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Abstract
We present new measurements of non-uniformly flexible pitching foils fabricated with a rigid
leading section joined to a flexible trailing section. This construction enables us to vary the bending
pattern and resonance condition of the foils independently. A novel effective flexibility, defined as
the ratio of added mass forces to elastic forces, is proposed and shown to provide a scaling for the
natural frequencies of the fluid-structural system. Foils with very flexible trailing sections of
EI < 1.81 × 10−5 N m2 do not show a detectable resonance and are classified as ‘non-resonating’
as opposed to ‘resonating’ foils. Moreover, the non-resonating foils exhibit a novel bending pattern
where the foil has a discontinuous hinge-like deflection instead of the smooth beam-like deflection
of the resonating foils. Performance measurements reveal that both resonating and non-resonating
foils can achieve high propulsive efficiencies of around 50% or more. It is discovered that
non-uniformly flexible foils outperform their rigid and uniformly flexible counterparts, and that
there is an optimal flexion ratio from 0.4 � λ � 0.7 that maximizes the efficiency. Furthermore,
this optimal range coincides with the flexion ratios observed in nature. Performance is also
compared under the same dimensionless flexural rigidity, R∗, which highlights that at the same
flexion ratio more flexible foils achieve higher peak efficiencies. Overall, to achieve high propulsive
efficiency non-uniformly flexible hydrofoils should (1) oscillate above their first natural frequency,
(2) have a flexion ratio in the range of 0.4 � λ � 0.7 and (3) have a small dimensionless rigidity at
their optimal flexion ratio. Scaling laws for rigid pitching foils are found to be valid for
non-uniformly flexible foils as long as the measured amplitude response is used and the deflection
angle of the trailing section β is < 45◦. This work provides guidance for the development of
high-performance underwater vehicles using simple purely pitching bio-inspired propulsive drives.

1. Introduction

A defining feature of swimming and flying animals is

their use of flexible fins and wings [1–3]. In fact, with

the right amount of flexibility, propulsive surfaces

exhibit enhanced thrust, speed and efficiency over

their rigid counterparts [4–15]. These conclusions

are drawn from a considerable body of literature that

has studied uniformly flexible foils, i.e. foils with

uniform flexural rigidity, EI, across their chord and

span, where E is the elastic modulus and I is the area

moment of inertia. It has further been appreciated

that the propulsive efficiency of uniformly flexible

foils is maximized when the actuation frequency is

at or near a natural frequency of the fluid-structural

system [13, 14, 16–20] as long as the added mass

forces acting on a foil dominate over its inertial forces,

such as during underwater locomotion. However,

the propulsive surfaces of animals are known to be

non-uniformly flexible, where their flexural rigidity

decreases from the leading edge to the trailing edge or

from the center to the edge [21–24]. This observation

has prompted recent studies to examine whether the

basic principles of uniformly flexible foils extend to

non-uniformly flexible foils.

Recent theoretical work has established that non-

uniformly flexible foils can outperform uniformly

flexible foils while echoing their basic principles, at
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least within the assumptions of linear theory (small
amplitudes of motion, non-deforming wakes and
attached flow). Moore [25] showed that foils with
non-uniform flexibility produced more thrust than
uniformly flexible foils and that operating at res-
onance maximized the thrust. Floryan and Rowley
[26] found that hydrofoils maximize their thrust at
resonance, and if this was not possible then foils
with a stiff leading edge (rather than uniform flexi-
bility) would maximize their thrust. In their inviscid
theory, efficiency did not peak at resonance; how-
ever, when drag was introduced efficiency peaks did
emerge at the natural frequencies [27] as observed
in experimental studies [13, 14, 19]. The importance
of resonance in linear theory was found to extend to
finite-amplitude motions, although nonlinear mech-
anisms distort performance peaks making them occur
in the vicinity of resonance rather than always
coincident [20].

The primary difference between non-uniformly
flexible foils and their uniform counterparts is in
their bending pattern, which can be tailored through
variations in the thickness and/or elastic properties
along their characteristic dimensions [21, 28–31]. Yeh
et al [29] showed that the bending pattern of foils with
tapered thickness maintained a large trailing-edge
amplitude over a wide range of actuation frequencies,
not just at resonance. This led to superior thrust
and efficiency/economy performance compared with
uniformly thick foils. David et al [32] constructed
rigid foils with flexible trailing-edge flaps of varying
lengths. These foils had characteristically different
bending patterns; however, their first natural fre-
quency varied widely for each foil leading to per-
formance comparisons at vastly different frequencies
relative to resonance. Zeyghami and Moored [31]
adopted a non-uniformly flexible foil model in two-
dimensional inviscid simulations by placing a tor-
sional spring at different locations along the chord
to vary the bending pattern and resonance condition
independently. They determined that both the flexi-
bility and the bending pattern played a large role in
maximizing the thrust and efficiency of pitching foils.
The propulsive surfaces of animals even exhibit the
same bending pattern across species, with a flexion
point occurring at around two-thirds of the length of
a propulsor [33] despite their wide range of propulsive
structures and material properties (e.g. bone, muscle,
skin membrane and feathers).

These studies highlight the importance of both
resonance and the bending pattern in maximizing
the performance of non-uniformly flexible foils. To
date, no finite-amplitude, viscous flow studies have
comprehensively varied the bending pattern of foils
while comparing their performance below, at and
above the first natural frequency. To address this
unresolved issue we construct foils composed of a
rigid leading section with a flexible trailing section, of
constant flexural rigidity, joined at the flexion point.

In this way, non-uniformly flexible foils are formed
with a simple chordwise step function in their flexural
rigidity going from an infinite to a finite value along
the chord. Importantly, the bending pattern can be
altered independently from the first natural frequency
by varying (1) the flexion ratio λ = cr/c where cr

is the chord length of the rigid section and c is the
total chord length and (2) the flexural rigidity of the
trailing section.

We advance our understanding of non-uniformly
flexible foils by disentangling the effect of the bending
pattern from the resonance condition to discover that
there is an optimal flexion ratio of 0.4 � λ � 0.7,
in line with flexion ratios observed in nature
[33], where non-uniformly flexible foils can out-
perform their rigid and uniformly flexible coun-
terparts achieving efficiencies greater than 50% for
purely pitching motions. The paper is organized in
the following manner. Section 2 describes the non-
uniformly flexible foils as well as the experimental
setup and methods employed. Section 3 presents a
new definition of the effective flexibility derived from
the Euler–Bernoulli beam equation that is valid for
both uniformly flexible and non-uniformly flexible
foils. This represents a generalization of the scal-
ing law for the fluid-structural natural frequencies
presented in Quinn et al [14]. Section 4 presents
propulsive performance results. Section 5 shows the
effect of varying the bending pattern under the same
dimensionless flexural rigidity. Section 6 describes
scaling law analysis, and section 7 summarizes the
conclusions of the paper.

2. Experimental methods

We examined hydrofoils of a rectangular planform
shape with an aspect ratio AR = s/c = 2, where
the span and chord lengths are s = 0.19 m and
c = 0.095 m, respectively (figure 1). The hydrofoils
are composed of a rigid leading section (carbon fiber
sheet, thickness 0.8 mm) and a flexible trailing section
(polyester shim stock of varying thicknesses) with
a NACA 0018 coupler (chord length 25 mm, but
truncated at two-thirds of the chord) attached to the
leading edge for streamlining. This construction pro-
duces a chordwise non-uniform flexibility distribu-
tion that is represented as a simple step function from
an effectively infinite to a finite flexural rigidity. As
stated in the introduction, the flexion ratio is defined
as the ratio of the length of the rigid section to the
entire chord length of the foil, λ = cr/c. Note that the
rigid section length refers to the combined length of
the carbon fiber sheet and the leading edge coupler. If
λ = 1, a foil is fully rigid. If λ→ 0, a foil is uniformly
flexible (λ = 0.1 in the current study). Otherwise, a
foil is non-uniformly flexible and a variation in the
flexion ratio will vary the bending pattern of the foil.
This non-uniformly flexible foil construction enables

2
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Figure 1. (a) Schematic of a non-uniformly flexible hydrofoil undergoing purely pitching motion with a flexion ratio of λ = 0.5.
The black and gray portions depict the rigid leading section and the flexible trailing section, respectively, at a snapshot in time.
(b) Photograph of a non-uniformly flexible foil. (c) Schematic of the water channel facility and experimental setup. (d) Detailed
view of the pitching actuation mechanism.

the independent variation in the bending pattern and
the flexural rigidity of the flexible portion.

Experiments were conducted in a free-surface,
recirculating water channel with a test section of 4.9 m
long, 0.93 m wide and 0.61 m deep. A sequence
of honeycomb meshes and screens are arranged
upstream of the test section to attain uniform flow
and a turbulence intensity of less than 0.3%. The
freestream velocity U∞ = 0.094 m s−1 was main-
tained throughout experiments to achieve a chord-
based Reynolds number Rec = U∞c/ν = 9000, where
ν is the kinematic viscosity of the water. Figure 1
depicts the experimental apparatus in the water chan-
nel facility. An acrylic surface plate was used to reduce
surface waves and had a width of 0.35 m with lengths
of 0.6 m and 0.5 m downstream and upstream,
respectively, of the leading edge of the foil.

The hydrofoil was driven in a sinusoidal pitching
motion about the leading edge, θ(t) = θ0 sin(2πft),
by a servo motor (Dynamixel MX-64T), where θ0 is
the pitching amplitude, f is the frequency and t is
time. The pitching amplitude was set to θ0 = 8.6◦,
leading to a peak-to-peak trailing edge amplitude of
A0 = 2c sin(θ0) = 0.3c for the fully rigid foil. The
instantaneous pitching angle was measured with an
incremental encoder (US digital E5 optical encoder)
and observed to deviate from the input waveform
by less than 1.7%. Additionally, angular position
measurements were used with a second-order cen-
tral difference scheme to calculate the instantaneous
angular velocity, θ̇, used in the power input measure-
ments described below. Because the motion of the

flexible trailing section depends upon the fluid load-

ing, the bending pattern and peak-to-peak trailing-

edge amplitude, A, were measured with a camera

(GoPro Hero 7) capturing the mid-span motion illu-

minated by a continuous laser sheet. The peak-to-

peak trailing-edge amplitude was then measured with

motion-tracking software and it showed a cycle-to-

cycle variation of less than 2%. To effectively resolve

the amplitude peaks at resonance, the frequency

was varied over the range 0.15 Hz � f � 2.0 Hz in

0.05 Hz increments for the motion-tracking analysis.

For propulsive performance measurements, the fre-

quency was varied over a coarser range of 0.4 Hz �
f � 2.0 Hz with an increment of 0.1 Hz.

The pitching actuation mechanism (see

figure 1(d)) was composed of a hydrofoil connected

to a servo motor by a carbon fiber drive rod with an

in-line optical encoder and a six-axis force/torque

sensor (ATI Nano43). The force/torque sensor

measured the net thrust force, T, and pitching

moment, Mθ , acting on the foil. The instantaneous

power input to the foil was then calculated as

P = Mθθ̇, which was determined by subtracting the

power input in air from the power input in water

to eliminate the inertial power input and isolate the

power input to the fluid. The thrust and power were

then time-averaged over 60 pitching cycles during

each trial. The mean values over five trials of the

time-averaged thrust, T, and power, P, are reported

as the dynamic pressure-based thrust and power

coefficients, respectively
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CT =
T

1
2ρU∞

2cs
and CP =

P
1
2ρU∞

3cs
. (1)

Here, ρ is the density of the fluid. The propulsive
efficiency is defined as

η =
CT

CP
=

TU∞
P

. (2)

The measurement uncertainties are less than
εCT = ±0.015, εCP = ±0.0034 and εη = ±4% across
the entire testing domain.

3. Hydrofoil elastic response

The small deflections, h, of the flexible trailing section
can be modeled with the Euler–Bernoulli beam
equation [14, 34]

ρmsδ
∂2h

∂t2
+ EI

∂4h

∂x4
= Fext (3)

where ρm and δ are the material density and thickness,
respectively, of the flexible trailing section, x is the
chordwise position along the trailing section and F ext

are the external fluid forces acting on the trailing
section. The added mass force can be extracted from
Fext and written on the left-hand side as a charac-
teristic added mass per unit length for the trailing
section, ρs(1 − λ)c, times the acceleration, ∂2h/∂t2.
As noted in [14] for underwater propulsion, ρm/ρ =

O(1) and δ � (1 − λ)c (except when λ→ 1 in which
case the hydrofoil is effectively fully rigid). This leads
to the material’s inertia being negligible compared
with its added mass. Applying this simplification,
the Euler–Bernoulli equation can be rewritten in a
dimensionless form as

Π2
k

∂2H∗

∂T∗2 +
∂4H∗

∂X∗4 = F∗
ext (4)

where H∗ = h/A, T∗ = tf, X∗ = x/[(1 − λ)c] and
F∗

ext = F′
ext(1 − λ)4c4/EIA, with F′

ext being the exter-
nal fluid force per unit length without the added
mass force acting on the trailing section. The effective
flexibility

Πk = (1 − λ)
5
2

√
ρsf2c5

EI
, (5)

represents the ratio of the added mass forces to
the elastic forces and it is a generalization of that
presented in Quinn et al [14] and the continuously
flexible equivalent of the discrete torsional-spring-
based effective flexibility presented in Zeyghami and
Moored [31]. The homogeneous form of equation (4)
can be solved exactly to determine that the ratio of
the driving frequency to the fluid-structural natural
frequencies (when only added mass fluid forces are
considered) is directly proportional to the effective
flexibility as f/f̂ i = Πkλ

2
i , where f̂ i and λi are the ith

natural frequency and associated eigenvalue, respec-
tively. Hence this highlights the importance of the
effective flexibility in defining the elastic response of
the hydrofoils.

Fourteen foils of varying flexion ratio and trailing
section flexural rigidity, including one fully rigid
foil, were tested. Table 1 shows a diagonal band
of foil properties, which were chosen such that
all foils were pitched at frequencies below, at and
above their first fluid-structural natural frequency
given the range of testing frequencies defined in
section 2. This led to more flexible trailing sections
with their decreasing length (increase in the flexion
ratio); hence the diagonal structure to the testing
matrix. The non-uniformly flexible foils are labeled
F2 − F13 while the rigid foil is F∞. Note that F1 is
considered to be uniformly flexible in the current
study.

Figure 2 presents the normalized peak-to-peak
trailing edge amplitudes of the flexible foils as a
function of the effective flexibility. For all the foils,
the spanwise deflection of the trailing edge was found
to be negligible. If A/A0 > 1 the flexible foils experi-
ence an amplitude amplification compared with the
rigid foil, while for A/A0 < 1 there is an amplitude
reduction. The resonance condition is considered to
be the location where A/A0 is locally maximized.
As expected, foils F1 − F9 show clear resonances,
and their amplitude peaks all collapse to the same
value of Πk = 0.86. This shows that the proposed
effective flexibility provides an accurate scaling of the
resonance condition for foils with uniform as well as
non-uniform flexibility. Additionally, their maximum
A/A0 is around 1.2–1.3, which agrees well with the
work of Dai et al [11] and Dewey et al [13]. How-
ever, for foils F10 − F13 whose trailing section flexural
rigidity is EI < 1.81 × 10−5 N m2, there is no clear
resonance and their amplitude remains amplified
for the entire range of effective flexibility examined
(figure 2(b)). In fact, their A/A0 can exceed that of
the foils exhibiting a clear resonance with values up
to 1.7.

To characterize not just the trailing edge ampli-
tude response but also the bending patterns of the
hydrofoils, snapshots of the foils at 12 equally spaced
phases in one oscillation period are superimposed
(figure 3). Here we choose foils F1 and F6 (with a
resonance condition), as well as foil F10 (without a res-
onance condition) to illustrate the bending patterns.
Regardless of the flexion ratio, foils F1 and F6 show
a smooth curvature all along the foil at and above
resonance like that observed in uniformly flexible foils
[14]. However, the bending pattern of foil F10 shows a
discontinuity in the slope of the surface at the flexion
point. In fact, the flexible section retains a constant
slope along its length at any instantaneous time and,
in this way, behaves like a flexible hinge similar
to that examined numerically [31] and theoretically

4
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Table 1. Material and structural properties of the hydrofoils. Note that the flexural rigidity of the rigid foil is considered to be effectively
infinite since it shows negligible deformation during experiments.

EI (N m2) λ= 0.1 λ= 0.2 λ= 0.3 λ= 0.4 λ= 0.5 λ= 0.6 λ= 0.7 λ= 0.8 λ= 1

2.83 × 10−4 F1 F2 F3

8.39 × 10−5 F4 F5

4.39 × 10−5 F6 F7

1.81 × 10−5 F8 F9

2.26 × 10−6 F10 F11

6.71 × 10−7 F12 F13

∞ F∞

Figure 2. Normalized peak-to-peak trailing-edge amplitude as a function of the effective flexibility. (a) Foils showing a resonance
condition and (b) foils without a detectable resonance condition. The marker styles are mapped to the flexural rigidity of the
trailing section while the marker colors, from light yellow to dark blue, correspond to the flexion ratios from 0.1 to 0.8,
respectively.

Figure 3. Bending patterns of foils F1, F6 and F10, which have flexion ratios of λ = 0.1, 0.4 and 0.6, respectively. Foils (a)F1, (c)F6

and (e)F10 operating at the predicted first natural frequency with Πk = 0.86. Foils (b)F1, (d)F6 and (f)F10 operating above the
predicted first natural frequency with Πk = 2.

[35, 36]. When all three foils are driven at their pre-
dicted first natural frequencies (Πk = 0.86; although
foil F10 does not show a resonance condition) their
amplitude envelopes monotonically increase along
the chord [11, 37] and their mode shapes are char-
acteristic of a first bending mode [14, 19]. Above
their predicted first natural frequency, the foils show
a mode shape transitioning towards a second bending
mode [14, 19].

4. Propulsive performance of
non-uniformly flexible foils

Force and power measurements were conducted to
identify the role of the bending pattern in driving
the propulsive performance of non-uniformly flexible
hydrofoils. Throughout this section the hydrofoils
that exhibit a resonance condition and have a beam-
like smooth deformation, described as ‘resonating’

5



Bioinspir. Biomim. 17 (2022) 065003 T Han et al

Figure 4. Propulsive performance as a function of effective flexibility. Thrust coefficient for (a) the resonating foils and (b) the
non-resonating foils. Power coefficient for (c) the resonating foils and (d) the non-resonating foils.

foils, will be separated from those that do not show
a resonance condition and have a hinge-like discon-
tinuous deformation, described as ‘non-resonating’
foils.

Figures 4(a) and (b) present the thrust coefficient
as a function of the effective flexibility. For all the
foils there is a monotonic increase in thrust with an
increase in effective flexibility. However, the thrust
trends of the resonating and non-resonating foils are
characteristically different. The resonating foils show
a near linear increase in thrust at sufficiently low
effective flexibility of Πk � 1, then a decrease in the
slope of the thrust curve at or just above resonance
in the range 1 � Πk � 2, followed by an increase in
slope of the thrust curve for greater effective flexibility
of Πk � 2 as seen previously [13, 14]. Also, with the
proper definition of Πk the drag-to-thrust transition
occurs in the narrow range 0.5 � Πk � 1. In con-
trast, the non-resonating foils show a wider range
for the drag-to-thrust transition 0.5 � Πk � 2, and
a decrease in the slope of the thrust curves happens
above, and in some cases well above, the predicted
first natural frequency in the range 1.5 � Πk � 5.
This highlights the dissociation of these foils from
resonance.

All the foils exhibit clear trends with variations in
the flexural rigidity and the flexion ratio. When the
flexural rigidity is held constant and the flexion ratio
increases, such as among foils F1, F2 and F3, the thrust
production increases at the same effective flexibility.
This is intuitively expected since with an increasing

flexion ratio there is an increasing large rigid portion
of the foils, and more rigid foils tend to generate larger
thrust coefficients, at least at sufficiently high driving
frequencies [10, 13, 28, 30]. When the flexion ratio is
held constant and the flexural rigidity decreases, such
as between foils F11 and F12, there is a subsequent
decrease in the thrust production at the same effective
flexibility. Again, this occurs since the overall flexibil-
ity of the foil decreases as the trailing section becomes
more flexible.

The power coefficient is presented in figures 4(c)
and (d) as a function of the effective flexibility. Like
the thrust, the power coefficient exhibits a mono-
tonic trend with increasing effective flexibility. For
the resonating foils, the trend in the power coefficient
follows closely with its trend in thrust, where there
is a decrease in the slope of the curve around reso-
nance and an increase in the slope at higher effective
flexibility. Surprisingly, for the non-resonating cases,
the power coefficient does not show a decrease in
the slope like the resonating foils, and, in fact, has
an ever-increasing slope with increasing flexibility,
reminiscent of rigid pitching foils [13, 38]. For both
resonating and non-resonating foils, if the flexu-
ral rigidity is held constant and the flexion ratio
increases, and vice versa, the foils consume more
power at the same effective flexibility, similar to the
thrust.

Figure 5 presents the propulsive efficiency as a
function of the effective flexibility. The resonating
foils show a peak in efficiency in the range 1 � Πk � 3

6
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Figure 5. Propulsive efficiency as a function of Πk for (a) resonating foils and (b) non-resonating foils. (c) Maximum propulsive
efficiency of each foil extracted from (a) and (b) as a function of the flexion ratio. Maximum efficiency data for the AR = 2 foils
in Dewey et al [13] as well as the rigid foil data are added for reference. The shaded area is the range of flexion ratio found in
biological data as presented in Lucas et al [33]. (d) Bending patterns of F6 and F10 at their the maximum efficiency operating
conditions of Πk = 2.3 and Πk = 3.6, respectively.

with an extended range of high efficiency at higher
effective flexibility, like that observed in Dewey et al
[13], with the exception of foil F9, which is on the
cusp of behaving like a non-resonating foil. The non-
resonating foils show a more well-defined efficiency
peak with a sharp decline in efficiency at higher effec-
tive flexibility than that of the peak. These efficiency
peaks are coincident with inflection points in the non-
resonating foil thrust coefficient curves. Therefore,
the sharp decline in efficiency is driven by a decline
in the slope of the thrust curve above the efficiency
peak paired with a continually increasing slope in the
associated rigid-foil-like power curve.

The peak efficiency is extracted from both the
resonating and non-resonating efficiency data and
compiled in figure 5(c) as a function of the flex-
ion ratio. For reference, the peak efficiencies for the
AR = 2 foils (the same AR as the current study)
from Dewey et al [13] and the rigid foil F∞ are
added. A clear optimal flexion ratio emerges in the
range 0.4 � λ � 0.7 where the efficiency is maxi-
mized above 45% with an efficiency greater than
η = 50% at λ = 0.6. This highlights that the tailor-
ing of the bending pattern of non-uniformly flexible
foils, via variations in the flexion ratio, can signifi-
cantly enhance their propulsive efficiency over either
their rigid or uniformly flexible foil counterparts.

Moreover, the optimal range of flexion ratios coin-
cides with flexion ratios observed in nature (denoted
by the shaded area in figure 5(c)) across a wide
range of species [33]. This suggests that animals may
have evolved bending patterns with flexion ratios
around λ = 0.6 in order to enhance their propulsive
efficiency.

It is surprising to see both resonating (F6;λ = 0.4)
and non-resonating (F10; λ = 0.6) foils achieving
equivalent peak efficiencies, within their uncertainty,
with quite different bending patterns (figure 5(d)).
At their peak efficiencies, foil F6 exhibits a beam-
like smooth deformation while foil F10 is showing
transition from a hinge-like discontinuous deforma-
tion to a beam-like smooth deformation. Future work
will focus on quantifying the flow structures around
these foils, especially at the flexion point where flow
separation at the sharp hinge of foil F10 would be
expected.

5. Tailoring the bending pattern
at the same dimensionless flexural
rigidity

In order to further investigate the effect of tailoring
the bending pattern, a dimensionless flexural rigidity
is used:

7
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Figure 6. (a) Flexion ratio of all foils as a function of dimensionless rigidity. (b) Dimensionless amplitude, (c) thrust coefficient,
(d) power coefficient and (e) efficiency for foils F1, F5, F7 and F9, which all have R∗ � 0.24. (f) Maximum propulsive efficiency of
the foils that share a flexion ratio with another foil as a function of the dimensionless rigidity. Throughout this figure the colors
are mapped to the flexion ratio as noted previously.

R∗ =
EI

ρU2
∞sc3(1 − λ)3.

(6)

When this variable is conserved, the dimensionless
displacement of the trailing section under a unit load
is also conserved, thereby describing the effects of
stiffness variations independent of the resonance con-
dition [32]. Figure 6(a) presents the dimensionless
rigidity of the foils mapped to their flexion ratio.
Foils F1, F5, F7 and F9 have nearly the same dimen-
sionless rigidity with values of R∗ = 0.27, 0.27, 0.24
and 0.2, respectively, which are all around R∗ � 0.24.
In figures 6(b)–(e) only these four foils are presented
to highlight the effect of variations in flexion ratio
at the same dimensionless rigidity. When the dimen-
sionless rigidity is conserved and foils are oscillated
at the same resonance condition (the same Πk), then
increasing the flexion ratio from 0.1 to 0.6 increases
the peak-to-peak amplitude, thrust production and
power consumption. As found in figure 5(c) a flexion

ratio of λ = 0.6 generates the maximum propulsive
efficiency, which highlights that the flexion ratio,
and thus the bending pattern, is the main driver for
maximizing the efficiency beyond operating above
the first resonant frequency. However, by plotting
only the maximum efficiencies from foils that share
a flexion ratio with another foil (figure 6(f)) it
can be observed that more flexible foils produce
higher maximum propulsive efficiencies at the same
flexion ratio (same color), at least within our data
set. It is quite likely that further work could reveal
an optimal dimensionless rigidity at each flexion
ratio.

Now a framework for optimizing non-uniformly
flexible foils can be postulated. Their efficiency can be
maximized by: (1) oscillating them above their first
natural frequency, (2) tuning their flexion ratio to
0.4 � λ � 0.7 and (3) minimizing their dimension-
less rigidity at the optimal flexion ratio.

8
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6. Scaling law analysis

We postulate that previously developed scaling laws
for purely pitching rigid foils [39] will capture the
physics of non-uniformly flexible foils operating
around their first natural frequency, as long as the
measured trailing edge amplitude response is used in
the scaling law calculations. In this way the effects
of flexibility will be implicitly implemented into the
scaling laws, and as such will not provide a predictive
model using only variables and parameters known
a priori. Still, these scaling laws will be informative
as to whether the flow physics of non-uniformly
flexible pitching foils are well-modeled in the rigid foil
scaling laws. The previously developed scaling laws
are a combination of the added mass and circulatory
forces from classical linear theory [36] with additional
nonlinear terms that are not accounted for in lin-
ear theory. Further details of their development and
application, as well as more in-depth descriptions can
be found in [39–42]. The thrust coefficient scaling law
is the superposition of three terms

CT = c1φ1 + c2φ2 + c3φ3 (7)

with: φ1 = St2,

φ2 = St2

[
(F2 + G2)

(
1

π2k2
+

9

4

)

+
G

2πk
− 3F

2
− F

π2k2

]
,

φ3 = St2A∗,

where c1, c2 and c3 are constants to be determined,
F and G are the real and imaginary components
of Theodorsen’s lift deficiency function, respectively
[35], the reduced frequency is k = fc/U∞ and the
dimensionless trailing edge amplitude is A∗ = A/c.
The first and second terms are the added mass and cir-
culatory thrust forces, respectively, from linear theory.
The second term is included here for completeness;
however, it plays a minor role scaling the performance
of experimental data and can be neglected without a
significant loss in accuracy in most cases. The third
term is not accounted for in linear theory and cor-
responds to the form drag of the oscillating foil. The
power coefficient scaling law is also the superposition
of three terms

CP = c4φ4 + c5φ5 + c6φ6 with: φ4 = St2,

φ5 =
St4

k

(
k∗

1 + k∗

)
, φ6 = St4k∗, (8)

where c4, c5 and c6 are constants to be determined
and k∗ = k/(1 + 4St2). The first term represents the
added mass power from linear theory. The second
and third terms are nonlinear corrections not present

in linear theory that account for large-amplitude
motions and the proximity of the trailing edge vortex
to the foil, respectively. While these scaling laws are
valid for nominally two-dimensional foils, the fully
three-dimensional version [41] is not necessary since
the aspect ratio of the foils is constant throughout
this study. This leads to a difference in the fitted coef-
ficients found with the current data compared with
equivalent nominally two-dimensional foils; however,
there should be no change in how well the data
collapse.

Figure 7 presents the thrust and power data com-
pared with the prediction of the scaling laws. Using
only the resonating foil data, linear regression was
performed by minimizing the squared residuals. It
should be noted that the thrust scaling does not
model the net thrust, but the pure thrust. Therefore,
the profile drag coefficient of CD,0 = D/(1/2ρU2

∞sc)
= 0.04, where D is the time-averaged drag of the
static foils, was added to the reported thrust coeffi-
cients, linear regression was then performed on those
data and finally the drag coefficient was subtracted
from the thrust scaling law to arrive at a prediction
of the net thrust. In this way, the coefficients were
determined to be c1 = 1.39, c2 = −4, c3 = −1.52,
c4 = 4.68, c5 = −16.16 and c6 = 1.73. If the data are
accurately predicted by the scaling laws then they will
collapse to the solid reference line of slope 1 shown
in the figure. Indeed, figures 7(a) and (c) show a
good collapse of the resonating foil data from foil
F1 to foil F9. This shows that if a scaling law for the
trailing edge amplitude response were determined as
a function of the input kinematic variables, and the
structural and material properties, then the scaling
laws would accurately capture the overarching flow
physics of non-uniformly flexible foils. However, even
with using the measured trailing edge amplitude there
is still some variation, especially in the power, with
the structural and material properties. This suggests
that an additional bending pattern correction could
be introduced into the scaling laws and/or the terms
in the current model could be modified to further
improve the model’s accuracy.

For low thrust and power coefficients, the non-
resonating foils follow the scaling law predictions
(figures 7(b) and (d)), but they deviate from the
predictions at higher coefficients. This is especially
clear in the thrust data, and a further analysis of
the bending pattern can provide some insight into
this deviation. From the motion tracking analysis,
the deflection angle of the flexible section relative
to the horizontal, β, was measured when the foils’
leading section passed through the θ = 0 position (see
inset schematic in figure 7(b) for reference). It was
discovered that the deflection angle of the flexible
section ranged from 0◦ � β � 45◦ for the resonating
foils and from 0◦ � β � 60◦ for the non-resonating
foils depending upon the driving frequency. In fact,
the data where the deflection angle is β � 45◦ are

9
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Figure 7. Thrust and power coefficients as functions of the proposed scaling relations developed in [39]. Thrust scaling collapse
for (a) the resonating and (b) the non-resonating foils. Power scaling collapse for (c) the resonating and (d) the non-resonating
foils. Data are marked by a red outline when the measured deflection angle of the flexible section is β � 45◦ . This angle is
measured via motion tracking analysis when the foils pass through the θ = 0◦ position as indicated in the inset schematic in (b).

denoted with a red marker outline. It can now be
clearly seen that at and above this threshold angle
the thrust data deviate from the scaling law. We
postulate that at these extreme deflection angles there
is flow separation at the flexion point, which in
turn leads to additional drag and an over-prediction
of the thrust by the scaling law. If confirmed
through future flow measurements, an additional
term for this phenomenon could be added to the
scaling laws to collapse the non-resonating foil data
as well.

7. Conclusions

We constructed simple non-uniformly flexible foils
with a flexible trailing section joined to a rigid leading
section. This produces a basic non-uniform flexibility
distribution as a chordwise step function in the flex-
ural rigidity of the foil. Importantly, the flexion ratio
and flexural rigidity of the trailing section are varied,
which provides, for the first time, a comprehensive
experimental examination of the role of the bending
pattern in driving the performance of non-uniformly
flexible foils operating below, at and above their
first natural frequency. The Euler–Bernoulli beam
equation is used to derive a novel effective flexibility
defined as the ratio of the added mass forces to
the elastic forces. This dimensionless variable is a
generalization of the effective flexibility derived in
Quinn et al [14] and it is shown to provide a scaling of
the natural frequencies of the fluid-structural system.

However, only some of the foils showed a detectable
resonance condition at the predicted first natural
frequency and were described as ‘resonating foils’,
while the others did not and were described as ‘non-
resonating foils’. Moreover, motion-tracking software
measured the bending pattern of the foils to reveal
that the resonating foils exhibited a smooth beam-like
deflection while the non-resonating foils exhibited a
discontinuous hinge-like deflection.

The thrust and power of the resonating foils
showed clear trends with the effective flexibility
similar to uniformly flexible foils, while the non-
resonating foils showed somewhat similar trends
in the thrust, but dramatically different trends in
the power, reminiscent of rigid foil data. This led
to broad efficiency peaks for the resonating foils
and sharper efficiency peaks for the non-resonating
foils. Surprisingly, a resonating (λ = 0.4) and a non-
resonating (λ = 0.6) foil respectively achieved peak
efficiencies of 49% and over 50%; equivalent values
within the uncertainty of the measurements. These
efficiencies are strikingly high for purely pitching
three-dimensional foils with AR = 2 and amount to a
127% increase in efficiency over the uniformly flexible
foil as well as a 150% increase in efficiency over the
rigid foil. In fact, it is determined that there is a
range of optimal flexion ratios from 0.4 � λ � 0.7
that maximizes the efficiency. Also, this coincides with
flexion ratios observed in nature [33], which suggests
that animals may have evolved bending patterns that
enhance their propulsive efficiency. A dimensionless
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bending rigidity, R∗, is defined, which incorporates
both EI and λ. While the efficiency performance is
primarily driven by the resonance condition (Πk) and
the bending pattern (λ), the dimensionless rigidity
plays a secondary role in maximizing the efficiency.
To achieve high propulsive efficiency non-uniformly
flexible hydrofoils should (1) oscillate above their first
natural frequency, (2) have a flexion ratio in the range
of 0.4 � λ � 0.7 and (3) have a small dimensionless
rigidity at their optimal flexion ratio.

The amplitude response of non-uniformly flexible
foils is found to implicitly capture the overarching
effects of flexibility and, when used, it is shown
that established scaling laws for pitching foils [39]
accurately capture the flow physics. This is true as long
as the deflection angle of the flexible section is less
than β = 45◦, above which it is suspected that flow
separation modifies the flow physics. Future efforts to
measure the flow field around these foils, especially at
the flexion point, would be beneficial in understand-
ing the connection between flow phenomena, such as
separation, and the performance. This would further
inform the development of a scaling for the amplitude
response of these foils, and more accurate scaling laws
that capture the physics of both the resonating and
non-resonating foils. Also, future work can investigate
how flexibility is interconnected with variations in
the planform shape, including the aspect ratio, sweep
and curvature of the hydrofoils. Based on [41], we
suspect that the kinematics, flexibility and planform
shape are intertwined in a way that all three need to be
considered simultaneously to determine an optimal
design.

Follow-on work has already used a near optimal
non-uniformly flexible foil revealed in this study to
measure the collective performance of two such foils
in a leader–follower arrangement [43]. In that follow-
on study it was discovered that with tailored interac-
tions the collective efficiency of two non-uniformly
pitching foils could rise to 62% with a near dou-
bling of the thrust coefficient to CT = 0.44; quite
an extraordinary performance for purely pitching
foils.
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