and their effect
on the propulsive performance is detailed. The performance is
analyzed using thrust and power coefficients as well as the propul-
sive efficiency, which are defined below:

Ct ¼
T

0:5qU2bc
; Cp ¼

P

0:5qU3bc
(2)

where T and P are the time-averaged thrust and input power, and
b is the span length that is set to unity. P is calculated by integrat-
ing the fluid moment generated by each body panel about the lead-
ing edge multiplied by the angular rate of the leading edge.
Alternatively, we normalized thrust and power with the added
mass forces as defined in Eq. (3). Note that the trailing edge
amplitude is an output of a flexible foil system

C0t ¼
T

0:5qA2f 2bc
; C0p ¼

P

0:5qUA2f 2bc
(3)

where A is the trailing edge peak-to-peak amplitude.

3 Numerical Methods

The flow over the foil is modeled using a two-dimensional
potential flow method where the flow is assumed to be irrota-
tional, incompressible, and inviscid. We follow Refs. [15] and
[16], in that the general solution to the potential flow problem is
reduced to finding a distribution of doublets and sources on the
foil surface and in the wake that satisfies a no-flux boundary con-
dition on the body at each time-step. Constant strength source and
doublet line elements are distributed over the body and the wake.

Each body boundary element is assigned a collocation point,
which is shifted a small distance under the body surface (here 1%
of the local thickness of the body). The constant potential Dirich-
let condition is enforced at the collocation points to ensure a no-
flux boundary condition on the body surface. Additionally, at each
time-step a wake boundary element is shed with a strength that is
set by applying an explicit Kutta condition, where the vorticity at
the trailing edge is set to zero [17–19]. A wake rollup algorithm is
employed to ensure that the wake does not support any force. The
wake elements advect by the local velocity at the wake panel edge
points. During the wake rollup, the point vortices, representing the
ends of the wake doublet elements, must be de-singularized for
numerical stability of the solution [20]. To do so, at a small cutoff
radius of �¼ 0.05c, the irrotational induced velocities from the
point vortices are replaced by a rotational Rankine core model.
The tangential perturbation velocity component is calculated by
local differentiation of the perturbation potential. Finally, the
pressure acting on the body is found via applying the unsteady
Bernoulli equation. More details can be found in Refs. [15,21,22].

The structural flexibility is modeled via torsional springs, which
connect the structural mesh elements together. The kinematics of
the leading structural element is always prescribed. The following
equation governs the dynamics of the passive structural elements

I €H þ C _H þKhH ¼ Nf þ Ni þ Nh (4)

where Nf is the hydrodynamic moment exerted about the flexible
joint location, Ni is the inertial moment due to the translational
velocity of the center of mass of the corresponding element, Nh is
the moment exerted by the forces at the joint, which keep the ele-
ments together, I is the matrix of moments of inertia about the
joint locations, and Kh and C are the matrices of the structural
stiffness and damping, respectively. Also, H is a vector containing
the orientation of the passive elements. For a foil with two flexible
joints, we have

I�
I1 0

0 I2

" #
Kh�

kh1
þkh2

�kh2

�kh1
kh2

" #
C�

c1þ c2 �c2

�c1 c2

" #
(5)

where Ii is the moment of inertia of the ith element, and ci and khi

are the structural damping and the stiffness of the spring attached
to the leading edge of the ith element.

To solve the fluid–structure interaction problem, Eq. (4) is dis-
cretized in time, using the trapezoidal rule (Eqs. (6) and (7)), and
solved within each small time-step via a strong coupling between
the fluid and structural solvers, which is accelerated by the Aitken
method. To improve the convergence properties of the solver,
while keeping its efficiency, we use two different time-step sizes
Dt and Dts for the fluid and structure solvers, respectively, where
Dts ¼ Dt=Ns. Ns is set to 100 in the present simulations

Ĥ
mþ1 ¼ Ĥ

m þ 1

2

_̂H
m

þ _̂H
mþ1

� �
Dts (6)

_̂H
mþ1

¼ _̂H
m

þ 1

2

€̂H
m

þ €̂H
mþ1

� �
Dts (7)

where superscripts m and mþ 1 represent the values at times tm
s

and tmþ1
S , respectively, and x̂ represents any variable x within the

structure solver. Substituting Eq. (7) into Eq. (6) and solving for

€H
mþ1

, we get

€̂H
mþ1

¼ 2

Dts

� �2

Ĥ
mþ1 � Ĥ

m
� �

� 4

Dts

� �
_̂H

m

� €̂H
m

(8)

Similarly, Eq. (6) can be rearranged to get an expression for
_̂H

mþ1

as a function of Ĥ

_̂H
mþ1

¼ 2

Dts
Ĥ

mþ1 � Ĥ
m

� �
� _̂H

m

(9)

Fig. 1 Schematic of the model for a single spring
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where the right-hand sides of both Eqs. (8) and (9) are known
from the previous iteration.

Substituting Eqs. (9) and (8) into Eq. (4), we can rewrite the
governing equations as a linear, but coupled, system of equations
as follows:

AĤ
mþ1 ¼ b̂

m

A ¼ Kh þ
2

Dts

� �2

I þ 2

Dts

� �
C

b̂
m ¼ 2

Dts

� �2

IĤ
m þ 4

Dts

� �
I

_̂H
m

þ I
€̂H

m þ 2

Dts

� �
CĤ

m

þ C
_̂H

m

þ N̂
m

i þ N̂
m

f þ N̂
m

h (10)

Equation (10) together with Eqs. (6) and (7) forms a complete set
of equations for the structure. The set of structure equations are
first initialized by the known solution from the previous time-step
(of the fluid’s solver) and then iterated Ns times to advance the
solution as much as Dt. To improve convergence, Eq. (10) is
uncoupled by employing a Gauss–Seidel formulation where the
newly obtained solution for the orientation of the first element is
used to obtain the solution for the second element at each time-
step ts.

The Aitken acceleration method is commonly used in the
numerical simulation of fluid–structure interactions and is proven
to be sufficiently simple and efficient [23–25]. This method uses
the values from the two previous iterations to correct the new
solution. We employ Aitken’s method to advance the solution in
the fluid’s solver based on the residual calculated in the previous
two iterations. The residual is calculated as the difference in the
solution obtained in the structure and the fluid solvers,
ri ¼ Ĥi �Hi, where Hi is a vector representing the orientation of
the neutral axis of the foil in the fluid solver.

The solution to the coupled fluid–structure system at each time-
step tn¼ nDt is obtained by following the algorithm below:

(1) i¼ 0, r0 ¼ 1; ~H0 ¼ Hn�1;
_~H0 ¼ _Hn�1;

€~H0 ¼ €Hn�1, and
x0 ¼ 1e� 2.

(2) While krik > d
(a) i¼ iþ 1.
(b) If i> 1, modify the solution; ~Hi ¼ ~Hi�1 þ xi�1ri�1.
(c) Calculate the location of the neutral axis of the foil in

the fluid solver via known values of the leading ele-
ment and passive elements.

(d) Calculate the position and velocity of the fluid panels
on the foil surface.

(e) Calculate fluid forces and moments.
(f) Solve the solid deformations; Ĥ i;

_̂Hi, and
€̂Hi using

Eqs. (10), (8), and (7).
(g) Calculate the residual, ri ¼ Ĥi � ~H i.

(h) Calculate Aitken acceleration factor;
if i< 3, xi¼x0.
else, xi ¼ xi�1ðri�1ðri�1 � riÞ=kri�1 � rik2Þ.

(3) Update the solution for time tn; Hn ¼ ~Hi; _Hn ¼ _~Hi, and

€Hn ¼ €~Hi.

where d is set to 10�8. When the solution converges within the
nth time-step, we set n¼ nþ 1 and repeat the steps above to solve
for the next time-step.

3.1 Discretization Independence. Figure 2 shows propulsive
efficiency as a function of number time steps within an oscillation
period, Nt, and number of body panels, Np. The leading edge kine-
matics and the St are set to the same values as the main case stud-
ies. k and Pk are set to 0.8 and 0.3, respectively. Pk¼ 0.3 marks
the resonance frequency of the flow–structure system. It is evident
that g converges to the discretization independent solutions as the
number of body panels and time steps increases. The efficiency
changes by less than 4% when Npanel¼ 700 and Ntime¼ 800 are
doubled.

3.2 Validation. We tested the accuracy of our numerical
model by comparing our results against the analytical results pre-
sented in Ref. [26] for a two-dimensional thin foil with a torsional
spring at the leading edge. A small amplitude (harmonic) heaving
motion is enforced at the leading edge. The foil passively pitches
about the leading edge due to the action of fluid, inertial, and elas-
tic forces. We compared both the cycle-averaged thrust and the
cycle-averaged power with the analytical solution. The results are
shown in Fig. 3.

4 Results and Discussion

4.1 Single Flexible Joint. Figure 4(a) shows the nondimen-
sional trailing edge amplitude, A� ¼ A=Arigid, as a function of
effective flexibility for five different flexion ratios. The trailing
edge amplitude is maximum at the resonance, which occurs at
P¼ 0.3 for all flexion ratios. The coincidence of the resonance
frequency for all k shows that the proposed scaling for the effec-
tive flexibility appropriately accounts for the effect of the flexion
ratio. However, inspecting the trend of variations in A* with Pk

reveals that the effective damping of the combined fluid–structure
system increases for larger k values. It is also worth noting that
before and after resonance, higher flexion ratio foils generally
experience larger trailing edge amplitude. For flexion ratios
smaller than 0.5, the trailing edge amplitude increases with k.
This relationship is reversed for k> 0.5.

Figure 4(b) shows variations in thrust and power coefficients as
a function of Pk. Unlike the trailing edge amplitude, the thrust
coefficient is generally larger for small k rather than large values,

Fig. 2 Propulsive efficiency as a function of (a) number of time steps and (b) number of body panels
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except for very rigid foils where increasing k up to 0.5 results in a
gain in thrust. Inspecting Fig. 4(c) shows that this gain in thrust
comes with no additional cost with regard to the power consump-
tion. Ct rises up to its peak value at the resonance, for small k val-
ues, and then drops quickly with further increase in flexibility.

This is unlike the behavior of Ct for large k values where the
thrust plateaus before resonance and then drops with a mild slope
when flexibility increases. It is worth noting that for all flexion
ratios, Ct increases faster than Cp until slightly after resonance.
This is reflected in Fig. 4(d) where we show changes in the pro-
pulsive efficiency, defined as g ¼ Ct=Cp, as a function of Pk.
There is a sharp drop in thrust production after the resonance for
small k values, which results in a decline in the propulsive effi-
ciency. In contrast, for large flexion ratios, g keeps increasing
with flexibility for a wide range of flexibilities.

In Figs. 5(a) and 5(b), we plotted C0t and C0p as the function of
Pk. When we normalized the thrust by the trailing edge velocity,
the peak in the force production and power consumption disap-
peared implying that the peak is merely a consequence of the
amplified trailing edge amplitude. Variations in the trailing edge
amplitude are responsible for the major changes in the thrust pro-
duction for k¼ 0. However, this is not the case for other k values.
The fact that the curves for different k values do not collapse on
top of one another implies that the bending pattern itself, and not
only the trailing edge amplitude, plays a role in the force
production.

The behavior of the C0p curves is somewhat different from that
of C0t. Before resonance, the power coefficient appears to drop
sharply by increasing flexibility. After the resonance, for small k
values, the power coefficient starts to rise again. This results in a
drop in efficiency, which is due to a simultaneous rise in power
consumption and drop in thrust production. For larger k values,
however, as flexibility increases, C0p keeps declining where the
rate of this decline decreases for large flexibilities. Thus, the rate
of increase in efficiency with Pk (Fig. 4(d)) decreases.

To summarize our findings with regard to the propulsive per-
formance of these flexible foils, we plotted contours of C0t and C0p

Fig. 3 Analytical solutions for thrust and power coefficient as
a function of reduced frequency, for two different nondimen-
sional spring stiffnesses, are shown with solid lines. These sol-
utions are taken from Ref. [26]. Closed circles are the solutions
calculated by the present numerical method.

Fig. 4 (a) Trailing edge amplitude, (b) thrust coefficient, (c) power coefficient, and (d) efficiency as a function
of Pk
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as a function of k and Pk in Figs. 5(c) and 5(d). Contours of pro-
pulsive efficiency are overlaid on both figures with dotted lines. It
is worth noting that the contours of efficiency line up with those
of power consumption indicating that the propulsive efficiency is
mostly governed by the input power requirement and not the
thrust production. We identified three regions on these contour
plots. In region 1, which contains low Pk and low k value foils,
the thrust coefficient remains relatively constant. The propulsive
efficiency can be enhanced by increasing flexibility (contours of
propulsive efficiency are almost parallel to the k-axis). In region
2, increasing either flexibility or flexion ratio benefits efficiency
but compromises thrust production. In region 3, contours of power
consumption, and thus propulsive efficiency, are more or less
aligned with the Pk axis, meaning that the efficiency is more sen-
sitive to changing the flexion ratio. Thus, implying that for largely
flexible foils, increasing the flexion ratio can result in improved
propulsive performance.

4.2 Two Flexible Joints. In Sec. 4.1, we showed that chang-
ing the bending patterns of a pitching foil via increasing its flexion
ratio is the key to improving the propulsive efficiency. However,
there is a tradeoff to this gain since smaller flexion ratios are
required for larger force production. We hypothesize that combin-
ing multiple flexible joints may be the key to gaining both in effi-
ciency and thrust magnitude. To test our hypothesis, we repeated
our numerical experiment on a pitching foil with two torsional
springs located half a chord away from each other at k1¼ 0.2 and

k2¼ 0.7. The kinematics of the leading edge was kept identical to
the cases studied in Sec. 4.1.

When multiple flexible joints are allowed, not only the flexibil-
ity of the individual joint but also the profile of flexibility distribu-
tion along the chord will affect the foil’s deformations and, thus,
its propulsive performance. Here, we chose a profile that main-
tains the effective flexibility of the foil unchanged along the chord
(keeping Pk identical for the two springs). The spring stiffness,
thus, declines quadratically with the normalized distance from the
leading edge, k / (k� 1)4. To do so, the stiffness of each one of
the springs is determined solely based on its distance from the
leading edge using Eq. (1).

Figure 6(a) shows the trailing edge amplitude as a function of
Pk. A foil with two flexible joints has two resonances; however,
only one is captured in this figure. The resonance occurs at Pk of
0.35, which is slightly larger than the resonance Pk for each indi-
vidual flexible joint. This could be due to increased circulatory
effects or existence of nonlinear added mass effects when combin-
ing the two joints. In comparison to one flexible joint configura-
tions, the trailing edge amplitude of the present configuration
reaches a higher maximum at the resonance, and drops slower
afterward. The deformation of the middle element appears to be
maximum at the resonance (Fig. 7). However, the amplitude of
the motion of the last element continues to increase after the reso-
nance attenuating the drop in trailing edge amplitude.

In Fig. 6(b), the left axis shows the cycle-averaged thrust coeffi-
cients, Ct. Similar to the results in Sec. 4.1, the peak thrust genera-
tion occurs at the resonance but the magnitude of the peak is

Fig. 5 Variation of thrust (a) and power (b) coefficients, C 0t and C 0p , defined by Eq. (3) with Pk. Contours of C 0t
and C 0p in k–Pk plane. Dotted lines are the contours of propulsive efficiency.
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substantially higher. This is partially due to the increased trailing
edge amplitude, which leads to enhanced added mass forces and a
favorable reorientation of the hydrodynamic force relative to the
propulsive direction. For Pk � 0.3, the magnitude of Ct is similar
to that of a foil with a single flexible joint at k¼ 0.2 indicating
that the effect of the combination of the two joints was not
destructive to the thrust production capacity. For larger flexibil-
ities, Ct is larger than what was achieved by any of the single
jointed foil configurations due to the constructive combination
effect. In the same figure, the right axis shows C0t where thrust is
normalized by the trailing edge velocity rather than the swimming
velocity. Similar to the case of a single spring, C0t drops with
increasing flexibility.

Unlike thrust, the power coefficient, Cp, remains small for small
Pk values (Fig. 6(c)). This results in a quick rise in the propulsive
efficiency of the double jointed foil, as reflected in Fig. 6(c). In
the same figure, the right axis shows C0p. This curve shows a fast
drop in the power consumption with flexibility before the reso-
nance (which is typical of high flexion ratio foils in single spring
configurations), where at Pk � 0.25, the power coefficient is
already below what was achieved by most of the single spring
configurations (Fig. 5). C0p continues to drop even more so after
resonance. In such a way, the two-spring configuration maintains
high propulsive efficiency and thrust production across a wide
range of flexibilities spanning both sides of resonance. Overall,
the results of this section support our earlier hypothesis.

5 Conclusions

Here, we proposed an effective flexibility scaling that allows
resonance frequency of the fluid–structure system and its bending
pattern to be independently varied. In addition, we proposed a

Fig. 6 (a) Trailing edge amplitude, (b) thrust coefficient, (c) power coefficient, and (d) efficiency as a function
of Pk for two flexible hinge configuration

Fig. 7 Change in the relative orientation of the solid elements
versus time, within one cycle. The line representing h0 shows
the prescribed pitching motion of the leading edge. The lines
representing h1 and h2, respectively, show the deflection angles
of the second and the third element. The deflection angles are
measured relative to the preceding element. The angles are
shown for three different Pk values of 0.2, 0.35, and 0.5.
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systemic approach to studying the effect of the distribution of
flexibility across the chord line of flexible foils. Using this new
scaling, it has been shown that the unsteady propulsive perform-
ance of flexible foils with a single torsional spring hinge is not
only a function of their effective flexibility but also their bending
patterns. Across all flexibilities tested here, increasing flexion
ratio was beneficial to the efficiency while diminishing the thrust
production. We showed that the combined effect of the flexibility
and the flexion ratio can result in propulsive efficiencies as large
as 50% or more for a purely pitching foil. This is more than five
times larger than the propulsive efficiency of a rigid foil with the
same leading edge kinematics.

Additionally, flexible foils with two flexible joints were exam-
ined to probe whether multiple flexible hinges could be used to
attenuate the tradeoff between thrust and efficiency to achieve fast
and efficient swimming simultaneously. The flexibility of the
joints was determined such that the effective flexibility was con-
stant along the chord. We found that this combination of flexible
joints has a constructive effect on the propulsive performance of a
pitching foil with regard to both thrust and efficiency across a
wide range of flexibilities.

Finally, it is important to note that the fluid–structure model
used in this study is subject to several assumptions. The fluid
model, for instance, does not account for viscous effects such as
the separation that may occur at the leading edge or along the
deforming body, especially when the solid deformation is large.
These effects can potentially influence the propulsive performance
especially with regard to the power consumption. Future work
will address these issues.
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Nomenclature

A ¼ trailing edge amplitude
c ¼ fin chord
C ¼ damping matrix

Cp, C0p ¼ power coefficient

Ct, C0t ¼ thrust coefficient
f ¼ pitching frequency
I ¼ matrix of moment of inertia
k ¼ reduced frequency
K ¼ stiffness matrix
Nf ¼ hydrodynamic moment
Nh ¼ hinge moment
Ni ¼ inertial moment
U ¼ swimming velocity

a ¼ there are two arguments for each entry of the
nomenclature environment, the symbol, and the
definition

k ¼ flexion ratio
Pk ¼ effective stiffness
q ¼ fluid density
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