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Cetaceans convert dorsoventral body oscillations into forward velocity with
a complex interplay between their morphological and kinematic features
and the fluid environment. However, it is unknown to what extent
morpho-kinematic features of cetaceans are intertwined to maximize their
efficiency. By interchanging the shape and kinematic variables of five ceta-
cean species, the interplay of their flukes morpho-kinematic features is
examined by characterizing their thrust, power and propulsive efficiency.
It is determined that the shape and kinematics of the flukes have considerable
influence on force production and power consumption. Three-dimensional
heaving and pitching scaling laws are developed by considering both added
mass and circulatory-based forces, which are shown to closely model the
numerical data. Using the scaling relations as a guide, it is determined that
the added mass forces are important in predicting the trend between the effi-
ciency and aspect ratio, however, the thrust and power are driven
predominately by the circulatory forces. The scaling laws also reveal that
there is an optimal dimensionless heave-to-pitch ratio h* that maximizes the
efficiency. Moreover, the optimal h* varies with the aspect ratio, the ampli-
tude-to-chord ratio and the Lighthill number. This indicates that the shape
and kinematics of propulsors are intertwined, that is, there are specific
kinematics that are tailored to the shape of a propulsor in order to maximize
its propulsive efficiency.
1. Introduction
Evolution has created a wide range of morphological and kinematical examples
of swimmers that often serve as inspiration for engineering devices [1]. Obser-
vations of these swimmers have suggested that there are biologically beneficial
morpho-kinematic combinations since specific kinematics are often associated
with typical morphological characteristics [2]. Cetaceans such as dolphins,
whales and porpoises are some of the examples of aquatic animals that display
a wide variety of beneficial morpho-kinematic combinations associated with
their biological role, evolutionary history and their aquatic environment.
They oscillate their moderate to high aspect ratio flukes in a combined heaving
and pitching motion in order to generate propulsive forces through circulatory-
based mechanisms [3]. Circulatory-based propulsion has been shown to lead to
high-speed, efficiency and manoeuvrability during swimming [4–8], which has
motivated numerous theoretical and numerical studies of cetacean swimming
[9–16]. However, our understanding of the hydrodynamic interplay between
the morphology and the kinematics of the swimmer is still lacking.

The theory of unsteady lift production by combined heaving and pitching
foils has a long history. It was first developed by Theodorsen [17] for a two-
dimensional aerofoil in a potential flow. This theoretical model was then
extended by Garrick [18] to also determine the thrust force and power
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consumption produced by such motions, which has led to
new insights into animal swimming in recent years [19–23].
Later in the 1960s, Lighthill [4] and Wu [11,12] discussed
the hydrodynamic analysis of fish and cetacean swimming.
Their theories estimated the unsteady force production in a
potential flow in the context of elongated body theory [4]
and waving plate theory [11,12]. Lighthill further extended
his theory to large-amplitude motions [24], however, only
added mass forces were considered in the latter work.
Chopra [25] and Chopra & Kambe [26] extended Lighthill’s
theory [27] to three-dimensional flows by incorporating
lifting-line theory. Following previous work [25,26], Karpou-
zian [9] developed an asymptotic theory for high aspect ratio
tails and flukes. He compared the performance of fins with
varying aspect ratio and sweep, and both variables
were found to have a significant impact on thrust and
efficiency. Liu & Bose [13] applied a similar lifting surface
theory to Chopra & Kambe’s [26] study to examine the
performance of three cetacean fluke shapes. They used a
quasi-vortex-lattice numerical method. By varying pitch and
heave amplitude, it was found that the tail shape significantly
altered the conditions for maximum efficiency.

Boundary element method numerical simulations helped
identify the effects of morpho-kinematic combinations of
three-dimensional swimmers [14,28–31] moving at a constant
velocity with non-deforming [14,28,29] and deforming wakes
[30,31] in terms of thrust production and efficiency. Moored
et al. [32] later extended the boundary element method to
examine the self-propelled swimming of bioinspired undulatory
fins as well as the self-propelled performance of the manta ray
[33]. Beyond inviscid methods, Tytell et al. [15] emphasized the
close interplay between shape and kinematics as quantified in
terms of speed and efficiency. However, these studies have not
examined the interdependence between the three-dimensional
shape, the unsteady kinematics and the performance of
cetacean-like flukes during self-propelled swimming. Also, in
many of these studies, morpho-kinematic variations are not
decoupled from each other, which means that alteration
of one variable may affect the others and cause entangled
performance variations.

Scaling laws have provided an additional route to derive
insight into the performance of unsteady propulsors and
swimmers. Gazzola et al. [34] developed scaling laws to con-
nect basic morpho-kinematic variables such as body length,
tail beat amplitude and frequency to the swimming speed
of aquatic animals. Floryan et al. [35] and Van Buren et al.
[36] considered both circulatory and added mass forces to
develop scaling relations that described the mean forces gen-
erated by two-dimensional heaving, pitching, and combined
heaving and pitching hydrofoils. Concurrently, Moored &
Quinn [22] introduced new scaling laws with a different
approach than other studies [35,36], by modifying Garrick’s
linear theory with additional nonlinear terms caused by
large-amplitude motion and non-planar, deforming wakes
that are not accounted for in classical theory. These new scal-
ing laws were valid for two-dimensional fixed-velocity or
self-propelled pitching hydrofoils. Later, Ayancik et al. [37]
extended Moored and Quinn’s scaling laws to consider
three-dimensional effects for varying aspect ratio hydrofoils.
They accounted for the added mass of a finite-span propul-
sor, the downwash/upwash effects from the trailing vortex
system, and the elliptical topology of shedding vortices. In
the current study, we consider the scaling laws for three-
dimensional, combined heaving and pitching hydrofoils by
following the framework of Moored & Quinn [22] to
modify Garrick’s theory for combined heaving and pitching
motions with the three-dimensional corrections determined
by Ayancik et al. [37].

Motivated by these observations, the present study
advances our understanding of cetacean swimming by addres-
sing three driving research questions: how do variations in the
shape and kinematics of a self-propelled cetacean fluke alter its
performance? In order to maximize the propulsive efficiency, is
the specific shape of a cetacean fluke tailored to specific swim-
ming kinematics? How do the forces and energetics scale with
the kinematic and shape variables? To answer these questions,
the paper is structured in the following manner. Section 2
describes the scope of the problem definition and the approach
taken. Section 3 describes the numerical methodology
employed. Section 4 details the results of the cetacean simu-
lations. Section 5 presents new scaling laws and verifies their
efficacy. Section 6 uses the developed scaling laws to provide
deeper insight into cetacean swimming. Finally, section 7
describes the conclusions of the study.
2. Problem definition and approach
2.1. Fluke shape definition
The fluke shape from five species of cetaceans is examined.
These species include the beluga whale (Delphinapterus
leucas), bottlenose dolphin (Tursiops truncatus), killer whale
(Orcinus orca), spotted dolphin (Stenella plagiodon) and the
false killer whale (Pseudorca crassidens). Images of the flukes
are from live animals in the collection at Sea World. There is
extensive inter- and intra-species fluke shape variation
among cetaceans that can be quantified by the aspect ratio,
sweep angle, curvature and planform area [3]. In this study,
we quantitatively characterize a fluke shape with a parametric
geometry function developed with coefficients that are fit to a
given species. This function measures distances of chord
length, c, and the x-position of the chord length at the root,
midspan, three-quarter midspan and tip locations on the
flukes to define the mid-chord line and the chord distribution
by using fourth- and second-order polynomials, respectively.

The parametric geometry functions are NACA-inspired
equations in that a chord distribution is wrapped around
the mid-chord line just like the thickness distribution is
wrapped around the camberline of NACA aerofoils. The
measurement locations on the flukes are shown in figure 1a
and the polynomial functions are indicated by equations
(2.1) and (2.2) for the mid-chord line and chord distribution,
respectively. The coefficients in these equations, presented in
table 1 for different species, are solved with the help of
boundary conditions indicated in figure 1a.

MC ¼ A1y4 þ A2y2 þ A3yþ A4 ð2:1Þ
and

C ¼ F1y2 þ F2yþ F3: ð2:2Þ

Figure 2 presents a comparison between the biological
fluke shapes and the idealized fluke shapes obtained from
the parametric geometry function. The parametric geometry
function, with its limited number of terms, shows good
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Figure 1. (a) Demonstration of the characterization of a cetacean fluke planform. (b) Illustration of an idealized swimmer as a combination of a virtual body with
drag D and propulsor, and the representation of the wetted surface area, Sw and propulsor planform area, Sp.

Table 1. Coefficients of mid-chord line and chord distribution equations based on the five cetacean species. The photographs for analysis were from animals in
the collections at Sea World.

species name A1 A2 A3 A4 F1 F2 F3

Delphinapterus leucas −0.8471 1.0010 −0.8114 −0.3708 −1.2522 0.3292 0.7415

Tursiops truncatus −0.5065 0.3549 −0.5429 −0.3838 −0.7435 −0.0356 0.7677

Orcinus orca 0.0172 0.0333 −0.3204 −0.3385 −0.7330 0.1297 0.6771

Stenella plagiodon −0.5791 0.4845 −0.4384 −0.3313 −0.7703 0.1985 0.6626

Pseudorca crassidens −0.2670 0.1980 −0.3373 −0.3461 −0.3048 −0.2185 0.6923

Delphinapterus leucas Tursiops truncatus Orcinus orca Stenella plagiodon Pseudorca crassidens

(a)

(b)

Figure 2. Real fluke images (a) and output images of parametric geometry function (b). The photographs were from animals in the collections at Sea World.

Table 2. Shape and kinematic variables of the five cetacean species.

species name AR h0/c θ0 (deg) h* A* f (Hz) Li m (kg) Sp [m
2]

Delphinapterus leucas 3.30 2.45 35.44 0.940 5.05 2 0.207 433 0.2

Tursiops truncatus 3.90 2.51 28.85 0.960 5.12 2 0.254 205 0.1

Orcinus orca 4.40 2.50 23.61 0.974 5.07 2 0.270 102 0.06

Stenella plagiodon 4.50 3.75 21.53 0.990 7.53 2 0.178 483 0.25

Pseudorca crassidens 5.60 2.85 29.03 0.970 5.79 2 0.201 415 0.2

interpolated artificial kinematics 3.30–5.60 2.60–3.30 27.00 0.96–0.98 5.28–6.67 2
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agreement with biology. However, it is notable that the
shapes deviate from the biological flukes at its tips.

The aspect ratio of the flukes is defined as AR= s2/Sp,
where s is the span length and Sp is the planform area. The
various species aspect ratios are presented in table 2. The
thickness distribution is described by the equations for a
NACA 0018 aerofoil as used previously to describe the
cross-sectional fluke design [38,39].

2.2. Idealized swimmer
Cetaceans propel themselves by producing their principal
thrust from the dorsoventral oscillations of their flukes in a
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combined heaving and pitching motion. In this case, the ceta-
cean body is considered to be the main source of drag while
the flukes are considered to be the main source of thrust
[40,41]. As a first-order approximation, the presence of a
body can be modelled with a virtual body that is not present
in the computational domain but acts as a drag source applied
to a self-propelled fluke (figure 1b). This approximation
assumes there is no body/fluke interaction. While this is a
reasonable first-order approximation, it does not fully account
for the flow physics of a self-propelled swimmer [42].
The drag, D, from the virtual body is defined as the following:

D ¼ 1
2
rCDSwU2, ð2:3Þ

where ρ is the density of the fluid,CD is the coefficient of drag, Sw
is the wetted surface area of the body and flukes, and U is
the time-varying swimming speed of the virtual body–fluke
combination. Identical virtual body parameters are used in com-
binationwith each fluke shape in order to isolate the effects of the
fluke shape and its kinematics on the swimming performance.
The drag coefficient and the wetted area to propulsor planform
area ratio are chosen as CD=0.01 and Swp=Sw/Sp=30 m

2,
respectively, which are typical values for cetaceans [43,44]. The
propulsor area, Sp and Sw are kept constant to maintain Swp
and defined as Sp=1 m2 and Sw=30 m

2. The virtual body is
given a mass of 9000 kg, which is calculated based on wetted
surface area of an idealized swimmer with the help of a corre-
lation given in the study of Fish [43] and kept constant for all
the species’ fluke shapes examined.
2.3. Input variables and parameters
In self-propelled swimming, the swimmer reaches a cycle-
averaged steady state where the time-averaged thrust and drag
of a swimmer are balanced. The drag coefficient of the body,
CD, and the wetted area to propulsor planform area ratio, Swp,
both affect how thrust and drag are balanced on a swimmer
and their combination is represented by the Lighthill number

Li ¼ CDSwp: ð2:4Þ

The Lighthill number also represents the propulsor load-
ing during self-propelled swimming. When Li is low there is
low propulsor loading and vice versa. Low Li swimmers will
swim faster than high Li swimmers for given constant
kinematics and propulsor geometries. In the current study,
the Lighthill number is fixed to Li=0.3, which is in a range
typical of animal locomotion [45].

A combined heaving and pitching motion with a fixed
phase delay between pitching and heaving of ψ=270° is
defined as

u(t) ¼ u0sin(2pftþ c) ð2:5Þ
and

h(t) ¼ h0sin(2pft): ð2:6Þ
Here, h0, θ0 and f correspond to the heave amplitude, pitch
amplitude and the oscillation frequency, respectively. A con-
stant frequency of f=2 Hz is used throughout the simulations
as an average frequency used by cetaceans [43]. For the
combined heaving and pitching motion of the flukes, the
peak-to-peak amplitude is defined as A=2h(t*) + c sin[θ(t*)],
where t* represents the time when the maximum amplitude
is reached. The peak-to-peak amplitude is non-dimensionalized
by the chord length as A* =A/c and reported for the studied
species in table 2. The heaving and pitching amplitudes, at
the time when the maximum amplitude is reached, can then
be non-dimensionalized by the peak-to-peak amplitude as

h� ¼ 2h(t�)
A

and u� ¼ 2c sin [u(t�)]
A

: ð2:7Þ

Here, h* and θ* represent the dimensionless heave-to-pitch and
pitch-to-heave ratios, respectively. These terms identify what
proportion of the total amplitude is due to heaving and pitch-
ing motions. For instance, h* = 0, h* = 0.5 and h* = 1 represent a
pure pitching motion, a combined heaving and pitching
motion with equal parts heaving and pitching, and a pure
heaving motion, respectively. The dimensionless heave-to-
pitch and pitch-to-heave ratios are related by h* + θ* = 1,
which highlights the redundancy between the two variables
[46]. As such, only the dimensionless heave-to-pitch ratio
will be used in this study, which is reported for the examined
species in table 2.

2.4. Output variables
The output variables used in the current study are based on the
mean values of quantities that are time-averaged over an
oscillation cycle and are denoted with an overline such as (��).
Mean values are acquired once a self-propelled swimmer
has reached the steady state of its cycle-averaged speed.
Steady-state conditions occur when Cnet

T � 10�5, where
Cnet
T ¼ (�T � �D)=(1=2rSpU2) is the net thrust coefficient and T is

the thrust force, calculated by integrating of the pressure
forces acting on the fluke projected in the x-direction. Also, the
dimensionless swimming speed is non-dimensionalized by the
frequency of motion and the length of the swimmer, L, as

U� ;
�U
fL
, ð2:8Þ

Here, U* can be described as the dimensionless stride length
since it is a measure of the number of body lengths travelled in
one cycle of motion. Additionally, the characteristic length was
chosen to be L=30 m for all of the fluke shapes tested based
on the correlation used in the study of Fish [43].

In self-propelled swimming, the reduced frequency (k)
and the Strouhal number (St) become outputs, since the
swimming speed is unknown a priori and they are defined as

k ¼ fc
�U

and St ¼ fA
�U
: ð2:9Þ

Furthermore, the time-averaged thrust (CT) and power
(CP) coefficients are non-dimensionalized by a characteristic
added mass force and a characteristic added mass power as
defined in Garrick’s theory [18],

CT ¼
�T

rSpf2A2 and CP ¼
�P

rSpf2A2 �U
: ð2:10Þ

Here, the power (P) is calculated as the negative inner pro-
duct of the force vector (Fele) and velocity vector (uele) of
each boundary element, that is, P ¼ � Ð

S Fele � ueledS, where
S is the body surface. The mean thrust and power may
be represented as the thrust (Cdyn

T ) and power (Cdyn
P ) coefficients

by normalizing with the dynamic pressure as

Cdyn
T ¼

�T

1=2 rSp �U
2 and Cdyn

P ¼
�P

1=2 rSp �U
3 : ð2:11Þ
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These two normalizations are related by the simple trans-
formations of Cdyn

T ¼ CT(2St2) and Cdyn
P ¼ CP(2St2). The

propulsive efficiency (η) is then the ratio of the thrust and
power coefficients regardless of the chosen normalization

h ¼ CT

CP
¼ Cdyn

T

Cdyn
P

: ð2:12Þ

The cost of transport, CoT, will also be reported in this
study to measure the energy consumption per unit distance
per unit mass (m) defined as

CoT ¼
�P

m �U
: ð2:13Þ

The CoT can be connected to the efficiency as
CoT ¼ �D=(mh) for self-propelled swimming [22] where the
time-averaged thrust and drag balance each other as
�T ¼ �D. The CoT can then be rearranged by substituting
the drag law of equation (2.3) into equation (2.13)

CoT ¼ 1=2 rSwf2L2CD

m

� �
U�2

h
: ð2:14Þ

The parameters within the parentheses in equation (2.14)
are constants throughout the current study. This means that
the following proportionality will connect the dimensionless
stride length, efficiency and cost of transport:

CoT/U�2

h
: ð2:15Þ

2.5. Approach
First, biological morpho-kinematic features of five cetacean
species are identified. To be used as a reference case, numeri-
cal simulations are performed for each species by using their
corresponding variables including mass, Li number, plan-
form area, fluke shape and kinematics (table 2), and the
results are discussed.

However, to be able to directly probe the connection between
the fluke shape and swimming, in the second part of the study, a
single virtual body with a fixed mass and Li number is used in
conjunction with all of the fluke shapes and kinematics. Then,
the fluke shapes of five cetacean species and their corresponding
kinematics are interchanged creating 25 shape and kinematic
permutations. Then the thrust, power and efficiency of
swimming in relation to the producedwake structures are exam-
ined. Artificial kinematics that do not correspond to known
species are also considered in order to more evenly resolve
the variable space. Table 2 also shows the range of interpolated
artificial kinematic variables used in this study.

3. Numerical methods
To model the forces acting on self-propelled flukes, we use an
unsteady three-dimensional boundary element method for
potential flow, that is, irrotational, incompressible and inviscid
flow governed by Laplace’s equation. There is a general sol-
ution to the governing equation that reduces the problem to
finding a distribution of doublet and source elements on the
propulsor’s surface and wake that satisfy the no-flux boundary
condition on the fluke’s surface. An internal Dirichlet bound-
ary condition is imposed in order to enforce this condition at
each time step. The far-field boundary condition, which is
that flow perturbations must decay with distance from the pro-
pulsor, is implicitly satisfied by the doublet and source
elements. The propulsor and wake surface are discretized by
a finite number of quadrilateral boundary elements. Each
element on the body surface has an associated collocation
point located at the element’s centre just inside the body
where the Dirichlet condition is enforced. An explicit Kutta
condition is enforced at the trailing edge, and at each time
step a wake doublet element is shed with a strength that
satisfies Kelvin’s circulation theorem. The wake elements are
advected with the local velocity field by applying the desingu-
larized Biot–Savart Law [47] leading to wake deformation and
roll up. The tangential perturbation velocity over the body is
found by a local differentiation of the perturbation potential.
The unsteady Bernoulli equation is then used to calculate the
pressure field acting on the body. Finally, the self-propelled
body dynamics are calculated when the streamwise transla-
tional degree of freedom is unconstrained. The body
velocity and position are determined at the current time
step through forward differencing and the trapezoidal
rule, respectively.

Unþ1
0 ¼ Un

0 þ
Fnx,net
M

Dt ð3:1Þ

and

xnþ1
b ¼ xnb þ

1
2
(Unþ1

0 þUn
0 )Dt, ð3:2Þ

where Fnx,net is the net force acting on the foil in the stream-
wise direction at the nth timestep, xb is the body position of
the foil and Δt is the time step. Further details of the method
and extensive validations of the solver can be found in [32].
Further validations and applications of the solver can be
found in [21,23,33,37,48].
4. Swimming performance
Figure 3a presents an isometric view and (b) a top view of the
typical deforming wake elements shed from the self-
propelled flukes. By examining the roll-up of the wake
elements, it is evident that the wake structure consists of a
series of interlocked and elongated vortex ring structures.
The rings take on a rectangular-like or elliptical-like shape.

Figure 4 presents the thrust and power coefficients as a
function of the aspect ratio, dimensionless heave-to-pitch
ratio, and amplitude-to-chord ratio for the five cetacean species
using their specific biological variables as indicated in table 2.

The marker colours represent the fluke shapes as indi-
cated in the colour bar above the figure, while the marker
style denotes the kinematics of the species. Stenella plagiodon
has the highest thrust and power coefficients, which seems
to be generally correlated to its high h* value and lower
Li. The thrust and power coefficients show a generally
increasing trend for increasing h*, although not a monotonic
trend, while they show no clear trends with A* or AR. This
highlights the difficulty in deciphering trends in the perform-
ance data of various species, and consequently, the physical
nature of their force production and energetics when their
body properties, fluke shape and kinematics are all allowed
to vary. Now, we reduce the number of variables by fixing
the body properties to a mass of m=9000 kg and a Lighthill
number of Li=0.3, and only allow the fluke shape and
kinematics to vary.
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Figure 4. Self-propelled thrust and power coefficients as a function of (a,d) aspect ratio, (b,e) the dimensionless heave-to-pitch ratio, and (b,e) amplitude-to-chord-
ratio for the five species with their own biological variables.
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Figure 5 presents the thrust and power coefficients as func-
tions of the aspect ratio, dimensionless heave-to-pitch ratio
and amplitude-to-chord ratio for the various fluke shape and
kinematic permutations when the mass and Li number are
kept constant for all species. The marker colours and shapes
are the same as represented above in figure 4. The black out-
lined markers in the figure represent the species swimming
with their corresponding kinematics. In contrast to figure 4,
in figure 5a,d, the thrust and power coefficients increase mono-
tonically with increasing aspect ratio. When the aspect ratio is
fixed, the thrust and power coefficients show a wide range of
variation due to the varying kinematics. By using fixed body
properties, a clear trend emerges for variations in the aspect
ratio. However, the thrust and power coefficients show the
same trends as seen in the figure 4, for increasing h* and A*.

Figure 6 presents the propulsive efficiency and cost of
transport as a function of the dimensionless stride length.
High propulsive efficiency for the cetaceans is observed
in the range of 83–92%, which is in accordance with previous
findings [44,49]. For constant kinematic variables, the
Pseudorca crassidens shape always has the highest efficiency.
Similarly, for constant shape variables the Delphinapterus
leucas kinematics always have the highest efficiency. In fact,
the efficiency data show that the fluke shape and its kin-
ematics are not tailored to each other, at least for the range
of h* examined. Viewed in another way, there is one shape
that maximizes the propulsive efficiency regardless of the
kinematics and vice versa. However, this result is counterintui-
tive and, in fact, through the use of scaling laws (§6) it will
be shown that in general the shape and kinematics that
maximize the efficiency are interdependent.

It is also interesting the note the performance comparison
of species with their own shape and kinematics. In order from
the highest to lowest efficiency, the species are Pseudorca cras-
sidens, Stenella plagiodon, Orcinus orca, Tursiops truncatus and
Delphinapterus leucas. In order from the highest to lowest
dimensionless stride length (a normalized measure of swim-
ming speed), the species are Stenella plagiodon, Pseudorca
crassidens, Orcinus orca, Tursiops truncatus and Delphinapterus
leucas. These results confirm the performance comparison
shown in Fish [44].

The CoT is another energetic metric commonly used in
biological literature since it is easier to measure than propul-
sive efficiency. The CoT is observed to have an increasing
trend for increasing values of the dimensionless stride
length. At first, it is surprising that all of the data collapses
to a curve, however, equation (2.15) reveals the scaling
trend. The proportionality relation predicts that the CoT will
vary quadratically with U* and inversely with η, however,
η varies over a small range leading to the predominant scaling
with the non-dimensional stride length. In fact, the parameters
in equation (2.14) are substituted along with the average effi-
ciency of η=0.87 and the cost of transport as a function of
the non-dimensional stride length is determined and plotted
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in figure 6 as the dashed line. The dashed line shows good
agreement with the data suggesting that it properly captures
the scaling trends. Note that at the high U* values, the CoT
are underpredicted by the dashed line. This occurs since
the efficiency at the high U* values is lower than the average
of η= 0.87. The increasing trend in the CoT with dimension-
less stride length indicates that even though the efficiency is
only changing slightly across the range of U*, the amount
of power expended to swim faster is increasing by a factor
of 4 across the same range of U*.
5. Scaling approach
For the readers not interested in the development of the scal-
ing laws, they can go directly to §6 to understand the physical
insights derived from the scaling laws. In this section, to gain
deeper insight into the physics of cetacean locomotion and
more precise models of the force production and energetics,
scaling laws are sought. We begin our scaling analysis with
Garrick’s solution [18] for the thrust and power coefficients
of a combined heaving and pitching foil where the pitch
axis is about the leading edge

CT ¼ c01
4h20
A2 [F2 þ G2]|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

heave

þc02
4ch0u0
A2 �(F2 þ G2)

1
pk

� �
þ G

2
þ F
2pk

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

heaveþpitc

þ c03
4c2u20
A2 (F2 þ G2)

1
p2k2

þ 9
4

� �
þ 3
4
� 3F

2
� F
p2k2

þ G
2pk

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pitch

,

ð5:1Þ

CP ¼ c04
4h20
A2 (F)|fflfflffl{zfflfflffl}
heave

þc05
4ch0u0
A2

F
pk

� G
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
6

c06
4c2u20
A2

3
4
� 3F

4
� G
2pk

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pitch

:

ð5:2Þ

Here, F and G are the real and imaginary parts of Theo-
dorsen’s lift deficiency function, respectively [17]. The
thrust and power are decomposed into their purely pitching,
purely heaving and combined heaving and pitching terms as
denoted by the underbrackets. The coefficients have exact



(a) (b)

Delphinapterus leucas Tursiops truncatus

Delphinapterus l. Tursiops t. Orcinus o. Stenella p. Pseudorca c.

Orcinus orca Stenella plagiodon Pseudorca crassidens artificial gaitskinematics

fluke shapes

1
1

4

3

2

432
c1f1

* + c2f2
*

CT

1

5

4

3

2

CP

1 5432
c3f3

* + c4f4
*

Figure 7. Scaling of the (a) time-averaged thrust and (b) power coefficients for all motion amplitudes and aspect ratios tested.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190655

8

values from theory of c01 ¼ c02 ¼ c04 ¼ c05 ¼ p3=2 and
c03 ¼ c06 ¼ p3=8. Garrick’s theory makes further assumptions
that the motion is of small amplitude, and that the wake is
non-deforming and planar. However, the simulations in this
study use large-amplitude motions and deforming wakes.
Therefore, in order to more accurately produce a scaling
model relevant to the current data, the exact theoretical co-
efficients are relaxed and left to be determined. Now,
equations (5.1) and (5.2) can be written in a more compact
form and the approximations 4h20=A

2 � h�2, 4ch0θ0/A
2≈ h*θ*,

and 4c2u20=A
2 � u�2 can be substituted

CT � c1 h�2w1(k)þ c2 h�u�w2(k)þ c3 u�2w3(k) ð5:3Þ

and

CP � c4 h�2w4(k)þ c5 h�u�w5(k)þ c6 u�2w6(k): ð5:4Þ

The approximations that were substituted become equal-
ities in the limit of small amplitude motions [46], however,
the current study examines large-amplitude motions thus
necessitating the use of the approximation symbol. In this
study, h* varies over a small range of 0.94≤ h*≤ 0.99. This
indicates that cetaceans are swimming with heave dominated
motions. Since θ* = 1− h* and h* is close to one, the purely
pitching term, which is proportional to θ*2 is small and can
be neglected. The combined heaving and pitching term,
which is proportional to h*θ* is small, but not negligible. Con-
sequently, we neglect the purely pitching terms in the thrust
and power relations thereby reducing the equations to

CT ¼ c1 f1 þ c2 f2

where : f1 ¼
4h20
A2 (F

2 þ G2)

f2 ¼
4ch0u0
A2 �(F2 þ G2)

1
pk

� �
þ G

2
þ F
2pk

� �

9>>>>>>=
>>>>>>;
ð5:5Þ

CP ¼ c3f3 þ c4f4

where : f3 ¼
4h20
A2 F

f4 ¼
4ch0u0
A2

F
pk

� G
� �

:

9>>>>>>=
>>>>>>;

ð5:6Þ

Importantly, it should be noted that neglecting the purely
pitching term also eliminated the added mass thrust and
power terms from the equations. Now, the reduced relations
valid for high h* cases are only composed of circulatory terms
as indicated by the presence of Theodorsen’s lift deficiency
function in each term. Even with the coefficients left to be
determined, the reduced relations still do not account for
the three-dimensional nature of cetacean flukes. To extend
the scaling relations to three dimensions, we will only con-
sider modifications that account for variations in aspect
ratio and we will assume that the effects of variations in
sweep and curvature are small. Following our previous
work on scaling laws for three-dimensional pitching propul-
sors [37], we will apply circulatory corrections to capture the
effects of upwash and downwash from the trailing vortex
system. Based on classical finite wing theory [50], the circula-
tory forces should scale with the aspect ratio as AR/(AR+2).
By applying this correction to the two-dimensional relations,
the final three-dimensional scaling relations can be obtained

CT ¼ c1 f�
1 þ c2 f�

2, and CP ¼ c3 f�
3 þ c4 f�

4, ð5:7Þ
where: f�
1 ¼f1

AR
ARþ 2

� �
f�
2 ¼ f2

AR
ARþ 2

� �

f�
3 ¼f3

AR
ARþ 2

� �
f�
4 ¼ f4

AR
ARþ 2

� �
:

Figure 7a,b presents the thrust and power coefficients for all
of the cases as a function of the scaling relations. The coeffi-
cients are determined by minimizing the squared residuals
and are found to be c1 = 18.11, c2 = 22.80, c3 = 15.74 and c4 =
−7.65. We see the expected linear relationship between the
thrust and power scaling models and the corresponding
numerical data. For both power and thrust, there is a collapse
of the data to within ± 10% of the full-scale value. This indi-
cates that our simplified scaling model closely describes the
propulsive performance of cetacean swimming. The discre-
pancies between the scaling model and the simulated data
may be due to shape variations that were not accounted for
in the model, such as variations in sweep angle and/or curva-
ture, and nonlinearities not accounted for in Garrick’s theory,
such as large-amplitude motion and/or a deforming wake.
To make the scaling relations collapse to the line, we need to
add terms to account for these shape effects and nonlinearities,
however, that is beyond the scope of the current analysis.
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6. Discussion and physical insight derived from
the scaling laws

The scaling laws are nowused as a guide tomore deeply under-
stand the effects of shape and kinematics on the efficiency. As
shown in the previous section, the scaling laws accurately cap-
ture both the thrust and power of cetacean swimmers. This
leads to the conclusion that cetacean propulsion is driven by cir-
culatory force production, which is in-line with the proposition
that cetaceans use the so-called ‘lift-based’ forces for propulsion
[8]. However, the scaling laws reveal a new insight into cetacean
swimming. If we take the ratio of the thrust and power coeffi-
cients as stated from the scaling laws, then the scaling law for
the propulsive efficiency is

h � c1 h�2[F2 þ G2]þ c2 h�u�[G=2þ F=2pk � (F2 þ G2)(1=pk)]
c3 h�2[F]þ c4 h�u�[F=pk � G]

:

ð6:1Þ

Notice that the circulatory force reduction of AR/(AR+ 2)
due to the upwash/downwash of the trailing vortex system is
in each term of the thrust and power coefficients and there-
fore cancels in the calculation of efficiency. However,
figure 8a presents the efficiency as a function of the aspect
ratio for the cetacean simulations and the scaling law
(dashed line) applied to the kinematics of Orcinus orca
(down triangle). It can be clearly observed that the efficiency
increases for higher aspect ratio flukes, however, it is also
clear that the scaling law does not capture this trend when
only circulatory forces are considered. This motivated us to
reconsider the neglected added mass terms due to pitching,
which have a different aspect ratio correction than circulatory
terms of AR/(AR+ 1) as determined in our previous work
[37]. The new scaling relations will then be

CT ¼ c1 f1
AR

ARþ 2

� �
þ c2 f2

AR
ARþ 2

� �
þ c3 f3

AR
ARþ 1

� �

CP ¼ c4 f4
AR

ARþ 2

� �
þ c5 f5

AR
ARþ 2

� �
þ c6 f6

AR
ARþ 1

� �

h ¼ c1 f1 þ c2 f2 þ c3 f3[(ARþ 2)=(ARþ 1)]
c4 f4 þ c5 f5 þ c6 f6[(ARþ 2)=(ARþ 1)]

,

9>>>>>>>>=
>>>>>>>>;
ð6:2Þ

where: f1 ¼
4h20
A2 (F

2 þ G2),

f2 ¼
4ch0u0
A2

G
2
þ F
2pk

� (F2 þ G2)
1
pk

� �� �
,

f3 ¼
4c2u20
A2 ,

f4 ¼
4h20
A2 F,

f5 ¼
4ch0u0
A2

F
pk

� G
� �

,

f6 ¼
4c2u20
A2 :
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By minimizing the squared residuals, the coefficients are
determined to be c1 = 18.107, c2 = 22.804, c3 = 6.749× 10−6,
c4 = 17.527, c5 =−9.284 and c6 = 7.489. The uncertainty
between the scaling law prediction and simulation data
slightly improves to be within 8.1% and 6.6% of the thrust
and power data. Interestingly, the c3 coefficient on the
added mass thrust term is effectively zero and that term
may be neglected without a loss in accuracy in the scaling.
Yet, the added mass power term (with c6 coefficient) is crucial
to the improved accuracy in the efficiency scaling law. When
the scaling laws with the re-introduced added mass terms are
graphed in figure 8a (solid line) for the kinematics of Orcinus
orca as a function of the aspect ratio it is seen that the proper
trend with aspect ratio is now recovered. Since adding the
added mass terms made little improvement to the prediction
of thrust and power, but revealed the correct trend in the effi-
ciency we can conclude that the thrust production and power
consumption are indeed driven by circulatory force pro-
duction, however, the efficiency is driven by a combination
of circulatory and added mass forces. If only circulatory
forces are considered or only added mass forces are con-
sidered, then there is no predicted trend in the efficiency
with aspect ratio. Only by including both types of terms
does the proper trend emerge. Both trends show a monotonic
increase with aspect ratio, however they have different rates
of increase and they likely asymptote to different values as
expected. The agreement between the rates of increase may
be improved by considering the terms in the scaling laws
that have been neglected.

Figure 8b,c shows the efficiency as a function of h* and A*
for the simulations. The efficiency is increasing with increas-
ing h* and A* until it reaches to a peak point, then starts to
decrease with increasing h* and A* values. This suggests
that there may be an optimal h* and/or A* value within the
range of h* examined here. However, without independently
varying h* and A* it is unclear which variable has an optimal
condition. Moreover, the range of h* used in the simulations is
rather narrow, and the peak in efficiency may just be a local
peak. Therefore, the accuracy of the efficiency scaling law
must be assessed for lower h* values beyond the range of
h* used in the simulations.

In figure 8d, the scaling law (solid line) was first used to
predict the trend in efficiency with a variation in h*
when all other variables were held constant as those of the
Delphinapterus leucas kinematics and shape. To be clear, the
reduced frequency used in the efficiency scaling is deter-
mined from the self-propelled equations of motion as
outlined in [22]. Specifically, the reduced frequency can be
directly determined by using eqn (33) in that study once Li
and A* are specified.

The scaling laws predict that indeed when h* is varied
independently, there is an optimal heave-to-pitch ratio that
maximizes the efficiency (h�opt ¼ 0:965), which is inside the
examined range of the cetacean simulations. To verify that
this is not just an artefact of the scaling relations, additional
simulations were run (circles) where Delphinapterus leucas kin-
ematic/shape variables were used with the exception of h*.
Indeed, the scaling prediction of an optimal condition for
h* is validated, though the simulations calculate a slightly
different value of h�opt ¼ 0:96. The scaling laws also somewhat
overpredict the efficiency of the simulations for the highest h*
values. Yet, these results provide confidence that the scaling
laws can be used in the vicinity, but outside of their
validation range to predict the broad trends in the data.

Next we use the scaling laws to examine the trends in
efficiency when the AR, A*, Li and h* are all varied indepen-
dently. As a baseline case, the shape and kinematics of
Delphinapterus leucas are chosen since it is approximately at
the average efficiency of the dataset. The shape and kinematic
variables that define its performance are h* = 0.94, A* = 5.05,
and AR=3.3. Figure 9a presents the efficiency as functions
of h* and AR while A* = 5.05, figure 9b presents the efficiency
as functions of h* and A* while AR=3.3, and figure 9c pre-
sents the efficiency as functions of h* and Li while A* = 5.05
and AR= 3.3. All figures show that there is an optimal h*
that maximizes the efficiency.

Surprisingly, as the aspect ratio is increased the optimal h*
decreases. This indicates that actually the shape and
kinematics of cetaceans are interdependent, as originally
hypothesized, instead of independent as was observed with
only a narrow range of h*. To be clear, the cetacean simu-
lations and the scaling laws do not contradict each other. In
the h* range of the cetacean simulations both the scaling
laws and the simulations produce the same result that one
shape and one set of kinematics maximizes the efficiency per-
formance independently. However, by using the scaling laws
to probe a wider range of h*, it is observed that, in fact, the
shape and kinematics are interdependent. Additionally, as A*
increases the optimal h* decreases slightly, and the peak effi-
ciency is increased when AR and A* increase. By contrast, it is
observed that the optimal h* value increases and the
efficiency decreases with increasing Li. This result is a conse-
quence of a chain of effects that an increase in Li leads to a
higher drag producing body, lower swimming speed,
higher reduced frequency, and therefore lower efficiency for
heavy-dominated motions [18,22].
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Future work should extend these scaling laws to apply to
a wide range of variables by generating a larger data range of
h* and including the nonlinear terms that are known to be
important for low h* cases [37]. Moreover, the scaling laws
should be further extended to cover a broader range of pro-
pulsor shapes that go beyond those shapes that have
evolved for cetaceans.
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7. Conclusion
The connection between the fluke shape and the swimming
kinematics of cetaceans were examined by exchanging the
shape and kinematic variables of different species. When
the fluke aspect ratio and dimensionless heave-to-pitch ratio
are increased, the thrust production and power consumption
also increase. Cetacean efficiencies are found to range
between 83 and 92% with the peak efficiency occurring for
the Pseudorca crassidens shape with the Delphinapterus leucas
kinematics. When considering the performance of a species
own fluke shape and kinematics, the most efficient swim-
mer is Pseudorca crassidens and the swimmer with the
fastest relative speed (dimensionless stride length) is
Stenella plagiodon. Within the narrow range of dimensionless
heave-to-pitch ratio of 0.94≤ h*≤ 0.99, the shape and kin-
ematics of cetacean flukes are found to have independent
effects on the swimming efficiency, where one shape is
always the most efficient regardless of the kinematics and
vice versa. New scaling laws for the thrust production and
power consumption of three-dimensional combined heav-
ing and pitching flukes are developed by using Garrick’s
linear theory [18] and Ayancik’s et al. [37] three-dimen-
sional corrections to account for variations in the aspect
ratio of propulsors. The scaling laws reveal that the thrust
and power production of cetaceans are driven by circula-
tory forces, however, the trends in the efficiency emerge
from both the circulatory and added mass forces acting on
the flukes. The scaling laws further indicate that there is
an optimal h* that maximizes the efficiency and it is depen-
dent upon the aspect ratio, amplitude to-chord ratio and the
Lighthill number. This leads to the conclusion that in fact
during peak efficiency swimming, the shape and kinematics
of a cetacean propulsor are tailored to each other.
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