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Abstract

A transient two-dimensional acoustic boundary element solver is coupled to
a potential flow boundary element solver via Powell’s acoustic analogy to de-
termine the acoustic emission of isolated hydrofoils performing biologically-
inspired motions. The flow-acoustic boundary element framework is vali-
dated against experimental and asymptotic solutions for the noise produced
by canonical vortex-body interactions. The numerical framework then char-
acterizes the noise production of an oscillating foil, which is a simple repre-
sentation of a fish caudal fin. A rigid NACA 0012 hydrofoil is subjected to
combined heaving and pitching motions for Strouhal numbers (0.03 < St <
1) based on peak-to-peak amplitudes and chord-based reduced frequencies
(0.125 < f ∗ < 1) that span the parameter space of many swimming fish
species. A dipolar acoustic directivity is found for all motions, frequencies,
and amplitudes considered, and the peak noise level increases with both the
reduced frequency and the Strouhal number. A combined heaving and pitch-
ing motion produces less noise than either a purely pitching or purely heaving
foil at a fixed reduced frequency and amplitude of motion. Correlations of the
lift and power coefficients with the peak root-mean-square acoustic pressure
levels are determined, which could be utilized to develop long-range, quiet
swimmers.

1. Introduction

Many aquatic animals oscillate their fins to propel themselves quickly
through the ocean. Their propulsion is based on an unsteady flow paradigm
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that is distinct from the steady flow paradigm that underpins the design
of most man-made underwater vehicles. Consequently, animals can excel
at maneuvering and rapid accelerations [1, 2] in addition to high-speed and
high-efficiency swimming [3, 4]. This multi-modal performance has spurred
vigorous research over the last two decades into bio-inspired autonomous un-
derwater vehicles (BAUVs) [5, 6, 7, 8], which would possess the additional
benefit of exceptional stealth [9, 10]. It is generally expected that fish-like
swimming motions lead to quiet acoustic signatures [9], which (even if de-
tected) would resemble the noise signature of real fish, making a BAUV
exceptionally difficult to detect and identify [11]. However, to date the noise
signatures of swimming animals and BAUVs have not been adequately quan-
tified, nor have the trade-offs between the noise signature and performance
of unsteady swimmers been examined. The competition between acoustic
stealth and fluid dynamic performance also emerges for biologically-inspired
aerial vehicles [12, 13, 14, 15] that seek novel means to suppress flow-noise
generation.

Most sounds produced by fish result from aggressive actions, spawning,
or reproductive behavior [16]. The noise made during these actions can be
categorized into two broad categories: active acoustic signaling through mor-
phological structures and passive noise generated during swimming, feeding,
or respiration. The actively-produced noises include vocal calls, swimbladder
motions, and drumming [17, 18]. Active fish signaling is not of interest here,
as there exist quantified data for several species [17]. However, fish produce
a vortex wake by simply oscillating their fins during swimming, which is
a well-known source of noise [16]. Yet, the locomotive noise of fish during
steady-state rectilinear swimming remains relatively unquantified. Fish lo-
comotion produces low-amplitude hydrodynamic noise that is challenging to
record reliably and has received limited attention in the literature [16].

Instead of examining live fish, numerical tools can be used to simulate the
motions of fish and their resulting unsteady vortical wakes to estimate their
noise production. For instance, one approach to simulating the unsteady flow
field around a swimming fish is the boundary element method (BEM) [19].
This potential flow method discretizes surfaces representing shear layers in
the flow, i.e. a solid body surface and the wake, into a collection of elements
[20, 21]. This method approximates the flow as incompressible, inviscid,
and irrotational (except on the elements). Additionally, the reduction of the
solution domain to solve only for the strengths of elements on the boundaries
enables the rapid simulation of unsteady flow phenomena. Acoustic BEMs
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have been used to determine the far-field noise of an airfoil in a turbulent flow,
such as by Glegg and Devenport [22]. Their method predicts the frequency-
domain acoustic far field based on a form of the surface loading due to the
energy spectrum of the turbulent boundary layer immediately upstream of
the trailing edge. However, this method is restricted to single airfoils in
steady flows and does not account for interactions that would be present in
many-bodied systems of swimmers or fliers.

Once an unsteady flow field is simulated, an acoustic analogy is a common
and effective tool to post-process the flow data and determine the noise pro-
duction [23, 24]. Lighthill [25] first developed an acoustic analogy by recasting
the Navier-Stokes equations into a wave equation in terms of perturbations
of the fluid density. A nearly ubiquitous approach to predicting flow noise,
Lighthill’s acoustic analogy has become central to many aeroacoustic studies
[23, 24, 26, 27]. For example, Powell [28] adapted the Lighthill analogy to
consider all of the unsteady flow fluctuations as vorticity and designated this
vorticity as the forcing function for the acoustic system. Vorticity also plays
a central role in the noise theory by Howe [29] that is adapted from Lighthill’s
formulation.

Motivated by these observations, the present study makes two principal
technical advancements. First, a coupled flow-acoustic BEM is developed
to predict the noise generation and performance of hydrofoils in unsteady
motion that can also account for multi-body interactions, such as those that
occur in fish schools. Second, the novel flow-acoustic BEM will be used to
examine the performance and noise production of a hydrofoil in combined
heaving and pitching motions, which acts as a simple, two-dimensional repre-
sentation of an oscillating fish caudal fin. This paper is laid out across three
main sections. The first section describes the potential flow and acoustic
boundary element methods used in the current study. Next, the coupling
between the potential flow and acoustic solvers is presented along with vali-
dations of the solver against available experimental data and asymptotic so-
lutions of vortex-body interaction noise. Finally, the performance and noise
production of a combined heaving and pitching hydrofoil are examined with
respect to non-dimensional frequency, amplitude, and heave-to-pitch ratio.

2. Potential Flow Boundary Element Method

This section details the two-dimensional unsteady boundary element method
used in this work. The potential flow solver is an adaptation of the panel
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method described by Willis et al. [30]. The inviscid flow around hydrofoils
can be found by solving the Laplace equation with an imposed no-penetration
boundary condition on the surface,

∇φ · n̂ = 0 on Sb, (1)

where n̂ is the outward unit normal of the surface. The boundary integral
equation integrates the effects of the combined distribution of sources and
doublets on the body surface Sb and doublets on edge panel Se, with vortex
particles in the wake Sw (cf. Fig. 1). The scalar potential may be written as

φ(t) =

∫
Sb

[σ(s)G(t, s)− µ(s)n̂ · ∇G(t, s)] dS−
∫

Se

µe(s)n̂ · ∇G(t, s)dS, (2)

where s is a source location, t is the observer location, and G(t, s) = 1
2π

ln |t−
s| is the two-dimensional Green’s function for the Laplace equation. The
source and doublet strengths are defined respectively as

σ = n̂ · (U + Urel −Uω), (3)

µ = φI − φ, (4)

where Uω is velocity induced by the vortex particles in the field, U is the
body velocity, Urel is the velocity of the center of each element relative to
the body-frame of reference, and φI is the interior potential of the body. At
each time-step, vorticity is defined at the trailing-edge to satisfy the Kutta
condition. The trailing edge panel is assigned the potential difference between
the upper and lower panels at the trailing edge of the foil, µe = µupper −
µlower. Application of the Kutta condition ensures that the vorticity at the
trailing edge of the hydrofoil is zero. An implicit Kutta condition for the two-
dimensional flow solver is similar to the methods mentioned in [30, 31]. The
iterative implicit Kutta condition employs a Newton’s method to define the
length and angle of the trailing edge panel in order to minimize the pressure
across the trailing edge. The evolution of vorticity in the domain is governed
by

∂ω

∂t
+ U · ∇ω = ω · ∇U, (5)

where the vorticity field ω is represented by discrete, radially-symmetric,
desingularized Gaussian vortex particles. The induced velocity of the vortex
blobs is determined by the Biot-Savart law [32],
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u(t, t) =
N∑
i=1

Γi
2π

(
1− exp

(
−|t− s|
2rcut

2

))
, (6)

where Γi is the circulation of the ith vortex particle, and rcut is the cut-off
radius. Following the work of Pan et al. [33], the cut-off radius is set to
rcut = 1.3∆t for time step ∆t to ensure that the wake particle cores overlap
and a thin vortex sheet is shed. The evolution of the vortex particle position
is updated using a forward Euler scheme [30],

x(t+ 1) = x(t) + u(x(t), t)∆t. (7)

The use of discrete vortices to represent the wake instead of panels al-
ters the process of shedding vorticity into the wake in comparison to more
classical source-doublet methods [21]. Two edge panels are set behind a foil.
The first edge panel, set with the empirical length of lpanel = 0.4U∞∆t [21],
satisfies the Kutta condition at the trailing edge. Next, the buffer panel is
attached to the edge panel and stores information about the previous time
step. Figure 1 illustrates the distinction of the source/doublet panels across
a foil, the arrangement of the trailing-edge and buffer panels, and how the
vortex particle wake behaves behind the body.

The vortex particles influence on the body is accounted for in the def-
inition of the source strength σ. The vortex particle induced velocity also
augments the pressure calculation put forth by Katz and Plotkin [21]. The
surface pressure is determined by

P∞ − P (x)

ρ
=
∂φwake

∂t

∣∣∣∣
body

+
∂φ

∂t

∣∣∣∣
body

−(U+u
rel

)·(∇φ+Uω))+
1

2
|∇φ+Uω)|2,

(8)
where ∂φwake/∂t = Γθ̇/(2π) is the time rate of change due to a vortex particle
with circulation Γ at an angle θ from the observation point. Equation (8) is
similar to the form put forth by Willis et al. [30], but here ∂φwake/∂t is the
positional change of a vortex with respect to a panel and does not require the
solution of a secondary system to find the influence of wake vortices onto the
body surface. The appendix presents validation of this methodology against
available theoretical and numerical results.
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Figure 1: Schematic of a fish with a blown up section depicting the propulsor as the discrete
geometry for the BEM. A propulsor of chord length c is discretized with source/doublet
elements (blue lines with endpoints indicated by black circles). The edge and buffer panels
(green lines with endpoints indicated by green circles) are connected to the trailing edge
of the propulsor. The vortex particle wake (blue/red circles) is shed from the edge/buffer
panels.

3. Acoustic Boundary Element Method

The Helmholtz wave equation for a homogeneous medium and its bound-
ary conditions are

∇2φ+ κ2φ = 0, (9)

φ(x) = dn on Sb, (10)

∂φ

∂n
(x) = gn on Sb, (11)

where φ is the time-independent velocity potential, κ = 2πf/c0 is the acoustic
wavenumber, c0 is the speed of sound, dn is a Dirichlet boundary condition,
and gn is a Neumann boundary condition.

Application of Green’s second identity to Eq. (9) moves all of the infor-
mation of the system onto the boundary:

a(t)φ(t) =

∫
Sb

[
∂G(t, s)

∂n
φ(s)−G(t, s)

∂φ

∂n
(s)

]
dSb, (12)
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where a(t) = 1
2

on the boundary and a(t) = 1 in the exterior field. The
two-dimensional acoustic Green’s functions are

G(κ, t, s) =
ıH

(1)
0 (κ|t− s|)

4
, (13)

∂G

∂n
(κ, t, s) =

−ıκH
(1)
1 (κ|t− s|)

4
, (14)

which correspond respectively to an acoustic monopole and dipole, and H
(1)
n

is the Hankel function of the first kind of order n. In the remainder of this
work, G(κ, t, s) = G(t, s), as the wavenumber is constant for each solution.

Differentiation of Eq. (12) with respect to the outward normal of the
boundary produces a quadrupole system,

∂φ(t)

∂n
=

∫
Sb

∂2G(t, s)

∂nt∂ns

φ(s)dSb, (15)

where ns and nt are the outward normals at the source and observer, respec-
tively.

A combination of Eqs. (12) and (15) for points on the boundary arrives
at the Burton-Miller formulation [27, 34]:∫
Sb

(
∂G(t, s)

∂n
φ(s) +

1

2
φ(s)

)
dSb + β

∫
Sb

∂2G(t, s)

∂nt∂ns

φ(s)dSb = φ(x) + β
∂φ(t)

∂n
,

(16)
where β = ı/κ is a chosen coupling parameter [27]. The frequency domain
problem (16) is converted into a transient solution by the application of the
convolution quadrature method, which is detailed in the next section.

3.1. Time discretization

The frequency potential operators in Eq. (16) are evaluated as convolution
integrals. Green’s functions in the frequency domain problem are Laplace
transforms of the retarded-time Green’s function, which permit their convo-
lution with the potential field. The potential field is evaluated by a convolu-
tion quadrature. This methodology of time discretization can be achieved via
a convolution quadrature method put forth by Lubich [35]. A representative
example of a convolution system is∫ t

0

f(t− τ)φ(τ)dτ = g(t).
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Here f represents a retarded-time operator, a characteristic differential op-
erator of the transient wave equation, φ is some known potential distribu-
tion, and g(t) is a transient forcing function. The interested reader may
consult Hassell and Sayas [36] for a detailed explanation of the convolution
quadrature method. The retarded-time operator is a convolution that can
be discretized by splitting the time domain into N + 1 time steps of equal
spacing, yielding ∆t = T/N and tn = n∆t for n = [0, 1, ..., N ]. The discrete
convolution can be viewed as a sum of weights of the F operator at discrete
times of φ:

F
∂Φ(tn)

∂t

∆t

=
n∑
j=0

w∆t
n−j(F )φ∆t(tj), (17)

where F represents the Laplace transform of the f operator, and the su-
perscript ∆t indicates the weight for a specific time-step size. The series
expansion can be arranged to solve for the convolution weights, w:

F

(
γ(ζ)

∆t

)
=
∞∑
n=0

w∆t
n−jζ

n, |ζ| < 1, (18)

w∆t
n−j =

1

2πi

∮
C

F (γ(ζ)
∆t

)

ζj+1
dζ, (19)

where C is a circle of radius 0 < λ < 1 centered at the origin. A second-order
backwards difference function, γ(ζ) = (1 − ζ) + 1

2
(1 − ζ)2, is used to define

the spacing of the integration. A review of other integration methods that
can be incorporated into the convolution quadrature method is presented in
Hassell and Sayas [36]. Employing a scaled inverse transform, the weights
become

w∆t,λ
n−j (F ) =

λ−j

N + 1

N∑
l=0

F (sl)ζ
lj
N+1, (20)

where ζN+1 = exp
(

2πi
N+1

)
is the discrete Fourier transform scale, and sl =

γ(λζ−lN+1)/∆t is the accompanying time-dependent complex wavenumber.
The value of sl is different for each time step and provides the link between
the frequency-domain solver and a transient boundary integral equation. For
this formulation, λ = ∆t3/N is selected based on the error analysis of Banjai
and Sauter [37].
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Placing (20) into the boundary value problem (16) yields a system of
N + 1 equations,

λ−j

N + 1

N∑
l=0

F (sl,x)φ̂l(x)ζ ljN+1 =
λ−j

N + 1

N∑
l=0

ĝlζ
lj
N=1, (21)

where F is the linear combination of operators on the left hand side of
Eq. (16). Here gn is a discrete representation of the mixed boundary condi-
tion. The inverse discrete Fourier transform of the convolution is

φ̂l =
N∑
j=0

λjφλj ξ
−lj
N+1, (22)

which produces the transient solution.
In summary, the convolution quadrature method [37] discretizes a tran-

sient wave problem into a system of frequency-domain (Helmholtz) wave
equations that are uncoupled in time. This discretization allows N + 1 inde-
pendent solutions of Eq. (16) in the frequency domain using wavenumbers sl
that are generated via the convolution quadrature method. The time-domain
solution is recovered by applying the inverse Fourier transform (22).

4. Acoustic Analogies

The Lighthill acoustic analogy [25] is an exact rearrangement of the
Navier-Stokes equation, where the resulting wave equation is forced by the
so-called Lighthill tensor, Tij. For example, Tij may be used as a forcing func-
tion in Eq. (9). The flow is assumed inviscid, without thermal losses, and at
low Mach number (M2 � 1). The form of the Lighthill tensor under these
conditions is reduced to the Reynolds stress contribution, Tij ≈ ρuiuj [38].
Taking two spatial derivatives of this tensor yields the quadrupole source for
Lighthill’s acoustic analogy. This quadrupole is related to the vorticity field
by

∂2uiuj
∂xi∂xj

= ∇ · (ω × u) +∇2

(
1

2
u2

)
, (23)

where u2 = u · u. The Powell acoustic analogy, a derivative of the Lighthill
analogy, uses this form of the velocity field as its forcing function [28].

The Powell acoustic analogy allows the direct relation of the vorticity
defined by the flow solver to be the forcing function of the acoustic solver.
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The present flow solver defines the vorticity that is bound to the body and
shed into the wake. Other vortical noise sources, such as the broadband
content in a turbulent boundary layer, may also be incorporated but are
neglected in the present work to focus on the acoustic interactions involving
incident and shed vorticity. The Powell acoustic analogy states that in free
space the forcing of the wave equation is a function of the vorticity in the
field,

∂2
t P −∇2P = ∇ · (ω × u), (24)

∂G

∂n
= 0 on Sb. (25)

Using a Green’s function solution, and applying an integration by parts, the
pressure in the field is determined by

P (t, t) = ρ

∫
Sb

(ω × v) · ∂G
∂ns

dSb, (26)

where ∂G/∂ns is the two-dimensional potential flow Green’s function. The
pressure integral in Eq. (26) is applicable regardless of whether or not a
solid body is present [39]. The use of the potential flow Green’s function
imposes instantaneously the vortical acoustic loading onto a solid body, as
in the asymptotic methods of Kambe and Kao [39, 40]. Also, the use of
the flow Green’s function instead of the retarded potential acoustic Green’s
function [39], i.e., G = H(t−|t|/c0)

2π
√
t−|t|/c0

, removes any singularities in time in ad-

dition to the slow decay tail created by the Heaviside function found in
the numerator. For all of the flow scenarios observed in this work, the small
products of the acoustic wavenumber with the chord length (Helmholtz num-
ber) and with the distance between dominant wake vortices with the foil in
low-Mach-number locomotion ensures acoustically compact vortex-body in-
teractions [38]. Equation (26) provides the pressure at an arbitrary point
in space, for instance the collocation point of a discrete foil. This approach
is sufficient to solve a Dirichlet boundary condition, but Eq. (25) is a no-
flux Neumann boundary condition. The Neumann boundary condition can
be satisfied by arranging Euler’s equation to define the acoustic dipole po-
tential needed to guarantee no fluid flux through the surface of the discrete
geometry,

ρ
∂u

∂t
= −∇P. (27)
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In Eq. (27) the velocity is taken to be the normal induced velocity from
each discrete vortex in the domain, including the discrete vortex particles
that comprise the wake and vortex values distributed along the foil found
via Eq. (2). A rearrangement of Eq. (27) that considers the outward normal
pressure on the foil results in

∂P

∂n
(t) = −ρ

N∑
i=0

∂(ui · n̂(t))

∂t
. (28)

The pressure in Eq. (26) and its normal derivative in Eq. (28) are the bound-
ary conditions to the Burton-Miller acoustic BEM formulation in Eq. (16).

4.1. Validation of Acoustic Analogy for Vortex-Body Interactions

The Powell acoustic analogy is now validated as a suitable forcing function
for the one-way coupled flow-acoustic BEM. First, the canonical problem by
Crighton [41] whereby a line vortex generates noise as it passes round a half-
plane is used to verify the flow-acoustic BEM for edge scattering. Given a
point vortex that advects around a half-plane lying at y = 0 with the edge
located at the origin, the vortex path is described analytically by

r = `

√
1 +

(
Ut

`

)2

, θ = 2 tan−1

(
−Ut
`

)
,

where r and θ are the radial components of the vortex position. The char-
acteristic vortex velocity is U = Γ/8π`, with ` being the distance of closest
approach of the vortex to the trailing edge. Howe [38] (see also [29]) deter-
mined the time-varying magnitude of the acoustic pressure produced by the
vortex motion near the edge using an approximate Green’s function for a half
plane with the observer in the acoustic far field:

P (t, t) ≈ ρΓ2

4π`2

(
`

|t|

) 1
2

sin

(
θ

2

)[
Γt/8π`2

[1 + (Γt/8π`2)2]5/4

]
t− |t|

c0

, |t| → ∞. (29)

The brackets indicate evaluation at the retarded time. Note that this model
neglects any vortex shedding by the edge.

Figure 2 illustrates the vortex path near the half plane and presents a
comparison of the analytical acoustic response from Eq. (29) against the
numerical results from the BEM developed in §§2 and 3. The solution was
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Figure 2: Sound produced by vortex motion near a half plane. (a) Vortex path round the
trailing edge of a half plane. The closest position of the vortex to the body ` occurs at
Ut/` = 0. (b) Acoustic response computed by the BEM (blue circles) and from Howe’s
solution (red line).

created by approximating a half plane with a 10 m flat plate and passing a
vortex of strength Γ = 1 m2 s−1 to within a distance of ` = 0.25 m at the
trailing edge in a medium with density ρ = 1 kg m−3. The observer location
is |t| = 50 m above the trailing edge. The half plane was approximated with a
10 m flat plate discretized with 512 boundary elements in a cosine distribution
which ensures a denser concentration of elements near the edge. The doubling
of elements on the body from 128 to 256 elements produced less than 0.1%
change in the acoustic solution as observed at |t|. Agreement of the acoustic
responses are seen when the vortex is near the trailing edge, i.e. |Ut/`| ¡ 1, and
the system begins to diverge slightly outside of that range. The divergence
of the solution outside of this time is likely due to the limitation in the Howe
solution that the loading is only at the trailing edge, where as the BEM
implicitly solves for loading along the flat plate as the vortex continues to
travel near the body. The agreement between the BEM and Howe’s solution
verifies the accuracy of the acoustic portion of the BEM in modeling trailing
edge scattering. The fully coupled solver including the unsteady potential
flow portion can be examined further for vortex-body interaction cases.

The experimental work of Booth [42] details acoustic scattering due to
vortex-body interaction. The matched asymptotic method of Kao [40] uses
this experimental study to validate their analysis. Kao asymptotically matches
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the acoustic loading from a potential flow solver to an outer far-field acoustic
solution. The selected vortex-body interaction problem sets a vortex up-
stream of a NACA 0012 airfoil, with a chord of c = 0.2032 m. The vortex
has a circulation of Γ = 0.52 m2 s−1 and advects in a freestream of speed
U∞ = 4.7 m s−1 at a vertical displacement of h = 0.152c from the foil cen-
terline (cf. Fig. 3). This particular offset distance was selected because at
other distances in the experimental study the vortex impinges on the body
and breaks down. The fluid medium has a speed of sound of c0 = 343 m s−1

and the density ρ = 1.225 kg m−3. The acoustic response is then found in
front of the airfoil at t1 = (100c, 0), as shown in the problem schematic at
the top of Fig. 3.

Figure 3: Acoustic emission due to a single vortex advecting past a NACA 0012 airfoil.
The vortex circulation Γ, chord length c, observation point t, freestream velocity U∞, and
offset heights h are different for each of the two validation cases. The response of (a) is
observed 100 chord lengths in front of the foil t1 = (−100c, 0), while the response of (b)
is observed 50 chord lengths above the airfoil t2 = (0, 50c). The black lines represents
the experimental results of Booth [42], the red circle represents the matched asymptotic
solution of Kao [40], and the blue line is the result of the coupled potential flow and
transient acoustics BEM put forward in this work.

Figure 3(a) compares the experimental vortex-body interaction sound
results from the work of Booth, the matched asymptotic method of Kao,
and the one way coupled potential flow and acoustic BEM presented in this
study. The matched asymptotic method and the flow-acoustic BEM have
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qualitatively similar responses. The experimental acoustic response is the
same order of magnitude as the other methodologies with similar qualitative
trends, albeit with more fluctuations in its signal. The leading edge acoustic
response occurs at t ≈ 0.25 s. It can be seen that the amplitude of this
interaction is quantitatively similar for the theoretical and BEM approaches,
while qualitatively the slope of the leading-edge response as it approaches the
minimum pressure from the flow-acoustic BEM is steeper than the matched
asymptotic method response. The trailing-edge acoustic response occurs at
t ≈ 0.30 s, where the peak predicted response of P ≈ −0.0015 Pa from the
matched asymptotic solution is stronger than the BEM prediction of P ≈
−0.0005 Pa. The increased pressure response at the trailing edge from the
matched asymptotic method can be affected by the explicit Kutta condition
applied and the manner in which the wake evolves behind the foil. Howe [43]
stated that, as a vortex passes the trailing edge of a body, the vorticity shed
into the wake tends to cancel the effect of the incoming vorticity and mitigates
the noise generation. The Kutta condition in the potential flow BEM could
be implicitly imposing the mechanism described by Howe, which would help
explain the weaker acoustic response predicted by the flow-acoustic BEM
framework. Additionally, the acoustic response in Fig. 3(a) is measured in
front of the foil, a location where the acoustic pressure would be small in
comparison to other measurement locations.

Further verification of the the flow-acoustic BEM is accomplished by mea-
suring the acoustic response where it has its maximum value. Figure 3(b)
presents the measurement of the acoustic response above the foil where the
peak acoustic pressure occurs. The flow scenario has a vortex with circula-
tion Γ = 0.1 m2 s−1 that is released five chord lengths upstream with vertical
offset h = 0.1c above the center of a NACA 0012 foil with chord c = 1 m.
The case has a freestream velocity U∞ = 1 m s−1, a sound speed of c0 = 5
m s−1, and density ρ = 1 kg m−3. The acoustic response was measured fifty
chord lengths above the leading edge of the foil at t2 = (0, 50c). The matched
asymptotic method predicts a leading-edge acoustic response at t ≈ 0.25 s,
which occurs before the flow-acoustic BEM response at t ≈ 0.35 s. However,
both approaches exhibit a similar magnitude of response. The maximum
acoustic responses of both systems are found at t ≈ 0.45 s with a pressure of
P = 0.013 Pa. The trailing-edge responses at t ≈ 0.5 s also exhibits similar
magnitudes for both approaches. The flow-acoustic BEM predicts the same
order-of-magnitude acoustic response as the experiments of Booth [42]. In
addition, the flow-acoustic BEM produces qualitatively and quantitatively
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similar acoustic responses to the matched asymptotic method of Kao [40].

5. Acoustic Emission from Biological Swimming

Many fish swim by undulating their bodies and oscillating their caudal
or tail fins, which are in many cases responsible for the majority of their
thrust production [2, 44]. A common and simple representation of a biological
swimmer is to neglect the body and only consider the caudal fin as a combined
heaving and pitching hydrofoil [45], which is also the case in the present study.
Fish-like locomotion via a traveling wave is shown in Fig. 4(a). The motion
of the rear of the foil is tracked and then treated as a discrete propulsive foil,
which is denoted in the figure as a solid black body. Figure 4(b) shows how a
combined heaving and pitching motion of a rigid body is used as a proxy for
the entire traveling wave system. The rigid body pitches about its leading
edge, as that is where it would be connected to the fish.

The heaving and pitching motion and the peak-to-peak amplitude of the
foil are described by

h(t) = h0 sin(2πft), (30)

θ(t) = θ0 sin(2πft+ φ), (31)

A(t∗) = 2 max{h(t) + c sin [θ(t)]}, (32)

h∗ = 2h(t∗)/A(t∗), (33)

θ∗ = 2 c sin [θ(t∗)] /A(t∗), (34)

A∗ = A(t∗)/c, (35)

where f is the frequency of motion, t is time, and h0 and θ0 are the max-
imum heaving amplitude and maximum pitching angle, respectively. The
phase delay between heave and pitch signals is φ = π/2. The peak-to-peak
amplitude is A(t∗), and t∗ is the time at which the foil reaches its peak am-
plitude. Given A(t∗) and θ0, h0 can be calculated by a nonlinear equation
solver. Normalizing h(t∗) and θ(t∗) by A(t∗) produces the identity

h∗ + θ∗ = 1. (36)

Supposing a non-dimensional peak-to-peak amplitude A∗, the ratio of the
heaving and pitching amplitudes is solely described by the non-dimensional
heave-to-pitch ratio h∗. A purely pitching foil has a value of h∗ = 0, a purely
heaving foil has a value of h∗ = 1, and h∗ = 0.5 represents a combined
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Figure 4: Use of a pitching/heaving foil as a proxy to undulatory locomotion. Illustration
(a) shows a period of a traveling wave undulating across a NACA 0012 airfoil. The trailing
edge of the foil is modeled as a separate entity that acts as a proxy to the caudal fin of a
fish. The schematic (b) tracks the motion of the ‘caudal fin’ separated from the body as
a function of pitching and heaving.

Figure 5: Typical wake of an unsteady swimmer in this study. Wake of a foil after several
cycles of motion for the values of h∗ = f∗ = A∗ = 0.5. A foil of chord c is placed
in a freestream flow at speed U∞. The vertical spacing of the vortices in the wake are
described as a function of the amplitude A = c/2 and the horizontal spacing is a function
of freestream speed and frequency, 2U∞/f , for half of a cycle of motion.

heaving and pitching motion where half of the total amplitude comes from
pitching and the other half comes from heaving. All other values in the range
0 < h∗ < 1 represent combined heaving and pitching motions. The chord-
based reduced frequency f ∗ = fc/U∞ is the non-dimensional quantity that
describes the unsteadiness of the prescribed swimming motion.

Figure 5 shows a typical reverse von Kármán wake structure of a foil
operating at h∗ = 0.5, f ∗ = 0.5, and A∗ = 0.5. The spacing of the wake
is dictated vertically by the amplitude of motion and horizontally by the
freestream speed and the frequency. The ratio of the vertical spacing to
horizontal spacing results in the Strouhal number, St = fA(t∗)/U∞. The
example wake in Fig. 5 has a Strouhal number of St = 0.25, which is within
the range of typical fish swimming of 0.2 < St < 0.4 [5, 46, 47]. The acoustic
pressure presented for the remainder of this work is non-dimensionalized by
dynamic pressure, P ∗ = 2Pacoustic/ρU

2
∞.
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Input Variables: 0.25 ≤ A∗ ≤ 1 0 ≤ h∗ ≤ 1
0.125 ≤ f ∗ ≤ 1

Input Parameters: U∞ = 1 m s−1 ρ = 1000 kg m−3

c0 = 1000 m s−1 c = 1 m

Table 1: Input variables and parameters used in the present study.

The flow-acoustic BEM is used to study how variations in the non-
dimensional amplitude, reduced frequency, and non-dimensional heave-to-
pitch ratio alter both the acoustic emissions and the hydrodynamic forces on
the body. The ranges of variables and parameters used in the current study
are presented in Table 1. The range of Strouhal numbers in the simulations
is 0.0312 ≤ St ≤ 1. The reduced frequencies and Strouhal numbers in the
current study cover the ranges associated with typical fish swimming [47, 5]
and also extend to regions where biological systems may perform fast starts
or rapid turns [2].

6. Results

Figure 6 presents the near-field transient acoustic pressure for a foil with
parameters of h∗ = 0.5, f ∗ = 0.5, and A∗ = 0.5. The acoustic pressure is
determined at discrete points on circles with radii of two to five chords away
from the mid-chord of the foil at rest. A vertically-oriented pressure dipole
is generally observed. The position of the maximum acoustic pressure shifts
from the front to back as the effective angle of attack increases, as seen in the
snapshots from t/T = 0 to t/T = 5/9, where T is the period of motion. The
sign change of the dipole strength at the middle of the period (t/T = 4/9)
corresponds to the change in effective angle of attack going from negative to
positive values. At time t/T = 4/9, the transient acoustic pressure field has
a quadrupole shape with two of its lobes directed behind the foil, which are
an order of magnitude weaker than the response above and below the foil.

Figure 7a shows the acoustic response at a single observation point 50
chords above the foil with a heave-to-pitch ratio of h∗ = 0.375, a reduced
frequency of f ∗ = 0.25, and over the entire range of amplitudes used in the
current study. As expected, the pressure fluctuates harmonically in time with
the same frequency as the foil motion. For fixed heave-to-pitch ratio and re-
duced frequency, the amplitude of the acoustic pressure response increases
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Figure 6: Transient near-field acoustic pressure of a typical swimmer. The non-dimensional
near-field acoustic pressure P is shown for a foil operating at h∗ = 0.5, f∗ = 0.5, and
A∗ = 0.5 at different instances of non-dimensional time t/T . The acoustic pressure is
found at discrete points set around circles centered about the mid-chord when at rest.
The circle radii range from two to five chord lengths.
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Figure 7: Transient and root-mean-square (RMS) acoustic pressure levels of a typical
swimmer. (a) Transient acoustic pressure response of a foil undergoing a combined heav-
ing/pitching motion with h∗ = 0.375, f∗ = 0.25, and various amplitudes. The acoustic
pressure is determined at the position 50 chords above the leading-edge of the foil and
shown for 3 cycles of motion. (b) RMS acoustic pressure PRMS from a foil undergoing
a combined heaving/pitching motion with h∗ = 0.8, A∗ = 0.5, and various reduced fre-
quencies. The acoustic pressure response is computed on a circle 50 chord lengths from
the leading edge of the foil and is averaged over 3 cycles of motion. The dipolar acoustic
directivity is observed for all kinematic parameters considered.

with the amplitude of motion. A directivity plot of the root-mean-square
(RMS) pressure (PRMS) over three motion cycles for various reduced fre-
quencies is shown in Fig. 7(b). Regardless of the motion parameters selected,
a dipole directivity is always observed. Moreover, the peak acoustic pressure
can be observed to also increase with an increase in the reduced frequency.
Since all of the variables produce self-similar dipole acoustic responses, the
peak RMS acoustic pressure can be used as the single metric to describe the
acoustic field. The peak pressure can then be scaled by the dynamic pressure:

P ∗Peak =
P ∗RMS
1
2
ρU2

. (37)

Figure 8 presents the non-dimensional peak acoustic pressure for a purely
pitching foil (h∗ = 0), a combined-motion foil with equal amplitude contri-
butions from pitching and heaving (h∗ = 0.5), and a purely heaving foil
(h∗ = 1). The global maximum in the peak acoustic pressure is found at
h∗ = 1, f ∗ = 1, and A∗ = 1, which represents the upper bounds of all of
the parameters being explored. However, the minimum in the noise produc-
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Figure 8: Peak acoustic pressure for (a) a purely pitching foil (h∗ = 0), (b) a combined
heaving/pitching foil (h∗ = 0.5), and (c) a purely heaving foil (h∗ = 1) as a function
of reduced frequency and amplitude of motion. Isolines of Strouhal number overlay the
acoustic pressure contours in (b).

tion does not occur at the minima of the parameter set: the minimum noise
occurs at h∗ ≈ 0.25 for fixed values of amplitude and reduced frequency. A
purely heaving foil produces higher acoustic pressures than a purely pitching
foil, except for f ∗ . 0.25. The combined heaving and pitching foil emits a
weaker acoustic pressure signal than either purely heaving or pitching foils
for all combinations of reduced frequency and amplitude of motion. Figure
8(b) overlays the Strouhal number on the peak acoustic pressure, showing
that in general an increase in Strouhal number results in an increase in the
peak RMS acoustic pressure for a fixed swimming motion h∗, even though
the isolines of St and P ∗peak are not precisely aligned. Therefore, the noise
level trends are not driven solely by changes in the Strouhal number.

An increase in either the reduced frequency or the amplitude of motion
will result in an increase in acoustic pressure, but the motion type of the foil
can lead to lower values of acoustic pressure. In fact, a pressure minimum is
observed for a combined heaving and pitching motion for all combinations of
reduced frequency and amplitude examined in this study. Figure 9 presents
a map that shows the h∗ value leading to the lowest noise production for
a given f ∗ and A∗. A purely heaving or pitching foil never produces the
lowest acoustic pressure. For f ∗ & 0.3 the quietest swimming is produced
by pitch-dominated swimming motions (h∗ < 0.5). Only for low reduced
frequencies of f ∗ . 0.3 do heave-dominated motions (h∗ > 0.5) produce
the quietest swimming, and this h∗ value is independent of the amplitude.
Lines of constant St are also marked on the figure, which denote the typical
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Figure 9: Map showing for a given f∗ and A∗ which h∗ value leads to the lowest noise
production.

range of St for swimming animals [46]. From this map it can be seen that
for swimming animals operating with low reduced frequencies (f ∗ < 0.3)
their noise production is minimized if they utilize heave-dominated swimming
kinematics. Swimming animals with higher reduced frequency (f ∗ > 0.3)
minimize their noise production if they utilize pitch-dominated swimming
kinematics.

The potential flow solver also can solve for the associated performance
characteristics of these oscillating foils. The force acting on the foil is defined
by F =

∫
Sb
−(Pflown̂) dS, where Pflow is the pressure from the flow solver as

opposed to the acoustic pressure, n̂ is the local outward normal vector and
Sb is the foil surface. Since the potential flow method is inviscid, the forces
on the foil arise only from its external pressure distribution. The power
consumption of the oscillating motion is calculated as the negative inner
product of the force vector and velocity vector of each boundary element,
i.e., Pw = −

∫
Sb
Fele · uele dS. The time-averaged coefficients of lift, thrust,
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and power may be defined as

CL =
Fy

1
2
ρU2
∞
, CT = − Fx

1
2
ρU2
∞
, CP =

Pw
1
2
ρU3
∞
, (38)

where Fx and Fy are the integrated streamwise and transverse components of
the force on the foil, respectively. The efficiency is also defined as η = CT/CP .
In addition to the time-averaged coefficient of lift, the maximum coefficient
of lift will also prove to be a useful metric and is defined by

CL,max =
max(F̄y)

1
2
ρU2
∞

. (39)

Figure 10 presents a comparison of the peak RMS acoustic pressure P ∗Peak,
the maximum coefficient of lift CL,max scaled by a factor of 1000 and the
absolute value of the time-averaged coefficient of lift |CL| scaled by a factor
of 20. These quantities are shown as functions of the Strouhal number and
non-dimensional heave-to-pitch ratio. The lift metrics were scaled in order
to make the plots the same order of magnitude. It can be seen that the
peak RMS acoustic pressure and the maximum coefficient of lift follow the
same trend for increasing St and h∗. It can also be observed that the peak
RMS acoustic pressure does not follow the same trend as the time-averaged
coefficient of lift. Not surprisingly, the maximum lift coefficient provides
a better correlation with the peak RMS acoustic pressure than the time-
average coefficient of lift. In light of this finding, the maximum coefficient
of lift CL,max may be used as a proxy metric for comparison of the relative
acoustic emissions between oscillating hydrofoils.

Figure 11 presents a comparison among the coefficients of thrust and
power, efficiency, and the peak RMS acoustic pressure. The thrust produc-
tion increases with increasing f ∗, h∗, and A∗. In figure 11, regions of negative
coefficient of thrust (and the corresponding regions of coefficients of power,
efficiency, and the peak RMS acoustic pressure) are excluded from the con-
tour plots shown. The power consumption also increases with increasing f ∗

and A∗; however, as h∗ increases the power decreases to a minimum and then
increases. This result indicates that combined heaving and pitching motions
use less power than purely pitching or heaving motions for a fixed f ∗ and A∗.
The efficiency results show global peaks around h∗ = 0.85, f ∗ < 0.2 for all
A∗. Since the St = f ∗A∗, the highest efficiencies occur for the lowest swim-
ming Strouhal numbers. Most fish swim with 0.2 ≤ St ≤ 0.4 [46] making
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Figure 10: Comparison of lift metrics with peak acoustic pressure as a function of St
and h∗. The plots show the peak RMS acoustic pressure P ∗Peak, maximum coefficient of
lift scaled CLmax/1000, and the absolute value of the time-averaged coefficient of lift |CL|
scaled by a factor of 20. Subfigure (a) is a purely pitching foil, h∗ = 0, (b) is a combined
heaving and pitching motion with h∗ = 0.5, and (c) is a purely heaving foil, h∗ = 1.

it difficult to reach the highest levels of efficiency, even with A∗ = 1. The
optimal h∗ to maximize efficiency will vary, depending upon the Strouhal
number of the particular swimming animal or biorobotic device.

For the first time, the noise of a biopropulsor and its performance can be
compared. The peak acoustic pressure can be observed to not follow trends
of the thrust or efficiency; however, the peak acoustic pressure does follow
similar trends with the power coefficient. This result can be explained by
the fact that the acoustic pressure is well-correlated with the maximum lift
coefficient and, consequently, with the power consumption [48]. Moreover,
the absolute value of coefficient of lift is greater than thrust for all scenarios,
further explaining the vertical acoustic dipole and the trend between the
peak RMS acoustic pressure and the maximum coefficient of lift.

These results highlight that when the power needed to move the foil is
minimized, then there is also a minimum amount of energy that can be
converted into noise, leading to the quietest acoustic signatures. In contrast,
there is a trade-off between operating at maximum propulsive efficiency and
minimizing the noise production. Furthermore, the thrust increases as the
swimmer moves from a pure pitching to a pure heaving swimming motion,
which requires more power and produces a louder acoustic signal.
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Figure 11: Comparison of acoustic and hydrodynamic metrics. The rows correspond to
the coefficients of thrust and power, the efficiency, and the peak acoustic pressure. The
columns correspond to different A∗ values. Each contour plot is presented as a function
of f∗ and h∗.
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7. Conclusion

An integrated, two-dimensional flow-acoustic boundary element solver is
developed to predict the noise generated by the vortical wake of rigid foils in
motion. The vortex-particle wake computed by the potential flow boundary
element solver furnishes the input for the transient acoustic boundary ele-
ment solver via Powell’s acoustic analogy. This one-way flow-acoustic cou-
pling is validated against experimental and analytical results for the acoustic
emission of a vortex gust encounter with an airfoil.

The coupled potential flow-acoustic method is used to investigate the per-
formance and acoustic emission of a heaving and pitching hydrofoil. The hy-
drofoil is subjected to varying non-dimensional frequencies, amplitudes, and
heave-to-pitch ratios that encompass the parametric range of most swimming
and maneuvering animals. All combinations of these variables examined in
this work produce a similar dipole acoustic response, where the maximum
sound pressure levels occur directly above and below the foil. Foils in purely
pitching or purely heaving motions are found to be noisier than foils that
operate with a combined heaving and pitching motion. In fact, for fixed
reduced frequency and amplitude there exists an optimal heave-to-pitch ra-
tio, h∗, that minimizes the noise production. The numerical model indicates
that most swimming animals would minimize their noise production by us-
ing heave-dominated swimming motions. As the reduced frequency increases
past the regime of swimming animals, a transition to pitch-dominated swim-
ming motions minimize the noise production. Moreover, the correlation be-
tween the maximum coefficient of lift and the peak RMS acoustic pressure
for all combinations of reduced frequency, amplitude, and heave-to-pitch ra-
tio corresponds to the acoustic dipole response. Consequently, the trends in
the coefficient of power are well-correlated with the trends in the peak RMS
acoustic pressure for swimming motions with h∗ > 0.25. This result sup-
ports the conclusion that swimming with low power consumption and a low
acoustic signature can be achieved together. In contrast, it is discovered that
there is a trade-off between swimming with high propulsive efficiency and a
low acoustic signature. These insights seek to further our understanding of
swimming in nature and could aid in the design of high-performance, quiet
bio-inspired autonomous underwater vehicles.
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Appendix A.

The potential flow boundary element method presented in this work is
a two-dimensional derivative of the three-dimensional method described by
Willis et al. [30]. A comparison of the BEM solution to analytic and nu-
merical works is performed to ensure accuracy of the method presented.
Theodorsen [49] solved analytically for the fluid-dynamic lift and moment
acting on a flat-plate foil undergoing harmonic pitching and heaving motions
under the assumption of a planar wake. Garrick [50] used these results to pre-
dict the time-averaged thrust and efficiency of pitching and heaving motions,
as well as trailing-edge flap motions. These analytical results have recently
been extended by Jaworski [51] to also handle leading-edge flap actuation in
addition to pitch, heave, and trailing-edge flap motions, and the results from
Theodorsen and Garrick have previously been compared to computational
fluid dynamic simulations of rigid and deformable thin airfoils [52, 53].

The first validation case is against Garrick’s theory. In the numerical
simulations, a 2 %-thick tear drop foil is subjected to a purely pitching motion
of amplitude θ0 = 3◦ about the leading edge.

First, convergence studies on the number of boundary elements and time-
steps is found for a reduced frequency f ∗ = 1. Figure A.12 (a) shows spatial
and (b) temporal convergence for time-averaged coefficient of force. The inset
images detail the percent change (%∆) of the time-averaged value as the
number of elements or time steps per period of motion double. The spatial
convergence was conducted for a fixed temporal resolution of 150 time steps
per period. The inset of figure A.12 (a) shows the O(1%) difference in the
force when changing from 128 to 256 elements. The temporal convergence
study used a fix number of 256 body elements. It can be seen in figure A.12
(b) an O(1%) change in force when increasing from 128 to 256 time steps
per period of motion. All of the simulation results previously presented used
150 time steps per period of motion and 256 boundary elements to define
the discrete body. Comparison to analytic solutions and convergence studies
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Figure A.12: Spatial and temporal convergence of potential flow BEM. (a) Plots the time
averaged coefficient of force as the number of boundary elements on the body doubles for
a fixed number of time steps.

of the acoustic BEM are presented in Appendix Appendix B. The acoustic
results have been previously conducted by Wagenhoffer et al. [11], showing
the selected spatial and temporal values of the potential flow solver will also
result in converged acoustic results.

Next, validation via comparison of Garrick’s theory to the solution of the
solver in §2 for varying reduced frequencies is detailed. Theodorsen defined
lift as

CL = ρV 2c
√
R2 + I2eıωt, (A.1)

and aerodynamic moment as,

M =
1

2
ρV 2c2

√
R2 + I2eı(ωt+φ), (A.2)

where

R = πθ0
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φ = tan−1 I

R
.

The required power to sustain the foil motion is Pow = −Mθ̇. The coefficient
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of thrust from Garrick [50] was corrected by Jones et al. [54] to be

CT = πk2θ2
0

[
(F 2 +G2)
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1

k2
+
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1

2
− a
)2
)
−
(

1
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)(

1

2
− F

)
− F

k2
−
(

1

2
+ a

)
G

k

]
,

(A.3)
where F and G are the real and imaginary parts of the Theodorsen lift de-
ficiency function, C(k) = ıH

(1)
1 (k)/(H

(1)
0 (k) + ıH

(1)
1 (k)) and a is the position

of the pivot point measured from the mid-chord in half-chord intervals. Ro-
tation about the leading edge corresponds to a = −1.

Figure A.13 compares the potential flow BEM results against the theory
of Garrick for three different reduced frequencies that encapsulate the range
of reduced frequencies used for the study in §5. The figure shows the BEM
solution matching well to the thin-airfoil theory results over one cycle of
motion.

The theory of Garrick is applicable to low-amplitude motion, and addi-
tional validation against large amplitude motions is necessary to give confi-
dence in the potential flow solver. The work of Pan et al. [33] developed a
boundary element method to investigate leading-edge separation of heaving
and pitching foils, but that is not necessary for the work presented here as
we assume that the flow remains attached over the propulsive surface being
studied. In the work of Pan et al., thrust and efficiency are found for heav-
ing and pitching foils without leading-edge separation for a range of Strouhal
numbers and maximum angles of attack αmax. Figure A.14 shows good agree-
ment between the method presented here and the work of Pan et al. for a
heave-to-chord ratio of 0.75 and αmax = 35◦ over 0.25 < St < 0.4.

Appendix B.

The capability of the acoustic boundary element method to model acous-
tic scattering by a solid body is demonstrated and validated. A rigid circle of
radius a placed at the origin that is bombarded by a harmonic field of plane
waves. The incident field of unit strength has the form

Pi(x, t) = exp[i(κr cos θ − ωt)],

where ω is the angular frequency, κ is the wavenumber, and x = r cos θ. The
analytical result for the scattered field is [55]

Ps(x, t) = eiωt
∞∑
n=0

εni
n

[
Jn(κa)− J ′n(κa)Hn(κr)

H ′n(κa)
cosnθ

]
. (B.1)
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Figure A.13: Comparison of BEM solution with solution of Garrick. Shown is a comparison
of the solution of §2 to the theory of Garrick [50] for a purely pitching foil. From left to
right are increasing values of reduced frequency, f∗ = fc/U∞ = [0.25, 0.5, 1]. From top to
bottom are comparisons of the coefficient of lift CL, coefficient of thrust CT , and coefficient
of power CP , respectively. In each plot the dashed blue line is the solution of the potential
flow method and the solid green line is the theory of Garrick A.3.
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Figure A.14: Comparison of the numerical results of the potential flow solver in §2 with
the numerical solutions by Pan et al. [33]. A combined heaving and pitching motion with
a heave-to-chord ratio of h0/c = 0.75 reaching maximum angles of attack of 15◦ (left) and
35◦ (right) are performed over Strouhal numbers ranging from 0.25 to 0.4. The results are
compared with respect to the coefficient of thrust CT (top) and efficiency η (bottom). The
blue squares represent the work of Pan et al. and the yellow circles represent potential
flow solver in this work.

The total acoustic field is the sum of the incident and scattered fields, Pt =
Ps + Pi.

The interaction of the harmonic incident field with the solid cylinder is as
follows. The incoming plane waves propagate in the positive x-direction and
make initial contact with the cylinder at (r, θ) = (a, π). In the area in front of
the cylinder, the plane waves are reflected back onto themselves. The waves
reflect at the front of the cylinder to create a shadow region aft of the body.
The length of the shadow region is dictated by the wavenumber, with larger
values resulting in a smaller shadow region. The L2 error norm is calculated
over observation points placed on five circles of five points, sampling all of
the regions of the scattered field from distances of 1a → 10a from the rigid
circle.

Figure B.15 (a) compares the transient acoustic response at a point in
the acoustic field to the analytical solution to harmonic wave forcing. Here
ω = 1, κ = 2, and arbitrary point (r, θ) = (5, π

9
) are selected for this example.

Note the absence of a signal in the BEM solution until the initial scattered
wave reaches the observation point, after which the numerical solution quickly
converges to the analytical result.

Temporal and spatial discretization independence of the numerical so-
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Figure B.15: A comparison of the analytical to BEM results of the plane wave scatterer
study with convergence studies. (a) shows the fully developed scattered field. The obser-
vation point, denoted by a black circle, is placed at the arbitrary point (r, θ) = (5, π9 ). (b)
compares the time history of the scattered field at the observation point for ω = 1 and
κ = 2 with the analytic solution. (c) shows the spatial convergence of the solution, while
(d) shows the temporal convergence of the solution
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lution are shown in figure B.15 (c) and (d). For the spatial convergence
study, four periods of T = π are divided into 256 equidistant time-steps. An
increasing number of elements on the boundary were used to compare the
BEM solution with (B.1). The temporal convergence study (figure B.15 (d))
had a boundary of 1024 equal length elements over a total period of T = 4π.
The total period is divided into increasing numbers of equidistant time steps.
Spatial convergence occurs at approximately 512 elements, showing a relative
error of less than 0.1% when using more than 256 time steps.
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