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Recently, it was demonstrated in an inviscid flow that burst-and-coast or intermittent swimming can save energy

when compared with continuous swimming and that the energy savings are maximized for large-amplitude pitching

motionswhere flow separation is likely to occur. This paper examines the effects of flow separationon altering inviscid

flow predictions. As such, viscous and inviscid flow simulations are presented of a hydrofoil pitching intermittently

with large-amplitude motions. It is observed that leading-edge vortex formation and shedding in a viscous flow

significantly alter the wake dynamics from the inviscid flow solutions where only trailing-edge shedding is modeled.

Moreover, the inviscid flow solutions predict higher peak force production, lower cost of transport, and lower optimal

duty cycles than the viscous flow solutions. Despite these differences, the trends in the force production and energetics

seen in a viscous flow are well captured by the inviscid flow simulations. Importantly, both predict energy savings on

the order of 10–30% for intermittent swimming, and the energy savings increase when the amplitude of motion is

increased even when significant leading-edge separation occurs.

I. Introduction

AQUATIC animals use a variety of locomotion mechanisms and

swimming gaits to propel themselves fast and efficiently

through the oceans [1]. Some caudal fin swimmers, such as saithe [2],

cod [3], and zebra danios [4], use an intermittent swimming gait

known as burst-and-coast or burst-and-glide swimming. It was first

hypothesized by Lighthill [5] that interspersing a coasting phase

between steady swimming cycles can save energy for some fish to

swim a given distance.

Classically, the observed energy savings have been attributed to

the Bone–Lighthill boundary-layer thinning hypothesis [5]. This

mechanism supposes that the skin friction drag coefficient is higher

during the burst phase and lower during the coast phase of swimming

due to the thinning of the boundary layer on a fish body when

undulating [5–7]. By using this idea, Weihs [8] employed a simple

dynamical model that assumes a drag increase during the burst phase

of swimming to predict energy savings of over 50% when an

intermittent gait is used instead of a continuous gait. This basic theory

was verified by Wu et al. [9] with experiments conducted on

intermittently swimming koi carp. They estimated energy savings of

45% at Re � O�104� by employing a vortex ring model to calculate

the thrust of the fish. Furthermore, Chung [10] numerically examined

the energetics of an intermittently swimming fish and reported energy

savings of over 50% at Re � O�103�.

Recently, Akoz and Moored [11] observed energy savings in an
inviscid flow from a simple self-propelled hydrofoil pitching
intermittently. For these computations, a high-Reynolds-number U2

drag lawwas prescribed for the hydrofoil and, importantly, a fixed drag
coefficient was used; that is, it did not follow the Bone–Lighthill
hypothesis and rise during the burst phase. Yet, energy savings ofmore
than 60% were discovered, indicating that there was also an inviscid
mechanism behind the energy savings of intermittent swimming. It
was further demonstrated that the energy savings are maximized for
large-amplitude pitching motions in an inviscid flow. However, in a
viscous flow it is likely that these large-amplitude motions will lead to
flow separation, which can potentially dramatically alter the trends in
energy savings observed in inviscid simulations.
Motivated by these observations, the current study aims to

examine large-amplitude intermittent swimming in both viscous and
inviscid flows to answer the following questions:
1) How are the wake dynamics of large-amplitude inviscid

intermittent swimmers altered by flow separation?
2) Are the observed energy savings from inviscid simulations

eliminated when there is separation?
3) If not, do energy savings increase with increasing amplitudes of

motion in a viscous flow as well?
By answering these questions researchers will better understand

when inviscid models can provide insights into the physics of
intermittent swimming. Additionally, these answers will provide
further guidance for understanding the impact of intermittent
swimming on the energetics of fish.

II. Approach and Methods

An inviscid boundary element method (BEM) and a viscous
immersed boundary method (IBM) are employed to differentiate the
inviscid and viscousmechanisms contributing to the energetic benefit
of intermittent swimming. Both methods are well-documented and
validated in previouswork and are consequently briefly introduced in
the following sections.

A. Boundary Element Method

An unsteady potential flow method is employed to calculate the
flow field around self-propelled hydrofoils. The flow is assumed to be
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irrotational (except on the boundary elements), incompressible, and
inviscid, such that the velocity can be defined as u � ∇ϕ�, where ϕ�
is the perturbation potential in the inertial frame. The incompressible
continuity equation is then reduced to Laplace’s equation,∇2ϕ� � 0,
which governs the fluid flow. There is a general solution to Laplace’s
equation in the form of a boundary integral equation that is used to
determine the potential field and the flowfield produced by a body
and its wake. The general solution is applied subject to 1) a no flux
boundary condition (i.e., no flux through the body boundaries), and
2) a far-field boundary condition that flow disturbances must decay
far from the body. Following Katz and Plotkin [12], Quinn et al. [13],
and Akoz and Moored [11], the general solution for the Laplace’s
equation is reduced to finding a distribution of doublets and sources
on the hydrofoil surface and in the wake that satisfy the no-flux
boundary condition on the body at each time step. Doublets and
sources both implicitly satisfy the far-field boundary condition. We
use the Dirichlet formulation to satisfy the no-flux condition on the
foil body.
To solve this problem numerically, the hydrofoil is discretized into

constant-strength source and doublet boundary elements and the
wake is discretized into doublet elements. A no flux boundary
condition is enforced at collocation points inside the body surface
beneath each boundary element, leading to a linear system of
equations. An explicit Kutta condition is applied at the trailing edge
by setting the vorticity there to zero. At every time step, one wake
panel is shed to satisfy Kelvin’s condition. Shed panels advect with
the local induced velocity field from the other wake and body
elements. During this rollup process, the endpoints of the doublet
elements, which are mathematically equivalent to point vortices,
must be desingularized for the numerical stability of the solution.
Following Krasny [14] the induced velocity on a wake element from
other doublet elements is then calculated with a desingularized Biot–
Savart law. During each time step, the unknown body doublet
strengths can be determined and consequently the perturbation
potential. The perturbationvelocity on the body is then determined by
a local differentiation of the perturbation potential. The pressure field
acting on the body is calculated by using the perturbation velocity at
the body surface in the unsteady Bernoulli equation. Finally, the
forces acting on the pitching hydrofoil are calculated by an
integration of the pressure forces over its boundary.

B. Immersed Boundary Method

The pitching foil is treated as an immersedmoving boundary in the
IBM-based computational fluid dynamics (CFD) solver. The
numerical methodology employed in the current study is briefly
introduced as the following. The 2D incompressible Navier–Stokes
equations were discretized using a cell-centered, collocated
arrangement of the primitive variables, and were solved using a
finite-difference-based Cartesian grid IBM [15]. The immersed-
boundary treatment is the same as that in [16]. The equations were
integrated in time using the fractional step method, which consists of
three steps. In the first substep of this method, a modifiedmomentum
equation is solved. A second-order Adams–Bashforth scheme is
employed for the convective terms, whereas the diffusion terms are
discretized using an implicit Crank–Nicolson scheme, which
eliminates the viscous stability constraint. A second-order central

difference scheme is employed in space discretization. This method
was successfully applied in many simulations of flapping propulsion
[17–20]. More details about this method can be found in Mittal et al.
[15] andDong et al. [16].Validations about this solver can be found in
our previous work of Li et al. [19] and Wan et al. [21].

C. Model Fidelity

Both modeling approaches are well-documented in previous work
and have been extensively validated. However, they have different
levels of model fidelity. The IBM used in this study is a high-fidelity
method that models all of the relevant scales of fluid motion; that is, it
is a direct numerical simulation of the Navier–Stokes equations, and
as such it can be considered an exact solution. These simulations are
computational costly due to the large number of grid points used
during the simulations. The BEM is amedium-fidelity methodwhere

the physics are approximated by neglecting compressibility and
viscosity. This leads to an inexact solution to the Navier–Stokes
equations, but consequently is computationally cheap, leading to
rapid simulations. It is expected that these modeling fidelity
differenceswould lead to differences in the solutions especially in the
wake dynamics; however, the global force production and energetics
are expected to be well-captured by the BEM.

D. Problem Formulation

To investigate the role of flow separation in altering the wake

dynamics, forces, and energetics of intermittent swimming recently
found in inviscid flows, potential flow and DNS computations are
employed with two-dimensional self-propelled hydrofoils. The
inviscid BEM simulations and the viscous IBM simulations have
identical geometries and kinematics described in the following
sections.

1. Geometry and Kinematics

Following Akoz and Moored [11], a teardrop airfoil is chosen for
the current study as shown in Fig. 1a, which has a semicircular
leading edge that tapers along straight lines to its trailing edge. To
understand the effect of hydrofoil geometry on leading-edge
separation during intermittent swimming, three different maximum
thickness profiles are considered. Themaximum thicknesses (tmax) of
the hydrofoils are set to be 5, 10, and 15% of the chord length and the
chord length of the airfoil is set to c � 0.05 m (see Fig. 1a). The
hydrofoil undergoes intermittent pitching motions about its leading
edge. The intermittent motion is a combination of a sinusoidal

pitching motion during the burst period and it is followed by a fixed
pitch angle of θ � 0 during the coast period (see Fig. 1b). The total
cycle period is simply the addition of the burst and coast periods. The
ratio of the bursting period to the total cycle period is controlled by the
duty cycle parameter:

DC � burst period

total cycle period
(1)

The combined burst-and-coast kinematics of the hydrofoil are then
defined as:

a) b)
Fig. 1 a) Geometric and kinematic parameters for the teardrop hydrofoil. b) Example pitch signal for an intermittent swimmer with DC � 0.5.
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θ�t� �
�
ys�t��θ0 sin�2πft��; 0 ≤ t ≤ Tburst

0; Tburst ≤ t ≤ Tcycle
(2)

where ys�t� �
�
− tanh�kt� tanh�k�t − 1��; DC < 1

1; DC � 1
(3)

where θ0 is the pitch amplitude, f is the oscillation frequency, and t is
the time. Equation (2) defines a reference signalwhere 0 ≤ t ≤ Tcycle.
The signal used in the simulations has Ncyc repetitions of this
reference signal. Here, Tburst � 1∕f is the burst period and Tcycle �
Tburst∕DC is the total cycle period. Also, two pitch amplitudes are
used in the current study, namely, θ0 � 15° and θ0 � 20°.
To obtain discretization-independent solutions as the time step size

is reduced, the discontinuous angular rates and accelerations at the
junction of the burst phase and coast phase must be smoothed. To do
this, a hyperbolic tangent envelope function, ys�t�, is multiplied with
the sinusoidal burst signal and is defined in Eq. (3). This function
modifies the slope of the sinewave at t∕Tburst � 0 and t∕Tburst � 1 to
ensure a desingularized smooth junctionwith the coast phasewhere k
controls the radius of curvature of the junction. Here a value of
k � 30 is used throughout this study. Additionally, if DC � 1, then
the signal (2) reverts to a continuous sinusoidal signal. In the current
study the duty cycle ranges from DC � 0.2 to DC � 1 in 0.1
increments. A summary of the kinematic input parameters used in
both the BEM simulations and the DNS is in Table 1.
Finally, the nondimensional mass of the swimmer is defined as the

ratio of the mass of the swimmer,m, to the characteristic added mass
of its propulsor:

m� � m

ρSpc
(4)

Here ρ is the fluid density andSp is the planform area of the propulsor.
In the current study, the nondimensional mass is fixed to be m� � 1

for bothDNSandBEMsimulations. Thiswas chosen tominimize the

time for the simulations to reach a cycle-averaged steady-state

solution. It was also previously found that the self-propelled

performance of a swimmer was nearly independent of the

nondimensional mass as long as m� ≥ 1 [22].

2. Drag Model

In the inviscid simulations, a drag force D is imposed on the self-

propelled pitching hydrofoil that acts to resist the motion of the

swimmer. The magnitude of the drag force is determined from a drag

lawbased on high-Reynolds-number swimming conditions (Munson

et al. 1990) [23]:

D � 1∕2ρCDSwU
2 (5)

where ρ is the density of the fluid,CD is the drag coefficient, andU is

the speed of the swimmer. Thewetted surface area of the propulsor is

Sw and is calculated by scaling the planform area by a constant, Swp.
This planform area–to–wetted surface area ratio in the current study

is Swp � 2.
To obtain the drag coefficient of the hydrofoils for the inviscid

simulations, self-propelled swimming speeds of the hydrofoils from

the DNS are used. Self-propelled swimming speeds of continuously

swimming hydrofoils are recorded as a function of pitching frequency

for both pitching amplitudes (Fig. 2a). The drag coefficients applied to

the inviscid simulations are tuned such that the continuousmotion self-

propelled swimming speeds between the inviscid and viscous

simulations match at the same pitching frequency. Following this

methodology, drag coefficients are estimated over a range of self-

propelled swimming speeds. Therefore, a power law relationship in the

form of Cd � c1U
c2 � c3 can represent the drag coefficients as a

function of swimming speed (Fig. 2b). The drag coefficients of the

inviscid simulations are estimated based on the power law relationship

determined through the DNS data.

3. Output Performance

The free swimming condition is satisfied through a single-degree-

of-freedom equation of motion that allows the streamwise translation

of the hydrofoil. Following Borazjani and Sotiropoulos [24], the

position and velocity of the swimmer at the (n� 1)th time step is

calculated by a trapezoidal rule and a forward differencing scheme,

respectively:

xn�1
LE � xnLE �

1

2
�Un�1 �Un�Δt (6)

Un�1 � Un � Fn
x;net

m
Δt (7)

Table 1 Kinematic parameters used in the present
study for both the inviscid BEM simulations and the

viscous DNS

Continuous swimmers

f (Hz) 0.25 0.5 0.75 1
DC 1
θ0 (deg) 15 20
tmax∕c 0.05 0.1 0.15

Intermittent swimmers
f (Hz) 1
DC 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
θ0 (deg) 15 20
tmax∕c 0.05 0.1 0.15

a) b)
Fig. 2 a) Average self-propelled swimming speed of the hydrofoils as a function of pitching frequency for two different amplitudes of motion in DNS.

b) Coefficient of drag as a function of average swimming speed. These data are obtained throughmatching the self-propelled swimming speed of the DNS
results in the potential flow solver. The relationship in between �U andCd follows a power law relationship in the form ofCd � c1U

c2 � c3. The coefficients
are for 15°; c1 � 0.0001163, c2 � −3.184, and c3 � 0.08061 and for 20°; c1 � 0.0002885, c2 � −2.665, and c3 � 0.05673.
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whereΔt is the time step,Fn
x;net is the net force acting on the hydrofoil

in the streamwise direction at thenth time step, and xLE is the position
of the leading edge.
The thrust force is calculated as the streamwise force from the

integration of the pressure forces only for the BEM simulations and
from the integration of the pressure and shear forces for theDNS. The
power input to the fluid is calculated as the negative inner product of
the element force vector and element velocity vector of the hydrofoil,
that is,P � −∫ SFele ⋅ uele dS, whereS is the body surface. Themean
cruising velocity �U, mean thrust �T, and mean power �P are time-
averaged over a cycle once the swimmers have reached their cycle-
averaged steady-state swimming conditions.
The cost of transport is defined as the amount of energy it takes to

travel a unit distance per unit mass, and it is directly related to the
range of a swimmer [22]. The thrust coefficient and cost of transport
are defined as:

CT ≡
�T

ρSpf
2A2

CoT ≡
�P

m �U
(8)

Here the peak-to-peak amplitude of motion is A, which is related to
the pitching amplitude as A � 2c sin θ0. The ratio of the CoT of an
intermittent swimmer to a continuous swimmer at the same mean
speed is:

^CoT � CoTi

CoTc

����
�U

(9)

where CoTi and CoTc are the cost of transports for the intermittent
and continuous swimmers, respectively. This cost of transport ratio
directly determines the energetic savings or additional cost incurred
by choosing intermittent swimming. For example, when ^CoT < 1 it
costs less energy to swim with an intermittent gait than a continuous
gait. Conversely, when ^CoT > 1 it costsmore energy to swimwith an

intermittent gait than a continuous gait. Finally, if ^CoT � 1 both
intermittent and continuous swimming costs the same amount of
energy.

III. Results

A. Wake Dynamics and Thrust Performance

Figures 3a–3d show the vorticity field of intermittently swimming
hydrofoils at DC � 0.2 in an inviscid flow. Four distinct vortices are
shed from the trailing edge of the hydrofoil during pitching. Vortices
A and D are shed as the hydrofoil starts and stops pitching,
respectively, whereas vortices B and C are shed as the hydrofoil
changes direction. After the pitch oscillations cease and the hydrofoil
enters the coast phase (Figs. 3c and 3d), no vortices are shed and the
vortex groups A–D advect downstream. These inviscid wake
dynamics are typical of intermittent swimming with one burst cycle
and more details can be found in Akoz and Moored [11].
Figures 3e–3h show the vorticity field of the same intermittent

swimmer operating in a viscous flow. The hydrofoil starts the motion
in a relatively disturbed wake even at the lowest duty cycle studied,
DC � 0.2. The absence of these vortices in the inviscid flow field and
their presence in the viscous solution indicates that the vortex
shedding does not stop in the coast phase of a viscous flow.Unlike the
large stronger vortices observed in the inviscid flow field, the vortices
are broken up into several smaller pieces. In Figs. 3e and 3f, a starting
vortexA is similar to the inviscid simulations but vortex groupsB and
C consist of smaller separated vortices, which make the flow field
significantly different from the inviscid solution. Stopping vortex D
is observed to be stronger in the viscous flow. It is also broken up into
several pieces and coalesces with the weak vortices shed during the
coast phase. Also, the spacing between A, B, and C is larger in the
viscous solution than in the inviscid solution. As a consequence, the
positions of vorticesA–DinFigs. 3g and 3h are significantly different
from the inviscid solution. Additionally, unlike the inviscid wake,
after the pitching motion ceases and the hydrofoil enters the coast

a) e)

b) f)

c) g)

d) h)
Fig. 3 The evolutionof the vortexwake is shown forDC � 0.2at nondimensional times of a,e) t∕Tcyc � 1∕10, b,f) t∕Tcyc � 2∕10, c,g) t∕Tcyc � 4∕10, and
d,h) t∕Tcyc � 6∕10 in inviscid and viscous flows, respectively.
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phase, vortex pairs E and F are formed and shed into the wake. These
vortex pairs can also be observed in Fig. 3e downstream of A and B,
and their signatures can be observed in the instantaneous thrust
described below, whereas they are completely absent from the
inviscid solution.
Figures 4a and 4b show the instantaneous thrust of an intermittent

swimmer over a cycle of motion for the inviscid and the viscous
simulations, respectively. Swimmers show two peaks in the thrust
that are associated with the shedding of the two strongest vortices B
and C. Additionally, the formation of the starting and stopping
vortices induces drag near t∕T � 0 and t∕T � 0.5. The thrust peaks
and the induced drag trough from the starting vortex are all amplified
in the inviscid case compared with the viscous solution. On the other
hand, the induced drag from the stopping vortex is less pronounced in
the inviscid flow than the viscous flow. Notably, the inviscid
hydrofoil does not generate any thrust or experience any pressure
drag (beyond the imposed drag from the drag law) during the coast
period. In contrast, the hydrofoil in the viscous flow experiences
pressure drag throughout the coast phase that decreases with time as
shown in Fig. 4b by markers A, B, and C. This phenomenon can be
linked to the formation and the shedding of leading-edge vortices
during the coast phase as shown in Fig. 4c, where the vorticity field is
shown at the respective times A, B, and C. Strong leading-edge
vortices are formed right after the burst phase, which results in
significant formdrag at the beginning of the coast period.As the coast
phase progresses, there is further formation of the leading-edge
vortices; however, their size and intensity decay, and if the coast
phase lasts long enough, both the vorticity field and the thrust curve
recover back to a static hydrofoil state.

B. Energetics

1. Amplitude Effect on Swimming Performance

Figures 5a and 5b present the cost of transport as a function of the
mean swimming speed for hydrofoils with pitch amplitudes of θ0 �
15° and θ0 � 20°, respectively. The dashed lines represent the
continuous swimmers, whereas the solid lines represent the
intermittent swimmers. In general, as the frequency of motion of the
continuous swimmers increases, their speed increases as does their
CoT. Once f � 1 Hz and DC � 1 the intermittent and continuous
swimmers’ CoT curves are coincident. Then, as the duty cycle
decreases (frequency fixed at f � 1 Hz) there is a decrease in the
swimmers’ speed and consequently a decrease in their CoT as well.
Although the flow fields of viscous and inviscid swimmers are
significantly different, both the DNS and BEM solutions show that
there is a region where intermittent swimming has a lower cost of

transport than continuous swimming at the same mean speed. In an
inviscid flow, as velocity decreases (duty cycle decreases), the energy
savings increase, which is measured as the difference between the
continuous and intermittent swimmers’ CoT curves at the same
speed. The difference reaches its peak value at some DC, and further
decreasing of the DC decreases the energy savings. The overall trend
is similar for the viscous flow solutions except that the maximum
benefit is observed for higher duty cycles. Furthermore, there is
significant crossover of the curves at lowDC, leading to an additional
energetic cost for intermittent swimming above continuous
swimming at the same mean speed.
Figures 5c and 5d present the normalized cost of transport as a

function ofDC andRe. The normalized cost of transport is similar for
high duty cycles (DC > 0.5) in both viscous and inviscid flows, and
an optimal duty cycle that maximizes the energy savings can be
observed. For the lowest amplitude case, the maximum energy
savings are 21% for the inviscid simulations and 9% for the viscous
simulations (Fig. 5c). The higher amplitude case, on the other hand,
shows a maximum of 29% and 18% energy savings for the inviscid
and viscous swimmers, respectively (Fig. 5d). The maximum benefit
occurs at DC � 0.6 in the DNS results and at DC � 0.4 in the BEM
results. For DC < 0.4, continuous swimming is advantageous over
intermittent swimming in the viscous simulations. In contrast, in the
inviscid simulations intermittent swimming is shown to be beneficial
regardless of theDC; however, themagnitude of the benefit decreases
for DC < 0.4. It can also be observed that higher amplitudes of
motion increase the energy savings in both viscous and inviscid
simulations, even when there is significant leading-edge separation.
In previous studies [4,11,25,26], the effect of Re variation on

intermittent swimming was examined. Here, the Re is connected to
the inviscid simulations through the drag coefficient. When the duty
cycle decreases, CD increases and continuous swimming becomes
energetically more favorable than intermittent swimming even in an
inviscid flow [11]. This is further verified with the DNS results of the
current study. A future study of higherReDNS solutions would give
a better idea of the energetic benefits of intermittent swimming
because the Reynolds number of the simulations (Re � O�103�) is
on the lower end of the spectrum where fish start to swim
intermittently in biology.

2. Thickness Effect on Swimming Performance

To understand the sensitivity of leading-edge separation on the
hydrofoil thickness and in turn its effect on intermittent swimming
performance, two other hydrofoil profiles are considered with a
maximum hydrofoil thickness of tmax∕c � 0.05 and tmax∕c � 0.15,

viscous

a) b)

A

c)

B C

Fig. 4 Instantaneous thrust coefficients over a total period of an intermittent swimmer atDC � 0.5 in a) inviscid flow and b) a viscous flow atRe ≈ 5800.
c) Vorticity fields associated with points A, B, and C in (b).
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where tmax∕c is the hydrofoil thickness-to-chord ratio. Figure 6a

shows the normalized cost of transport as a function of DC for

θ0 � 20° in a viscous flow. The overall trend of the curves are similar

for all thicknesses. The energy savings increase as duty cycle

decreases and reaches a maximum at DC � 0.6. Then, as duty cycle
further decreases, continuous swimming becomes more beneficial

for DC < 0.4. Furthermore, the energetic advantage of intermittent

swimming decreases for increasing hydrofoil thickness. The

maximumenergy savings are 23% for the thinnest hydrofoil and 16%

for the thickest hydrofoil.

Figure 6b shows the thrust coefficient over a pitching period at

DC � 0.5 for all three thicknesses. The two peaks in thrust become

higher and the troughs become lower as the hydrofoil thickness

increases. Particularly, tmax∕c � 0.05 has a significantly compressed

thrust curve over the pitching period compared with the other two

profiles studied. Similarly, decreasing the thickness leads to a drag

reduction in the coasting phase (t∕T > 0.5).
The vorticity fields associated with the three different thickness

hydrofoils at t∕T � 0.5, t∕T � 0.58, and t∕T � 0.72 are shown in

Fig. 7. As the profile becomes thinner, the leading-edge vortices

become more elongated in shape, but do not show signs of

weakening. However, the frontal area over which they act to produce

form drag is greatly reduced with a decrease in the thickness. This in

turn leads to the drag reduction during the coasting phase observed in

a) b)

c) d)
Fig. 5 Cost of transport as a function of velocity for DNS and BEM solutions and for maximum pitching amplitudes of a) θ0 � 15° and b) θ0 � 20°.
Dimensionless cost of transport as a function of DC in DNS and BEM solvers c) θ0 � 15° and d) θ0 � 20°. The dashed lines represent the continuous
swimmers, whereas the solid lines represent the intermittent swimmers.

a) b)
Fig. 6 a) Normalized cost of transport as a function of DC for θ0 � 20°. b) Thrust coefficients over a period of motion at DC � 0.5. Different colors
represent different maximum hydrofoil thicknesses.
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Fig. 6b. Additionally, the reduced drag during the coasting phase is
responsible for the increased energy savings during intermittent
swimming as the profile thickness is reduced.

IV. Conclusions

The wake structures and the performance of self-propelled
intermittently pitching hydrofoils are examined in viscous and
inviscid flows. Although there are some similarities in the wakes
between the simulations, there are significant differences that occur
due to leading-edge vortex formation and shedding. In fact, leading-
edge vortices are formed during the coast phase, resulting in
additional form drag in the viscous simulations. Surprisingly, the
hydrofoil thickness has little effect on the leading-edge vortex
formation characteristics, yet thinner profiles experience lower form
drag during the coast phase due to their smaller projected frontal area.
This in turn leads to larger energy savings during intermittent
swimming for the thinnest profiles. The energy savings reported as
the normalized cost of transport are found to be in good agreement
between the viscous and inviscid results for high duty cycles of
DC > 0.5. For low duty cycles of DC ≤ 0.5 the results begin to
deviate. In both simulations there is an optimal duty cycle to
maximize the energy savings. In a viscous flow for θ0 � 15° and 20°
themaximum energy savings are 9 and 18%, respectively, whereas in
an inviscid flow the energy savings are 21 and 29%, respectively.
Moreover, both simulations show that the higher amplitude motions
increase themaximum energy savings, evenwith significant leading-
edge separation. Despite the differences in vortex shedding and the
wake dynamics, the trends in the instantaneous forces and the
energetics are similar between the simulations. This suggests that
inviscid flow simulations can offer a rapid tool for investigating the
trends in the performance of intermittent swimmers.
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