- Del Pia, A., & Khajavirad, A. (2021). The running intersection relaxation of the multilinear polytope. Mathematics of Operations Research, 46, 1008–1037.
- De Rosa, A., & Khajavirad, A. (2021). The ratio-cut polytope and K-means clustering. SIAM Journal on Optimization, to appear.
- De Rosa, A., & Khajavirad, A. (2021). Efficient joint object matching via linear programming. arXiv:2108.11911.
-
Tianyu Ding, Zhihui Zhu, Manolis Tsakiris, René Vidal, & Daniel P. Robinson (2021). Dual Principal Component Pursuit for Learning a Union of Hyperplanes: Theory and Algorithms. In AISTATS.
-
Tianyu Ding, Zhihui Zhu, René Vidal, & Daniel P. Robinson (2021). Dual Principal Component Pursuit for Robust Subspace Learning: Theory and Algorithms for a Holistic Approach. In ICML.
-
Guilherme Fran\cca, Daniel P. Robinson, & René Vidal (2021). Gradient flows and proximal splitting methods: A unified view on accelerated and stochastic optimization. Physical Review E, 103(5).
-
Mustafa D. Kaba, Chong You, Daniel P. Robinson, Enrique Mallada, & René Vidal (2021). A Nullspace Property for Subspace-Preserving Recovery. ICML.
- Mertcan Yetkin, Sudharsan Kalidoss, Frank E. Curtis, Lawrence V. Snyder, & Arindam Banerjee (2021). Practical optimal control of a wave-energy converter in regular wave environments. Renewable Energy, 171, 1382–1394.
- Chenxin Ma, Martin Jaggi, Frank E. Curtis, Nathan Srebro, & Martin Taká\vc (2021). An Accelerated Communication-Efficient Primal-Dual Optimization Framework for Structured Machine Learning. Optimization Methods and Software, 36(1), 20–44.
- Frank E. Curtis, & Daniel P. Robinson (2021). Regional Complexity Analysis of Algorithms for Nonconvex Smooth Optimization. Mathematical Programming, 187, 579–615.
- Frank E. Curtis, Daniel P. Robinson, Clément W. Royer, & Stephen J. Wright (2021). Trust-Region Newton-CG with Strong Second-Order Complexity Guarantees for Nonconvex Optimization. SIAM Journal on Optimization, 31(1), 518–544.
- Albert S. Berahas, Frank E. Curtis, Daniel P. Robinson, & Baoyu Zhou (2021). Sequential Quadratic Optimization for Nonlinear Equality Constrained Stochastic Optimization. SIAM Journal on Optimization, 31(2), 1352–1379.
- Albert S. Berahas, Frank E. Curtis, Michael J. O’Neill, & Daniel P. Robinson (2021). A Stochastic Sequential Quadratic Optimization Algorithm for Nonlinear Equality Constrained Optimization with Rank-Deficient Jacobians. https://arxiv.org/abs/2106.13015.
- Frank E. Curtis, Daniel P. Robinson, & Baoyu Zhou (2021). Inexact Sequential Quadratic Optimization for Minimizing a Stochastic Objective Function Subject to Deterministic Nonlinear Equality Constraints. https://arxiv.org/abs/2107.03512.
- Frank E. Curtis, Daniel K. Molzahn, Shenyinying Tu, Andreas Waechter, Ermin Wei, & Elizabeth Wong (2021). A Decomposition Algorithm for Large-Scale Security-Constrained AC Optimal Power Flow. https://arxiv.org/abs/2110.01737.
- Frank E. Curtis, Michael J. O’Neill, & Daniel P. Robinson (2021). Worst-Case Complexity of an SQP Method for Nonlinear Equality Constrained Stochastic Optimization. https://arxiv.org/abs/2112.14799.
-
Shehadeh, K., Wang, H., & Zhang, P. (2021). Fleet sizing and allocation for on-demand last-mile transportation systems. Transportation Research Part C: Emerging Technologies, 132, 103387.
-
Shehadeh, K. (2021). Data-Driven distributionally robust surgery planning in flexible operatingrooms over a wasserstein ambiguity. arXiv preprint arXiv:2103.15221.
-
Tsang, M., & Shehadeh, K. (2021). Distributionally robust home service routing and appointment scheduling with random travel and service times. arXiv preprint arXiv:2105.01725.
-
Shehadeh, K. (2021). A distributionally robust optimization approach for a stochastic mobile facility routing and scheduling problem. arXiv preprint arXiv:2009.10894.
-
Shehadeh, K., & Snyder, L. (2021). Equity in stochastic healthcare facility location. https://arxiv.org/abs/2112.03760.
-
Shehadeh, K., & Tucker, E. (2021). A Distributionally robust optimization approach for location and inventory prepositioning of disaster relief supplies. arXiv preprint arXiv:2012.05387.
-
Shehadeh, K., & Sanci, E. (2021). Distributionally robust facility location with bimodal random demand. Computers and Operations Research (accepted, forthcoming).
-
Shehadeh, K., & Padman, R. (2021). A distributionally robust optimization approach for stochastic elective surgery scheduling with limited intensive care unit capacity. European Journal of Operational Research, 290(3), 901–913.
-
Shehadeh, K., Cohn, A., & Jiang, R. (2021). Using stochastic programming to solve an outpatient appointment scheduling problem with random service and arrival times. Naval Research Logistics (NRL), 68(1), 89–111.
- T. Giovannelli, G. Kent, & L. N. Vicente (2021). Bilevel stochastic methods for optimization and machine learning: Bilevel stochastic descent and DARTS [White paper]. Department of Industrial and Systems Engineering, Lehigh University.
- S. Liu, & L. N. Vicente (2021). The Sharpe predictor for fairness in machine learning [White paper]. Department of Industrial and Systems Engineering, Lehigh University.
- A. S. Berahas, O. Sohab, & L. N. Vicente (2021). Full-low evaluation methods for derivative-free optimization [White paper]. Department of Industrial and Systems Engineering, Lehigh University.
- S. Liu, & L. N. Vicente (2021). A stochastic alternating balance k-means algorithm for fair clustering [White paper]. Department of Industrial and Systems Engineering, Lehigh University.
-
Mertcan Yetkin, Sudharsan Kalidoss, Frank E. Curtis, Lawrence V. Snyder, & Arindam Banerjee (2021). Practical optimal control of a wave-energy converter in regular wave environments. Renewable Energy, 171, 1382-1394.
-
Mertcan Yetkin, Brandon Augustino, Alberto J. Lamadrid, & Lawrence V. Snyder (2021). Co-optimizing the Smart Grid and Electric Public Transit Bus System [White paper]. Lehigh University.
-
Zhuo, Y., Snyder, L., Rick Blum, Shalinee Kishore, & Parv Venkitasubramaniam (2021). Information Attacks under Cyber-secure Market Interactions in Power Systems [White paper]. Lehigh University.
- Tian, H., & Rangarajan, S. (2021). Machine-Learned Corrections to Mean-Field Microkinetic Models at the Fast Diffusion Limit. The Journal of Physical Chemistry C, 125(37), 20275–20285.
-
Yin, H., Lee, J., Kong, X., Hartvigsen, T., & Xie, S. (2021). Energy-Efficient Models for High-Dimensional Spike Train Classification using Sparse Spiking Neural Networks. In Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining.
-
Chen, C., Yifan, S., Ma, G., Zhang, X., Kong, X., & Xie, S. (2021). Self-learn to Explain Siamese Networks Robustly. In ICDM.
-
Liu, Y., Chen, C., Liu, Y., Zhang, X., & Xie, S. (2021). Multi-objective Explanations of GNN Predictions. In ICDM.
-
Burkholder, K., Kwock, K., Xu, S., Liu, J., & Xie, S. (2021). Certification and Trade-off of Multiple Fairness Criteria in Graph-based Spam Detection. In CIKM.
- Bulut, A., and T.K., Ralphs. “On the Complexity of Inverse Mixed Integer Linear Optimization”.SIAM Journal on Optimization 31 (2021): 3014–3043.
- Bining Zhao, Alberto J. Lamadrid, Rick S. Blum, & Shalinee Kishore (2020). A trilevel model against false gas-supply information attacks in electricity systems. Electric Power Systems Research, 189, 106541.
- Diana Mitsova, Alka Sapat, Ann-Margaret Esnard, & Alberto J. Lamadrid (2020). Evaluating the Impact of Infrastructure Interdependencies on the Emergency Services Sector and Critical Support Functions Using an Expert Opinion Survey. Journal of Infrastructure Systems, 26(2), 04020015.
- Del Pia, A., Khajavirad, A., & Sahinidis, N. (2020). On the impact of running intersection inequalities for globally solving polynomial optimization problems. Mathematical programming computation, 12(2), 165–191.
- Del Pia, A., Khajavirad, A., & Kunisky, D. (2020). Linear programming and community detection. arXiv:2006.03213.
- Guilherme Fran\cca, Daniel P. Robinson, Jeremias Sulam, & René Vidal (2020). Conformal Symplectic and Relativistic Optimization. Conference on Neural Information Processing Systems (NeurIPS).
- Tianjiao Ding, Yuchen Yang, Zhihui Zhu, Daniel P. Robinson, René Vidal, Laurent Kneip, & Manolis Tsakiris (2020). Homography Estimation via Dual Principal Component Pursuit. In CVPR.
- Guilherme Fran\cca, Jeremias Sulam, Daniel P. Robinson, & René Vidal (2020). Conformal Symplectic and Relativistic Optimization. Journal of Statistical Mechanics: Theory and Experiment.
- Philip E. Gill, Vyacheslav Kungurtsev, & Daniel P. Robinson (2020). A Shifted Primal-Dual Penalty-Barrier Method for Nonlinear Optimization. SIOPT, 30(2), 1067–1093.
- Chong You, Chi Li, Daniel P. Robinson, & René Vidal (2020). Self-Representation Based Unsupervised Exemplar Selection in a Union of Subspaces. TPAMI.
- Daniel P. Robinson, René Vidal, & Chong You (2020). Basis Pursuit and Orthogonal Matching Pursuit for Subspace-preserving Recovery: Theoretical Analysis. JMLR.
- Wenbo Gao, Donald Goldfarb, & Frank E. Curtis (2020). ADMM for Multiaffine Constrained Optimization. Optimization Methods and Software, 35(2), 257–303.
- James V. Burke, Frank E. Curtis, Adrian S. Lewis, Michael L. Overton, & Lucas E. A. Sim\~oes (2020). Gradient Sampling Methods for Nonsmooth Optimization. Journal is required!, 201–225.
- Frank E. Curtis, Daniel P. Robinson, & Baoyu Zhou (2020). A Self-Correcting Variable-Metric Algorithm Framework for Nonsmooth Optimization. IMA Journal of Numerical Analysis, 40(2), 1154–1187.
- Frank E. Curtis, & Katya Scheinberg (2020). Adaptive Stochastic Optimization: A Framework for Analyzing Stochastic Optimization Algorithms. IEEE Signal Processing Magazine, 37(5), 32–42.
- James V. Burke, Frank E. Curtis, Hao Wang, & Jiashan Wang (2020). Inexact Sequential Quadratic Optimization with Penalty Parameter Updates within the QP Solver. SIAM Journal on Optimization, 30(3), 1822–1849.
- Frank E. Curtis, & Rui Shi (2020). A Fully Stochastic Second-Order Trust Region Method. Optimization Methods and Software, https://doi.org/10.1080/10556788.2020.1852403.
- Frank E. Curtis, & Minhan Li (2020). Gradient Sampling Methods with Inexact Subproblem Solutions and Gradient Aggregation. https://arxiv.org/abs/2005.07822.
- Frank E. Curtis, Yutong Dai, & Daniel P. Robinson (2020). A Subspace Acceleration Method for Minimization Involving a Group Sparsity-Inducing Regularizer. https://arxiv.org/abs/2007.14951.
- Shehadeh, K., Cohn, A., & Jiang, R. (2020). A distributionally robust optimization approach for outpatient colonoscopy scheduling. European Journal of Operational Research, 283(2), 549–561.
- S. Liu, & L. N. Vicente (2020). Accuracy and fairness trade-offs in machine learning: A stochastic multi-objective approach [White paper]. Department of Industrial and Systems Engineering, Lehigh University.
- S. Gratton, C. W. Royer, & L. N. Vicente (2020). A decoupled first/second-order steps technique for nonconvex nonlinear unconstrained optimization with improved complexity bounds. mprog, 179, 195–222.
-
Afshin OroojlooyJadid, Mohammadreza Nazari, Martin Taká\vc, & Snyder, L. (2020). A Deep Q-Network for the Beer Game: Reinforcement Learning for Inventory Optimization. Manufacturing and Service Operations Management, \em forthcoming.
-
Kostas Hatalis, Chengbo Zhao, Parv Venkitasubramaniam, Larry Snyder, Shalinee Kishore, & Rick S. Blum (2020). Modeling and Detection of Future Cyber-Enabled DSM Data Attacks. Energies, 13(17), 4331.
-
OroojlooyJadid, A., Snyder, L., & Taká\vc, M. (2020). Applying deep learning to the newsvendor problem. IISE Transactions, 52(4), 444-463.
-
Pirhooshyaran, M., Katya Scheinberg, & Lawrence V. Snyder (2020). Feature Engineering and Forecasting via Derivative-free Optimization and Ensemble of Sequence-to-sequence Networks with Applications in Renewable Energy. Energy, 196, 117136.
-
Pirhooshyaran, M., & Lawrence V. Snyder (2020). Forecasting, hindcasting and feature selection of ocean waves via recurrent and sequence-to-sequence networks. Ocean Engineering, 207, 107424.
-
Pirhooshyaran, M., & Snyder, L. (2020). Simultaneous Decision Making for Stochastic Multi-Echelon Inventory Optimization with Deep Neural Networks as Decision Makers [White paper]. Lehigh University.
-
Yao, J., Zhao, C., Venkitasubramaniam, P., Snyder, L., Kishore, S., & Blum, R. (2020). Data Injection Attack On Cyber-Enabled Demand-Side Management Feedback Loop [White paper]. Lehigh University.
- Paragian, K., Li, B., Massino, M., & Rangarajan, S. (2020). A computational workflow to discover novel liquid organic hydrogen carriers and their dehydrogenation routes. Molecular Systems Design & Engineering, 5(10), 1658–1670.
-
Liu, Y., Chen, C., Liu, Y., Zhang, X., & Xie, S. (2020). Shapley Values and Meta-Explanations for Probabilistic Graphical Model Inference. In 29TH ACM International Conference on Information and Knowledge Management.
-
Yingtong, D., Ma, G., Yu, P., & Xie, S. (2020). Robust Detection of Adaptive Spammers by Nash Reinforcement Learning. In KDD.
-
Tahernejad, S., and T.K., Ralphs. 2020. “Valid Inequalities for Mixed Integer Bilevel Optimization Problems.” CORAL Laboratory Report 20T-013, 2020.
-
Tahernejad, S., T.K., Ralphs, and S.T., DeNegre. “A Branch-and-Cut Algorithm for Mixed Integer Bilevel Linear Optimization Problems and Its Implementation”.Mathematical Programming Computation 12 (2020): 529–568.
-
Bolusani, S., S., Coniglio, and S., Ralphs. “A Unified Framework for Multistage Mixed Integer Linear Optimization”.Bilevel Optimization: Advances and Next Challenges (2020): 513–560.
-
Li, B., & Rangarajan, S. (2019). Designing compact training sets for data-driven molecular property prediction through optimal exploitation and exploration. Molecular Systems Design & Engineering, 4(5), 1048–1057.
-
Tian, H., & Rangarajan, S. (2019). Predicting adsorption energies using multifidelity data. Journal of chemical theory and computation, 15(10), 5588–5600.
-
Ralphs, T.K., Y., Shinano, T., Berthold, and T., Koch. Parallel Solvers for Mixed Integer Linear Programing.Springer Berlin / Heidelberg, 2018.
-
Belotti, P., J.C., G\’oez, T.K., P\’olik, and T., Terlaky. “A Complete Characterization of Disjunctive Conic Cuts for Mixed Integer Second Order Cone Optimization”.Discrete Optimization 24 (2016).
-
Hassanzadeh, A., and T.K., Ralphs. 2014. “On the Value Function of a Mixed Integer Linear Optimization Problem and an Algorithm for Its Construction.” CORAL Laboratory, Lehigh University, 2014.
-
Hassanzadeh, A., and T.K., Ralphs. 2014. “A Generalization of Benders’ Algorithm for Two-Stage Stochastic Optimization Problems with Mixed Integer Recourse.” CORAL Laboratory, Lehigh University, 2014.
-
Lodi, A., T.K., Ralphs, and G., Woeginger. “Bilevel Programming and the Separation Problem”.Mathematical Programming 148 (2014): 437–458.
-
Koch, T., T.K., Ralphs, and Y., Shinano. “Could We Use a Million Cores to Solve an Integer Program?”.Mathematical Methods of Operations Research 76 (2012): 67–93.
-
Güzelsoy, M., and T.K., Ralphs. “Duality for Mixed-Integer Linear Programs”.International Journal of Operations Research 4 (2007): 118–137.