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We present three-dimensional scaling relations for the thrust production and power consumption of combined

heavingandpitchinghydrofoils by extending the three-dimensional pitching scaling laws introducedbyAyancik et al.

(“Scaling Laws for the Propulsive Performance of Three-Dimensional Pitching Propulsors,” Journal of Fluid

Mechanics, Vol. 871, July 2019, pp. 1117–1138). Self-propelled inviscid simulations and previously published

experimental data are used to validate the scaling laws over a wide range of motion amplitudes, Strouhal

numbers, heave ratios, aspect ratios, and pitch axis locations. The scaling laws are shown to predict inviscid

numerical and experimental data well, within �25% and �16% of the thrust and power data, respectively. It

reveals that both the circulatory and added mass forces are important when considering a wide range of motion

amplitudes and that nonlinear corrections to the classic linear theory are essential tomodeling the powerperformance

across a wide amplitude and aspect ratio range. By using the scaling laws as a tool, it is obtained that peak efficiency

occurs when dimensionless amplitude A� > 1 and for these large-amplitude motions there is an optimal

nondimensional heave ratio h�, where the efficiency maximizes in the narrow range of 0.75 < h� < 0.94. Finally,
the scaling laws show that to further improve efficiency in this high-efficiency regime, the aspect ratio and

dimensionless amplitude should be increased, whereas the Lighthill number should be decreased (lower drag

and/or a larger propulsor planform area to wetted surface area ratio), and the pitch axis should be located behind

the leading edge. This scaling model can be used to guide the design of the next generation of high-efficiency bio-

inspired machines.

Nomenclature

A = total peak-to-peak amplitude of the trailing edge, m
= aspect ratio

a = pitch axis location
c = chord length, m
CD = drag coefficient
CP = pressure coefficient
CT = thrust coefficient
f = frequency, Hz
h0 = heave amplitude, m
Li = Lighthill number
m = mass, kg
Sp = planform area, m2

Sw = wetted surface area, m2

U = swimming speed, m∕s
η = efficiency
θ0 = pitch amplitude, deg
ρ = density

Subscripts

TE = trailing edge
sep = separating shear layer
prox = vortex proximity

Superscripts

dyn = dynamic pressure scaled
net = net force

I. Introduction

T HE engineering of fast, efficient, maneuverable, and quiet bio-
inspired propulsive systems has spurred scientific interest in

recent years into investigating the unsteady hydrodynamics of fish
swimming. Researchers have specified the complex flow features
that are correlated with efficient thrust production [1–10], revealing
that an essential pursuit is a deeper understanding of the origins of
unsteady hydrodynamic forces. In this context, some researchers
have reduced these flow phenomena into scaling relations under
net-thrust and fixed-velocity conditions [11–16], or for self-propelled
organisms [17].
The basis ofmany recent scaling laws lies in classic unsteady linear

theory. The theories of [18–20] have become particularly useful in
this pursuit due to their clear assumptions (incompressible and
inviscid flow, small-amplitude motions, nondeforming and planar
wakes) and the identification of the physical origins of their terms.
For instance, these theories decompose the forces acting on unsteady
foils into three types: added mass, quasi-steady, and wake-induced
forces. Theodorsen’s theory was extended by Garrick [19] by
accounting for the singularity in the vorticity distribution at the
leading edge to determine the thrust force produced and the power
required by such motions [21]. By following, [13–15,19] nondimen-
sionalized the thrust forces of heaving and pitching flexible panels
with their added mass forces. Moored and Quinn [22] advanced this
previous work by considering both the added mass and the circula-
tory forces of self-propelled pitching foils, as well as wake-induced
nonlinearities that are not considered in classical linear theory [19].
It was shown that data generated from a potential flow solver was
in excellent agreement with the proposed scaling laws. Similarly,
Floryan et al. [23] considered both the circulatory and added mass
forces in their scaling laws and showed excellent collapse of exper-
imental data for the thrust and power forces of a rigid two-dimensional
heaving or pitching foil. Following that work, Van Buren et al. [24]
developed scaling relations for two-dimensional foils undergoing
combined heaving and pitchingmotions. Even though existing studies
have offered extensive insights into the origins of unsteady force
production, they have been limited to two-dimensional propulsors.
The scaling laws proposed by [22] were extended to three-

dimensional pitching propulsors [25] of various aspect ratios by
accounting for the added mass of a finite-span propulsor, the
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downwash/upwash effects from the trailing vortex system, and the
elliptical topology of shedding trailing-edge vortices. It was demon-
strated that the previous two-dimensional scaling laws as well as
their three-dimensional enhancement collapsed both potential flow
numerical data as well as experimental data. Later, [26] developed
scaling relations for self-propelled three-dimensional cetacean pro-
pulsors undergoing large-amplitude combined heaving and pitching
motions, which were verified through the use of potential flow
numerical data. By using these scaling laws as a guide, it was
demonstrated that the added mass forces played an essential role in
understanding the variation in the efficiency with aspect ratio, how-
ever, circulatory forces play the predominant role in understanding
the variation in the thrust and power with aspect ratio.
Here, we advance the scaling relations introduced in [25,26] to

develop new scaling laws for three-dimensional combined heaving
and pitching propulsors valid over a wide range of amplitude and

aspect ratio and verified with both numerical and experimental data.
In the article, Sec. II details the problem formulation, input, and
output variables of the current study. Section III describes the numeri-
cal methodology, gives details about the boundary element method,
and briefly describes the methodology of the previously published
experimental data used to verify the scaling laws. Section IVoutlines
the development of the scaling laws. Section V presents the verifi-
cation of the scaling laws through new potential flow numerical
simulations and previously published experimental data. Finally,
Sec. VII analyzes the scaling laws to derive physical insights for
bio-inspired locomotion.

II. Problem Formulation

The developed scaling laws are verified with new simulations and
previous experiments from literature. The numerical data are col-
lected for an idealized self-propelled inviscid swimmer, where its
velocity is an output of the imposed kinematics and interaction with
the fluid environment. There is a lack of similar self-propelled
experimental data in literature, however, towed and imposed-velocity
water channel experimental data are available for three-dimensional
combined heaving and pitching foils [25,27]. These experiments will
be used to further verify that the proposed scaling laws also apply to
viscous flows. Even though the simulations examine self-propelled
foils and the experiments examine fixed-velocity foils the scaling
laws should equally apply to both scenarios, as has been shown
previously [22]. This equivalency occurs because the streamwise
surging velocities of self-propelled swimming have been shown to
have a negligible impact on the thrust and power of a foil [28].
Sections II.A–II.C will describe the self-propelled problem formu-
lation, and its associated input and output variables. Section III.Awill
then describe the numerical methods used to solve the self-propelled
problem, whereas Sec. III.B will briefly describe the fixed-velocity
problem formulation and the experimental methodologies. Further
details on the fixed-velocity problem formulation can be found
in [25,27].

A. Idealized Self-Propelled Swimmer

An idealized swimmer is introduced to perform self-propelled
simulations, as already addressed in [25]. The idealized swimmer
is defined as an ensemble of a virtual body and a propulsor (Fig. 1).
The three-dimensional propulsor undergoes combined heaving and

pitching motions and has a rectangular planform shape, a NACA
0012 cross-sectional profile, and a chord length of c � 0.1 m. The
propulsor planform area is Sp � sc, where s corresponds to the span
length of the rectangular propulsor. The aspect ratio then becomes
as � s∕c, which is varied from 1 to 1000 in the current study. The
highest aspect ratio value, � 1000, is chosen to represent a two-
dimensional propulsor. A drag force D is applied to the propulsor,
representing the effect of a virtual body that is not present in the
computational domain. The drag force is determined by using a
classic high Reynolds number drag law, in which drag varies propor-
tionally with the square of the swimming speed U as

D � 1

2
ρCDSwU

2 (1)

where ρ is the density of fluid, CD is the drag coefficient, and Sw
corresponds to the total wetted surface area, which is calculated as the
product of the propulsor planform area and the ratio of thewetted area
to propulsor planform area Swp. The area ratio is chosen to be 5, 10,
and 15 in the current study.

B. Input Variables and Propulsor Kinematics of Self-Propelled
Swimmer

Swimmers attain a cruising conditionwhen the time-averaged drag
and thrust are balanced in self-propelled locomotion [29]. How drag
and thrust forces are balanced on a self-propelled swimmer can be
represented by the Lighthill numberLi � CDSwp, as amultiplication
of area ratio and the drag coefficient. The Lighthill number represents
the loading (thrust coefficient based on dynamic pressure) that occurs
on the propulsor during self-propelled swimming. When the Li
number is low there will be low propulsor loading and swimmers
will typically attain faster swimming speeds than high-Li-number
swimmers for a fixed set of kinematics and propulsor geometry [26].
In this study, by keeping the drag coefficient fixed to CD � 0.01,
which are typical values for cetaceans [30,31], theLighthill number is
changed from 0.05 to 0.15 by adjusting the area ratio. The dimen-
sionless mass of the swimmer is determined as the ratio of bodymass
and a characteristic addedmass of the propulsor,m� � m∕ρSpc, and
is chosen to be 1.
The propulsor undergoes sinusoidal combined heaving and pitch-

ingmotions about its pitching axis, where the heave and pitchmotion

are described as

h�t� � h0 sin�2πft� (2)

θ�t� � θ0 sin�2πft� ψ� (3)

where h0 is the heave amplitude, f is the frequency, t is time, θ0 is
the pitching amplitude, and ψ is the phase angle between pitch and
heave in radians and is chosen as ψ � −π∕2, which is characteristic
of biological locomotion [32]. The total peak-to-peak amplitude

A � ATE�t�� � 2�h�t�� � �c∕2��1 − a� sin�θ�t���� (4)

depends upon both the heave and pitch motions and is defined when
the trailing-edge amplitude reaches its maximum. This time is rep-
resented as t�. The dimensionless pitching axis location is a, with

b)a)

Fig. 1 a) Sketch of an idealized swimmer, and b) illustration of the propulsor planform and wetted surface area. (Reprinted with permission from
Ayancik et al. [25]. Copyright 2019 by Cambridge University Press.)
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a � −1 and 1 representing the leading- and trailing-edge locations,

respectively. The dimensionless amplitude is then A� � A∕c. The
proportion of the total amplitude that is derived from heaving is

h� � 2h�t��∕A (5)

and the proportion derived from pitching is then

θ� � 1 − h� (6)

The heave ratio h� is implicitly a heave-to-pitch ratio because it

represents both the proportions of the heave and pitch to the total

amplitude. For example, when h� � 1 �θ� � 0� the motion is purely

heaving,whenh� � 0.5 �θ� � 0.5� themotion is a perfect balance of

heaving and pitching amplitudes, and when h� � 0 �θ� � 1� the

motion is purely pitching.
The input parameters of the study are listed in Table 1 for the

numerical simulations and the experiments. For the new simulations,

the range of frequency, amplitude, and aspect ratio are selected to

obtain a data set that is characteristic to biological and bio-inspired

propulsion [29,33] in terms of the Strouhal number, reduced fre-

quency, and aspect ratio.

C. Output Variables of Self-Propelled Swimmer

All of the output variables are reported as mean quantities that are

time-averaged over the last oscillation cycle and are indicatedwith an

overline as (�⋅). All mean quantities are taken after a swimmer has

reached quasi-steady-state swimming, defined as the time when the

mean net thrust coefficient is Cnet
T ≤ 10−5 that is defined as

Cnet
T � � �T − �D�

�1∕2�ρSp �U2
(7)

with T being the thrust force, obtained by integrating the −x projec-
tion of the pressure forces over the surface of the hydrofoil. At this

quasi-steady-state condition the time-averaged swimming speed is

determined, and used to calculate the Strouhal number and the

reduced frequency as

k � fc
�U
; St � fA

�U
(8)

From the small amplitude theory [19], the added mass forces and

added mass power are used to nondimensionalize the time-averaged

thrust and power coefficients as

CT �
�T

ρSpf
2A2

; CP �
�P

ρSpf
2A2 �U

(9)

Also, they can be scaled by the dynamic pressure,

Cdyn
T �

�T

�1∕2�ρSpU2
; Cdyn

P �
�P

�1∕2�ρSpU3
(10)

By a simple transformation, the normalizations from the small

amplitude theory and dynamic pressure can be related by Cdyn
T �

CT�2St2� and Cdyn
P � CP�2St2�.

III. Numerical and Experimental Methods

A. Unsteady Boundary Element Method

An unsteady boundary element method is employed to model and
calculate the forces acting on three-dimensional self-propelled pro-
pulsors. The flow is assumed to be incompressible, irrotational, and
inviscid, such that flow is governed by Laplace’s equation as

∇2ϕ� � 0, where ϕ� is the perturbation potential in a ground-fixed
inertial frame of reference. There is a general solution to Laplace’s
equation subject to 1) a no-flux boundary condition on the surface of
the propulsor, and 2) a far-field boundary condition that any pertur-
bations to the flow should decay with a certain distance from the
propulsor. The no-flux boundary condition is enforced with a Dirich-
let boundary condition at each time step on the propulsor’s surface.
Then, the general solution of the Laplace’s equation is reduced to find
a distribution of doublet and source elements on the surface and the
wake of the propulsor. The far-field boundary condition is fulfilled by
the doublet and source elements’ elementary solutions.
To solve the problem numerically, the wake and the propulsor are

discretized into a constant number of quadrilateral boundary ele-
ments with a collocation point positioned at the element’s center and
moved just inside the body by 15% of the distance of the half-
thickness of the body [21]. An explicit Kutta condition is imposed
at the trailing edgewhere the vorticity is set to zero. During each time
step, a wake doublet element from the previous time step is shed with
a strength that satisfies Kelvin’s condition. The wake deformation
and rollup are achieved by letting the wake elements freely advect
with the local velocity field by imposing the desingularized Biot–
Savart Law introduced by Krasny [34]. The tangential perturbation
velocity on the surface of the body is determined by a local differ-
entiation of the perturbation velocity potential. Then, the unsteady
Bernouilli equation is used to determine the pressure field acting on
the propulsor body. Finally, the forces acting on the heaving and
pitching propulsor are calculated by an integration of the pressure
forces over its boundary. The self-propelled body dynamics is
obtained through an equation of motion that permits only the stream-
wise translation of the propulsor. The body position and velocity,
which are determined at the �n� 1�th time step, are calculated
through the trapezoidal rule and forward differencing scheme, as
suggested by [3], respectively:

Un�1
0 � Un

0 �
Fn
x

m
Δt (11)

xn�1
b � xnb �

1

2
�Un�1

0 �Un
0�Δt (12)

whereFn
x and xb correspond to the streamwise net force acting on the

propulsor at the nth time step and the body position of the propulsor,
respectively, andΔt refers to the time step. The details and validations
of the numerical method can be found in [21] and the further
applications and validations of the numerical solver can be found
in [14,35,36].

B. Experimental Methods

Experimental data from three previously published studies
[25,27,37] are used in the current study tovalidate the proposed scaling

Table 1 Input variables and parameters used in the current study

Computational input variables/parameters:
Aspect ratio

Heave ratio �h�� 0.01 ≤ h� < 0.95

Lighthill number �Li� 0.05 ≤ Li ≤ 0.15

Frequency (f) [Hz] f � 1

Reynolds number �Re� Re → ∞

Experimental input variables/parameters:
Tow tank [27,37]:

Aspect ratio � 4.9 and � ∞
Heave ratio �h�� 0.82 < h� < 1

Frequency (f) [Hz] 0.64 < f < 0.87

Reynolds number �Re� Re � 21;000

Closed-loop water channel [25]:

Aspect ratio � 1.0, 1.5, 2 and � ∞
Heave ratio �h�� h� � 0

Frequency (f) [Hz] 0.5 ≤ f ≤ 2

Reynolds number �Re� Re � 30;000
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laws. These previous studies used hydrofoils with NACA 0012 pro-
files, and prescribed sinusoidal motions described by Eqs. (2) and (3).
The first data set from [27,37] was for relatively high heave ratios

from 0.82 ≤ h� ≤ 1. These studies were conducted in a towing tank
and had a hydrofoil with a chord length of 0.07 m at a fixed chord-

based Reynolds number of 2.1 × 104. Reference [37] reported data
from an effectively two-dimensional foil with � ∞ and [27]
reported data from a hydrofoil with � 4.9. The pitching axis of
the hydrofoils in both studies is at the one-third-chord location. In
these experiments the heave-to-chord ratio was fixed and equal to
h0∕c � 1, themaximum pitching amplitude varied from 15 to 45 deg
with an increment of 5 deg, and the frequency varied from 0.64 to
0.87 Hz to generate the Strouhal range of 0.3 ≤ St ≤ 0.5.
The second data set from [25] had a fixed heave ratio of h� � 0

throughout the study. The experiments were conducted in a recircu-
lating water channel. The hydrofoils used in the study had a chord
length of 0.1 m and a fixed chord-based Reynolds number of

Re � 3 × 104, for three aspect ratios of � 1.0; 1.5 and 2.0. The
pitching frequency was varied from 0.5 to 2.0 Hz in increments
of 0.25 Hz with the pitching axis located at the leading edge. The
nondimensional peak-to-peak amplitude A� varied from 0.2 to 0.5 in
intervals of 0.1.
All the relevant input variables and parameters for the experimen-

tal studies are given in Table 1. More details of their methodologies
can be found in [25,27,37].

IV. Extending Garrick’s Linear Theory
with Nonlinear Corrections

A. Garrick’s Theory

Our scaling study starts with a full solution of small amplitude
theory [19] for the thrust and power coefficients. InGarrick’s solution
[19], the thrust and power coefficients for a combined heaving and
pitching motion are written as

CT � c01
4h20
A2

�F2 �G2�|��������{z��������}
heave

� c02
4ch0θ0
A2

�
−�F2 �G2�

�
1

πk

�
� G

2
� F

2πk

�
|�����������������������������������{z�����������������������������������}

heave�pitch

� c03
4c2θ20
A2

�
�F2 �G2�

�
1

π2k2
�

�
1

2
− a

�
2
�
�

�
1

4
−
a

2

�
−
�
1

2
− a

�
F −

F

π2k2
−
�
1

2
� a

�
G

πk

�
|������������������������������������������������������������������������������������{z������������������������������������������������������������������������������������}

pitch

(13)

CP � c04
4h20
A2

�F�|��{z��}
heave

� c05
4ch0θ0
A2

�
F

πk
−G

�
|�������������{z�������������}

heave�pitch

� c06
4c2θ20
A2

�
1

2

�
1

2
− a

�
−
�
a� 1

2

��
F

�
1

2
− a

�
� G

πk

��
|����������������������������������������������{z����������������������������������������������}

pitch

(14)

In Eqs. (13) and (14), F and G are from Theodorsen’s lift deficiency

function and represent the real and imaginary parts of the function,

respectively [18]. The thrust and power coefficients are separated

into purely heaving, combined heaving and pitching, and purely

pitching terms, as indicated by the underbraces. The model coeffi-

cients have values from Garrick’s theory of c01 � c02 � c04 � c05 �
π3∕2 and c03 � c06 � π3∕8. Garrick’s theory assumes small ampli-

tude motion and that the wake is nondeforming and planar. In this

study, the simulations and experiments vary from small to large

amplitudemotions and thewakes are deforming and not planar. Ergo,

the exact theoretical coefficients defined by Garrick are relaxed and

left to be determined to obtain scaling relations that accurately reflect

the current data sets. Now, with the relaxed coefficients, Eqs. (13)

and (14) can bewritten with 4h20∕A2 � h�20 , 4ch0θ0∕A2 � h�0θ
�
0 , and

4c2θ20∕A2 � θ�20 being substituted in a more compact form:

CT � c001h
�2
0 w1�k� � c002h

�
0θ

�
0w2�k� � c003θ

�2
0 w3�a; k� (15)

CP � c004h
�2
0 w4�k� � c005h

�
0θ

�
0w5�k� � c006θ

�2
0 w6�a; k� (16)

B. Two-Dimensional Scaling Laws

To consider the scaling of performance for combined heaving and
pitching two-dimensional propulsors, Garrick’s combined heaving
and pitching linear theory is extended with nonlinear corrections
similar to those proposed by [22] for pitching two-dimensional
propulsors. Garrick’s linear theory is modified by three nonlinear
corrections: a form drag term, a large-amplitude separating shear
layer term, and a vortex proximity term, however, the latter two
corrections have been modified from those presented in [22] to
account for combined heaving and pitching motions, whereas the
formdrag term remains solely dependent upon the pitching portion of
the motion. Now, the new scaling law for the thrust coefficient is

CT � c1�1∕4 − a∕2�θ�20|����������{z����������}
ζ1

� c2h
�2
0 w1�k�|����{z����}

ζ2

� c3h
�
0θ

�
0w2�k�|�����{z�����}
ζ3

� c4θ
�2
0 w0

3�a; k�|������{z������}
ζ4

� c5 A�
p|{z}

ζ5

(17)

where: w0
3�a; k� �

�
�F2 �G2�

�
1

π2k2
�

�
1

2
− a

�
2
�
−
�
1

2
− a

�
F

−
F

π2k2
−
�
1

2
� a

�
G

πk

�

A�
p � 2 sin�θ0�

Equation (17) presents the thrust coefficient that is a combination of the
addedmass force from pitching (c1ζ1), and the circulatory forces from
heave (c2ζ2), combined heave and pitch (c3ζ3), and pitch (c4ζ4), as
well as a formdrag term (c5ζ5) that comes from the pitch portion of the
motion only because it is physically due to the projected frontal area of
the propulsor. Note that the added mass portion of the force from
pitching motions has been separated from the circulatory force for
pitching motions, thus necessitating the use of the prime on w0

3�a; k�.

The new scaling law for the power consumption is

CP � c6�1∕4 − a∕2�θ�20|����������{z����������}
ζ6

� c7h
�2
0 w4�k�|����{z����}

ζ7

� c8h
�
0θ

�
0w5�k�|�����{z�����}
ζ8

� c9ζ9

� c10ζ10
(18)

where ζ9 �
�

k�

k� � 1

�
Stpθ0g9�h�0 ; θ�0 ; θ0; a�;

ζ10 � St2k�g10�h�0 ; θ�0 ; θ0; a� (18)

and,

g9�h�0 ; θ�0 ; θ0; a� � h�20 � h�0θ
�
0

�
3

4
− a

�
cos�θ0�

� θ�20

�
1

4

�
1

2
− a

�
�1 − a�

�
cos2�θ0�
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g10�h�0 ;θ�0 ;θ0; a� � h�30 � h�20 θ�0

�
1

2

�
1

2
− a

�
�1− a�
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Here, Stp and k� represent the Strouhal number based on the

pitching amplitude and a modified reduced frequency, respectively.

They are defined as Stp � �fAp�∕U and k� � k∕�1� 4St2�. Sim-

ilar to the thrust coefficient, the power coefficient is a combination

of the added-mass power from pitching (c6ζ6), the circulatory

power from heave (c7ζ7), the circulatory power from combined

heave and pitch (c8ζ8), as well as the circulatory nonlinear correc-

tion terms modeling the power due to a large-amplitude separating

shear layer (c9ζ9) and due to the proximity of the trailing-edge

vortex (c10ζ10). In contrast to the thrust coefficient, in Eq. (18), the
pitch-only circulatory term was neglected without much penalty to

the data collapse (see Sec. V). The large-amplitude separating shear

layer and vortex proximity power corrections introduced in [22]

have also been modified to account for changes that come with

heaving motions (see Appendix for details). All of the terms in the

scaling relations are first developed for the lift and are then propa-

gated into thrust and power.

C. Three-Dimensional Scaling Laws

To account for three-dimensional effects of the propulsors, the

two-dimensional scaling laws presented earlier will be modified.

First, we will consider the power scaling law. Previously for pure

pitching motions, it was identified [25] that an elliptical vortex ring

correction for the separating shear layer term (c9 ζ9), and the vortex
proximity term (c10 ζ10) was necessary. Now, modifying that

correction for heaving motions results in new scaling terms ζ 09
and ζ 010 as

Here, m1 and m2 are elliptic moduli where

and and E corresponds to the complete elliptic

integral of the second kind [25]. For more details on the develop-

ment of these modifications, see Appendix B in [25].
Additionally, the two-dimensional scaling model will be cor-

rected by applying classic aerodynamic and hydrodynamic theory

corrections to the circulatory [38] and noncirculatory [39] terms as

follows:

Dividing by the added mass correction, leads to the

following:

Finally, this modification creates a compact three-dimensional form
of scaling relations as

C�
T � c1ζ1 � c2ζ

�
2 � c3ζ

�
3 � c4ζ

�
4 � c5ζ

�
5 (19)

C�
P � c6ζ6 � c7ζ

�
7 � c8ζ

�
8 � c9ζ

�
9 � c10ζ

�
10 (20)

In the thrust coefficient equation , and
the various ζ� are defined as

and . In the power coefficient equation

, and the various ζ� are defined as

and .

By following the same transformation introduced in Sec. II.C, the
final scaling relations normalized by dynamic pressure may also be
written as

Cdyn�
T � �c1ζ1 � c2ζ

�
2 � c3ζ

�
3 � c4ζ

�
4 � c5ζ

�
5�2St2 (21)

Cdyn�
P � �c6ζ6 � c7ζ

�
7 � c8ζ

�
8 � c9ζ

�
9 � c10ζ

�
10�2St2 (22)

V. Results and Discussion

The numerical input parameters (Table 1) form more than 500
three-dimensional and self-propelled simulations. In the simulations,
the reduced frequency and Strouhal number vary in the ranges of
0.04 < k < 1.32 and 0.07 < St < 0.31, respectively.
Figure 2 presents the thrust and power coefficients, calculated as in

Eq. (9), as functions of aspect ratio, Li number, and the reduced
frequency for all motion amplitudes considered here. From black to
white the marker colors correspond to dimensionless amplitude or
aspect ratio changing from low to high values, whereas the marker
styles represent different Li. The thrust and power of a heaving and
pitching hydrofoil vary widely with its input parameters. Because the
simulations are self-propelled, then high-amplitude motions produce
high swimming speeds, in general, leading to lower reduced frequen-
cies, as seen in Figs. 2a and 2b.When all variables are fixed and theLi
number increases there is a subsequent reduction in the swimming
speed that leads to an increase in the reduced frequency, although this
trend is difficult to decipher from Fig. 2 because many variables are
changing in these data. Figures 2c and 2d show that in general as the
aspect ratio increases, so too does the thrust and power. Figure 3
shows an excellent collapse of the numerical data (presented in
Fig. 2), when plotted as a function of three-dimensional scaling
relations proposed in Eqs. (19) and (20). The collapsed data follow
a line of slope 1 for both the thrust coefficient and power coefficient
within 	12% (thrust) and 	10% (power) of the predicted scaling
law. The values of the constants are obtained by minimizing the
squared residuals between the data and the scaling law prediction.
The constants in the thrust law are c1 � 2.69, c2 � 18.37, c3 � 3.39,
c4 � 19.85, and c5 � −0.16, whereas for the power law they are
c6 � 5.03, c7 � 19.29, c8 � 10.05, c9 � 11.61, and c10 � 13.44.
To validate that the scaling laws equally apply to viscous flows,

the compilation of experimental data is plotted vs the scaling law
predictions in Fig. 4. The experimental data have a reduced frequency
range of 0.15 < k < 1.34 and a Strouhal number range of 0.06 ≤
St < 0.45. The marker colors represents different aspect ratios.
The circle and triangle marker types indicate Re � 21;000 and
Re � 30;000, respectively. The dashed lines on the thrust and power
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graphs represent 	25% and 	16% error, respectively. For both
thrust and power, we see a collapse of the data nearly within
these limits. The experimentally determined constants for the thrust
equation are c1 � 3.14, c2 � 7.68, c3 � 8.62, c4 � −20.05, and
c5 � −0.79, and for the power equation they are c6 � 7.37, c7 �
24.89, c8 � 18.66, c9 � −369.41, and c10 � 206.85.

Our scaling relations show a good collapse of the data for a wide
range of Reynolds numbers from Re � 21;000 and Re � 30;000 in
the experiments to Re � ∞ in the inviscid simulations. Although, it
should be noted that the determined coefficients are different between

the simulations and the experiments. For example, the c9 coefficient
alters its sign when it is fitted to the experimental data, indicating

Fig. 3 Scaling of the (a, c) thrust and (b, d) power coefficient data for all motion amplitudes and aspect ratios considered in the simulations.

Fig. 2 The (a, c) thrust and (b, d) power coefficient data from the self-propelled simulations as a function of reduced frequency.

a) b)

Fig. 4 Scaling of the a) thrust andb) power coefficient data for allmotion amplitudes and aspect ratios considered in the experiments (viscous flow cases).
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power extraction instead of power consumption like the other coef-
ficients. This is happening most likely because of a viscosity-related
phase shift between the velocity of the propulsor and the lift term
scaled by c9. In the numerics, this phase shift is not captured because
the simulations are inviscid. As expected based on physical grounds,
in both simulations and experiments no sign changes are seen in the
added mass power and thrust terms.
To approach universal constants it would be important to account

for the Reynolds number variation in the thrust and power data, as
pioneered by [40]. However, the common agreement in the basic
scaling terms for inviscid andviscous flows indicates that the dominant
flow physics are inviscid in nature. The small differences between the
scaling law agreement in the experiments and the simulations may be
attributed to secondary viscous effects, such as the known Reynolds
number dependency of all of the coefficients [40].
The data collapsed to a line of slope 1 for both numerical and

experimental cases verifies that the dominant flow physics of three-
dimensional heaving and pitching propulsors across a broad range of
St, A�, h�, and is captured by the newly developed scaling laws.

VI. Sensitivity of the Scaling Laws

A sensitivity analysis is performed to more deeply understand
which modifications of Garrick’s theory are most important for
modeling the predominant physics of three-dimensional combined
heaving and pitching hydrofoils. Figure 5 shows the sensitivity of the
experimental data collapse to the scaling laws with and without the
nonlinear terms and modified coefficients. Figures 5a and 5b present
the collapse of the experimental datawith the full scalingmodel of the
thrust (R2 � 0.9416) and power coefficients (R2 � 0.9810) as
shown in Fig. 4. Figures 5c and 5d show the scaling relations without
the contribution of the nonlinear terms in the thrust (c5ζ

�
5 ) and power

(c9ζ
�
9 , c10ζ

�
10) relations. Without the nonlinear terms, the scaling

relations correspond to the modified Garrick model with empirically

determined coefficients and three-dimensional corrections. Now, it’s
clear that the nonlinear form drag term added to the thrust plays no
significant role in improving the accuracy of the modified Garrick

model (thrust relation without the nonlinear term: R2 � 0.9405).
This is not surprising because it has been previously determined to
be a mild correction for purely pitching motions [22]. The nonlinear
power corrections are seen to significantly improve the modified

Garrick model (power relation without nonlinear terms: R2 �
0.9565). Without the nonlinear power terms, the data is still stratified
based on the aspect ratio evenwith the three-dimensional corrections.
Moreover, with the nonlinear power terms included, the Re �
30;000 data is observed to fall more in line with the scaling trend
line, whereas the Re � 21;000 data is observed to collapse more
tightly around the trend line. Figures 5e and 5f show the modified
Garrick model when the coefficients are not empirically determined,
that is, they are set to their theoretical values. If the theoretically
derived coefficients are used, the scaling relations poorly model the

performance (thrust relation: R2 � 0.9057; power relation: R2 �
0.2546), with the thrust and power being over- and underpredicted,
respectively.
Figures 6a and 6b again present the experimental data collapse for

the full scalingmodel. Figures 6c and 6d show the collapse of the data
when the added mass terms are neglected in the scaling laws (thrust:

R2 � 0.8022; power: R2 � 0.8712), whereas Figs. 6e and 6f show
the collapse when the circulatory terms are neglected from the full

model (thrust: R2 � 0.1243; power: R2 � −1.324). Given the wide
range of h� for the data, neither the added mass nor the circulatory
terms can be neglected and still produce an accurate scaling model.
However, within a more limited range of h� this is possible. For
example, for high h�, modeling only the circulatory forces does
produce an accurate model of the thrust and power [26], although,
without modeling the added mass forces, some subtle trends in the
efficiency are missed.

a) b)

c) d)

e) f)

Fig. 5 Sensitivity of the scaling laws to the nonlinear terms and modified coefficients using experimental data. Full scaling model for the a) thrust and
b) power coefficients. Modified Garrick model with empirically determined coefficients and three-dimensional corrections for the c) thrust and d) power

coefficients. Modified Garrick model with theoretically derived coefficients and three-dimensional corrections for the e) thrust and f) power coefficients.
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VII. Derived Physical Insight

Next,we use the developed scaling relations as a tool to understand
the effects of kinematics and aspect ratio on the propulsor efficiency.
The scaling law for efficiency is simply the ratio of the scaling laws
developed for the thrust and power coefficients, which becomes

(23)

The experimentally determined coefficients are used in this section
for analyzing the efficiency scaling law (see Sec. V for the coefficient
values).
Next, the scaling relations are used to investigate the efficiency

trends when h�, A�, , Li, and a are changed independently. As a
reference case, � 3, A� � 1, and Li � 0.2 are chosen because
they correspond to typical values for bio-inspired locomotion.
Figure 7 shows the efficiency plotted against h� when the pitch

axis is located at the leading edge (a � −1). In Fig. 7a the lines rep-
resent various with A� � 1 and Li � 0.2. In Fig. 7b the lines

represent various A� with � 3 and Li � 0.2. In Fig. 7c the lines

represent various Li with A� � 1 and � 3. The line colors are

mapped to the variations of , A�, and Li from small (black) to large

(white) values.
In all figures, it can be seen that efficiency is maximized when h�

reaches an optimal value. Figure 7a shows that as the aspect ratio

increases the optimal h� decreases, and that for pitch-dominated

motions the efficiency is relatively insensitive to changes in aspect

ratio. In Fig. 7b, high efficiency occurs for large dimensionless

amplitudes A�. This observation is consistent with the argument

put forth by [41], in which they proposed that large-amplitude

motions are more efficient than small-amplitude motions. Refer-

ence [41] also stated that optimal efficiency should occur when

h� � 0.5, where heaving and pitching motions contribute equally

to the total motion. However, this assertion is based on a highly

simplified model where minimizing the power consumption, which

Fig. 7 Efficiency plotted against h� for a) A� � 1, , and Li � 0.2, b) � 3, 0.2 ≤ A� ≤ 1.5, and Li � 0.2, and c) A� � 1, � 3, and
0.2 ≤ Li ≤ 1 when pitching axis at leading edge (a � −1).

a)

c)

e)

a)

c)

e)

Fig. 6 Sensitivity of the scaling laws to the added mass and circulatory terms using experimental data. Full scaling model for the a) thrust and b) power
coefficients. Full scaling model neglecting the added mass terms for the c) thrust and d) power coefficients. Full scaling model neglecting the circulatory
terms for the e) thrust and f) power coefficients.
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occurs at h� � 0.5, will lead to the maximum efficiency. In fact, it is
routinely shown that unsteady foils may have different conditions
that minimize their power consumption from those that maximize
their efficiency [42–44], and that peak efficiencies for large-ampli-
tude (A� > 1) combined heaving and pitching motions occur
for h� > 0.7 [26,44]. Indeed, Fig. 7b shows that the optimal value
is not near h� � 0.5 in this data, but is, in fact, closer to h� � 0.8
for the most efficient cases.When A� < 1, peak efficiencies occur for
pitch-dominated motions (h� < 0.5) and for A� ≥ 1 they occur for
heave-dominated motions (h� > 0.5). In fact, for cases close to pure
pitching where h� < 0.25, the efficiency increases when A�
decreases, whereas that trend begins to reverse for h� > 0.25. It is
also observed that increasing theLi number decreases the propulsive
efficiency for h� > 0.1, however, there is a reversal of this trend for
h� < 0.1 (this trend can be more clearly observed in Fig. 8). This
behavior is a consequence of several concurrent effects. For example,
an increase in Li leads to an increase in drag on the body, a decrease
in swimming speed, and, subsequently, an increase in reduced fre-
quency. An increase in reduced frequency results in a decrease in the
efficiency for heave-dominated motions [13,14,19,22,45] and vice
versa for pitch-dominatedmotions. These distinctly different regimes
are due to pitch-dominated motions being driven by added mass
forces, whereas heave-dominated motions are driven by circulatory
forces [36,44]. The main conclusion from Fig. 7 is that the highest
efficiencies occur for a narrow range of h� from 0.75 < h� < 0.94
for A� ≥ 1.
Figure 8 shows the efficiency variation as functions of h�, , A�,

and Li for different pitch axis locations. Figures 8(a, d), (b, e), and
(c, f) indicate the same trends as Figs. 7a–7c, respectively. Now, it is
observed that the variation in the pitching axis changes the maximum
efficiency peak and optimum h� value. When the pitch axis moves
from the leading edge toward the midchord, the maximum efficiency
increases for all the parameter variations considered here.

VIII. Conclusions

New three-dimensional scaling relations are developed for the
power consumption and thrust generation of combined heaving and
pitching propulsors by extending the three-dimensional pitching
scaling laws introduced by [25] to consider combined heaving and
pitching motions. The developed scaling laws are shown to predict
inviscid numerical data and experimental data well, within 	25%
and 	16% of the thrust and power data, respectively. The scaling

laws reveal that both the circulatory and added mass forces are
important when considering a wide range of motion amplitudes,
and that nonlinear corrections to classic linear theory are essential
to modeling the power performance across this wide aspect ratio
range. By using the scaling laws as a tool, it is obtained that peak
efficiencies occur when A� > 1 and for these large amplitude
motions there is an optimal h� that maximizes the efficiency in the
narrow range of 0.75 < h� < 0.94. Finally, the scaling laws show
that to further improve efficiency in this high-efficiency regime, the
aspect ratio and dimensionless amplitude should be increased,
whereas the Lighthill number should be decreased (lower drag
and/or a larger propulsor planform area to wetted surface area ratio),
and the pitch axis should be located downstream of the leading edge.

Appendix: Derivation of Scaling Relations

Two nonlinear lift terms are introduced in [22]: the lift due to the
separating shear layer Lsep and the proximity of the trailing-edge
vortex Lprox. These terms are determined based on the balance

between the cross-stream velocity originated at the trailing edge
due to the trailing-edge vortex shedding and the same component
of the velocity induced by the bound vortex Γb. The balance between
the components ensures the Kutta condition at the trailing edge
and formulates a relation for the additional bound circulation as
Γb � Γ0 − Γ1. In here, Γ0 corresponds to the quasi-steady bound
circulation that arises from the motion of the propulsor alonewithout
the presence of the wake. In opposition, the additional bound circu-
lation Γ1 arises only from the influence of the wake.
These terms are modified to fully account for combined heaving

and pitching motion in the current study. We started with the sepa-
rating shear layer term,

Lsep � ρs�Γ0 � Γ1�
dx

dt
where:

dx

dt
� c_θ sin θ (A1)

The dot over some terms corresponds to the time rate of change.
When we take the time-average the Γ0 term goes to zero due to near-

orthogonality between _θ and sin θ. Then,

Psep � ρsΓ1c_θ sin θ
h
_h� 1∕2�1 − a�c_θ cos�θ�

i
(A2)

where Γ1 is the additional circulation determined by [22] as

Fig. 8 Efficiency plotted against h� for (a, d)A� � 1, , andLi � 0.2, (b, e) � 3, 0.2 ≤ A� ≤ 1.5, andLi � 0.2, and (c, f)A� � 1, � 3,
and 0.2 ≤ Li ≤ 1 when pitching axis at one-third chord (a � −1∕3) and at midchord (a � 0).
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Γ1 ∝ −Γ0

�
k�

k� � 1

�
(A3)

For large-amplitude, combined heaving and pitching motions, the
bound circulation is defined as

Γ0 ∝ −c
�
_h� c_θ cos�θ� 1

2

�
1

2
− a

��
(A4)

with a corresponding to pitch axis location as defined by [19].
Now, substituting the relation (A4) into (A2), the following power

relation for the separating shear layer term can be obtained:

Psep � ρSpcf
3θ0 sin θ0

�
k�

k� � 1

�h
_h� 1∕2�1 − a�c_θ cos�θ�

i

×
�
_h� c_θ cos�θ� 1

2

�
1

2
− a

��
(A5)

The second explicitly nonlinear correction to the power is due to
the proximity of the trailing-edge vortex, where the lift from this term
is

Lprox � ρs�Γ0 � Γ1�uind (A6)

Here, uind is the velocity induced at the trailing edge by the trailing-
edge vortex. Derivations can be found in [22] for two-dimensional
pitching foils and [25] for three-dimensional pitching foils. Because
Γ1 is a perturbation of Γ0, we neglect Γ1. Then,

Lprox � ρsΓ0uind where: uind �
Γ0fSt

U�1� 4St2� (A7)

Consequently, the power scaling from the proximity of the trailing-
edge vortex is obtained as

Pprox �
ρSpcf

4St

U�1� 4St2�
h
_h� 1∕2�1 − a�c_θ cos�θ�

i

×
�
_h� c_θ cos�θ� 1

2

�
1

2
− a

��
2

(A8)
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