A Comparison of Growth via Curriculum-Based Measurement and Computer-Adaptive Tests

NASP 2023 Annual Conference Denver, CO

Emily R. Forcht, M.Ed. & Ethan R. Van Norman, Ph.D.

Lehigh University

Conflict of Interest Statement

- Data were collected and maintained by Renaissance Learning (RL), the developer of the assessments in this study.
- Ms. Forcht completed this research as part of a sponsored research agreement in the role of a graduate research assistantship between RL and Lehigh University
- Dr. Van Norman received no financial compensation for this project and has not previously received financial compensation from RL
- RL reviewed but did not edit or author the results of this study, per the conditions of the sponsored research agreement
- The office of sponsored research projects and the IRB at Lehigh University continually review this relationship for ethical compliance and potential conflicts of interest

Learner Objectives

- Evaluate the extent to which CBM and CAT capture growth in unique skills in reading
- Determine which progress monitoring tool, CBM or CAT, is more appropriate for different scenarios
- Apply more informed decisions during the progress monitoring process in their practice

NASP Domains

Practice Model Domains

- Domain 1: Data-Based Decision
 Making and Accountability
- Domain 9: Research and Evidence-Based Practice

Background

Progress Monitoring

- In multi-tiered system of support (MTSS), students are identified as at risk for academic difficulties and receive supplemental intervention
- Educators collect performance data to monitor effects of supplemental intervention → progress monitoring
- Curriculum-based measurement (CBM): most common PM tool (Deno, 1985)
- Computer-adaptive tests (CATs) has emerged another option for monitoring

CBM as Progress Monitoring Tool

Advantages

- Easy to administer, easy to score, and assess a variety of grade-level skills (Deno, 2003)
 - CBM of oral reading (CBM-R) = Passage Oral Reading (Renaissance Learning, 2021)
- Probes are short (1-3 minutes)
- Predictive of broader academic skills (Shinn, 2007)

Disadvantages

- Can be an unreliable indicator of true growth in oral reading fluency
- High levels of residual, or error, have been associated \rightarrow translates to less reliable estimates of growth (Christ, 2006)

Computer Adaptive Tests

- Examinees receive a unique version of the test during each administration (Meijer & Nering, 1999)
- CATs can accurately estimate ability with fewer items than traditional fixed item tests (Wang & Shin, 2010)
- Used in clinical and educational settings
 - Several CATs to measure reading skills
- Star Reading (SR), reading CAT developed by Renaissance Learning, is the focus of the current study

Comparison of CATs and CBM

CATs

- Questions selected in realtime based upon responses
- Item Response Theory (IRT; Carlson, 1994)
- Item-level information
- Broad number of literacy skills

CBM

- Fixed item forms
- Classical Test Theory (CTT)
- Test-level information
- Oral reading fluency skills

Purpose and Research Questions

To determine whether CBM and CAT yield distinct growth trajectories in reading skills across a school year.

Research Questions:

- 1. To what degree does growth, on average, measured concurrently via CBM-R and SR differ, across a school year?
- 2. To what degree do the assessments differ in their capacity to capture meaningful variability in growth between students?
- 3. To what degree does the magnitude of residual variance, or error, differ between assessments?

Method & Analysis

Method

Participants

- Total of 3,192 students
 - Grade 1 (n = 298), Grade 2 (n = 1149), Grade 3 (n = 1,062), Grade 4 (n = 462), and Grade 5 (n = 221)
- 398 schools in 41 states
- Student-level demographic info largely un-reported

Measures

- Passage Oral Reading (CBM-R; Renaissance Learning, 2021)
- Star Reading (SR; Renaissance Learning 2022)

Data Analysis

- Fit Separate Multilevel Models
 - Fixed and Random Effects for CBM-R
 - Fixed and Random Effects for Star Reading
- Problematic
 - Vastly Different Scales
 - Between Measure Outcomes
 Correlated
 - Straightforward Significance
 Tests?

- Multivariate Multilevel Growth Modeling
 - Standardize Outcomes
 - Simultaneously Model Fixed and Random Effects for Both Outcomes
 - Explicitly Model and Evaluate Dependencies
- Bayesian Framework
 - Compare Magnitude and Direction of Differences without NHST
 - Leverage Prior Information to
 Increase Computational Efficiency

NIVERSITY

Typical Regression

```
call:
lm(formula = sales ~ ., data = adv_training)
```

Residuals: Min 1Q Median 3Q Max -8.6331 -0.8971 0.2283 1.1971 2.9630

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 2.707724 0.354788 7.632 2.05e-12 *** TV 0.046521 0.001561 29.801 < 2e-16 *** radio 0.188857 0.009423 20.041 < 2e-16 *** newspaper 0.001619 0.006255 0.259 0.796 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

Residual standard error: 1.677 on 158 degrees of freedor Multiple R-squared: 0.8967, Adjusted R-squared: 0.1 F-statistic: 457.1 on 3 and 158 DF, p-value: < 2.2e-16

- Parameter Estimates
- Standard Error
- p value
- Wald Test

Typical Regression

```
call:
lm(formula = sales ~ ., data = adv_training)
```

Residuals:

Min 1Q Median 3Q Max -8.6331 -0.8971 0.2283 1.1971 2.9630

Coefficients:

	Estimate	td. Error	t value	Pr(> t)					
(Intercept)	2.707724	0.354788	7.632	2.05e-12 ***					
TV	0.046521	0.001561	29.801	< 2e-16 ***					
radio	0.188857	0.009423	20.041	< 2e-16 ***					
newspaper	0.001619	0.006255	0.259	0.796					
			l l						
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1									

Residual standard error: 1.677 on 158 degrees of freedor Multiple R-squared: 0.8967, Adjusted R-squared: 0.1 F-statistic: 457.1 on 3 and 158 DF, p-value: < 2.2e-16

- Parameter Estimates
- Standard Error
- p value
- Wald Test

$$P(\beta|y,X) = \frac{P(y|\beta,X) * P(\beta|X)}{P(y|X)}$$

• Probability of parameter β

$$P(\beta|y,X) = \frac{P(y|\beta,X) * P(\beta|X)}{P(y|X)}$$

- Probability of parameter β
- Given the observed data

$$P(\beta|y,X) = \frac{P(y|\beta,X) * P(\beta|X)}{P(y|X)}$$

- Probability of parameter β
- Given the observed data

$P(\beta|y,X) = \frac{P(y|\beta,X) * P(\beta|X)}{P(y|X)} \cdot \text{Likelihood}$

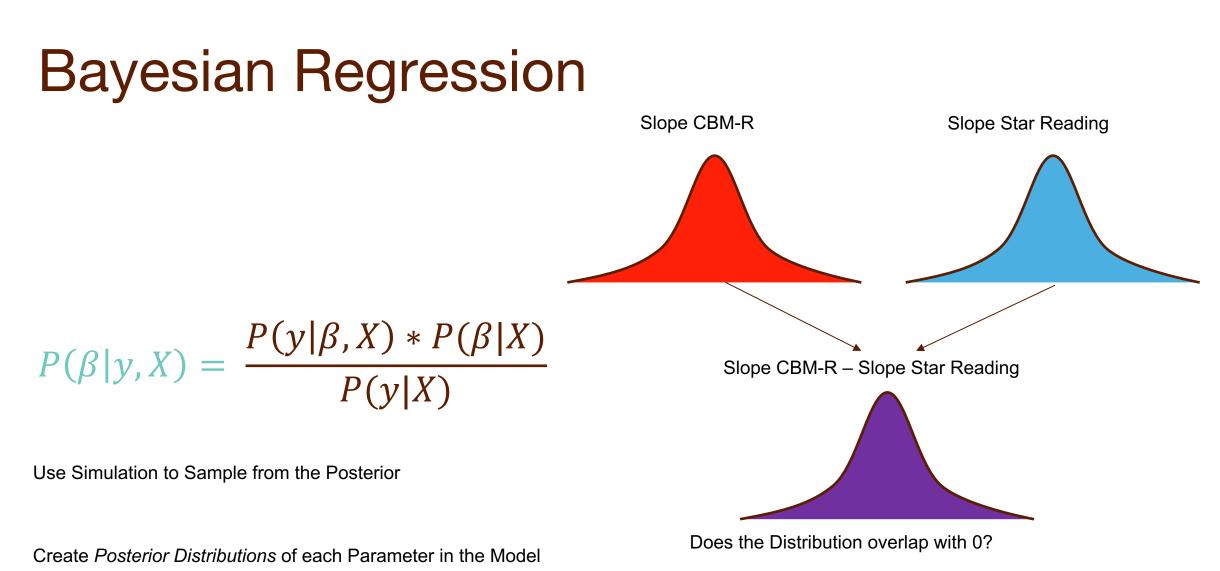
- Probability of parameter β
- Given the observed data

$P(\beta|y,X) = \frac{P(y|\beta,X) * P(\beta|X)}{P(y|X)}$

Likelihood x Prior
 Assumptions

- Probability of parameter β
- Given the observed data

$$P(\beta|y,X) = \frac{P(y|\beta,X) * P(\beta|X)}{P(y|X)}$$


- Likelihood x Prior
 Assumptions
- Divided by a regularizing constant

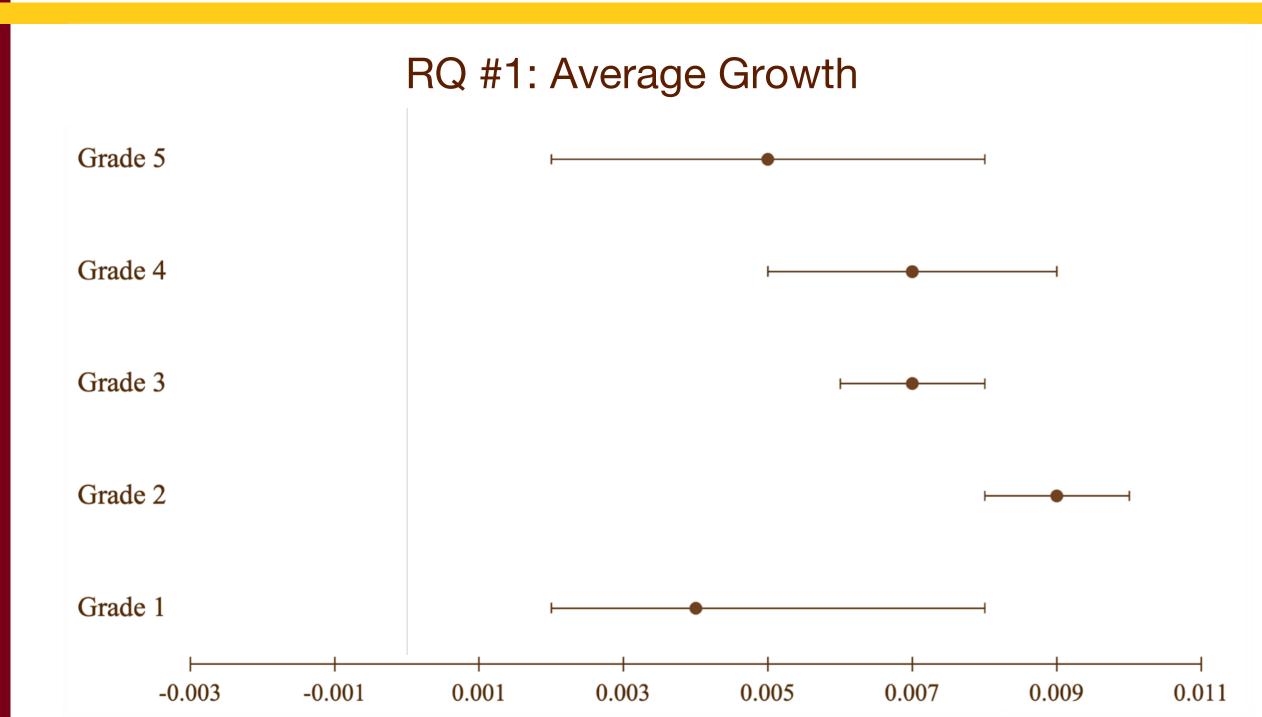
- Not a single value
- Posterior Distribution of
 possible Parameter Values

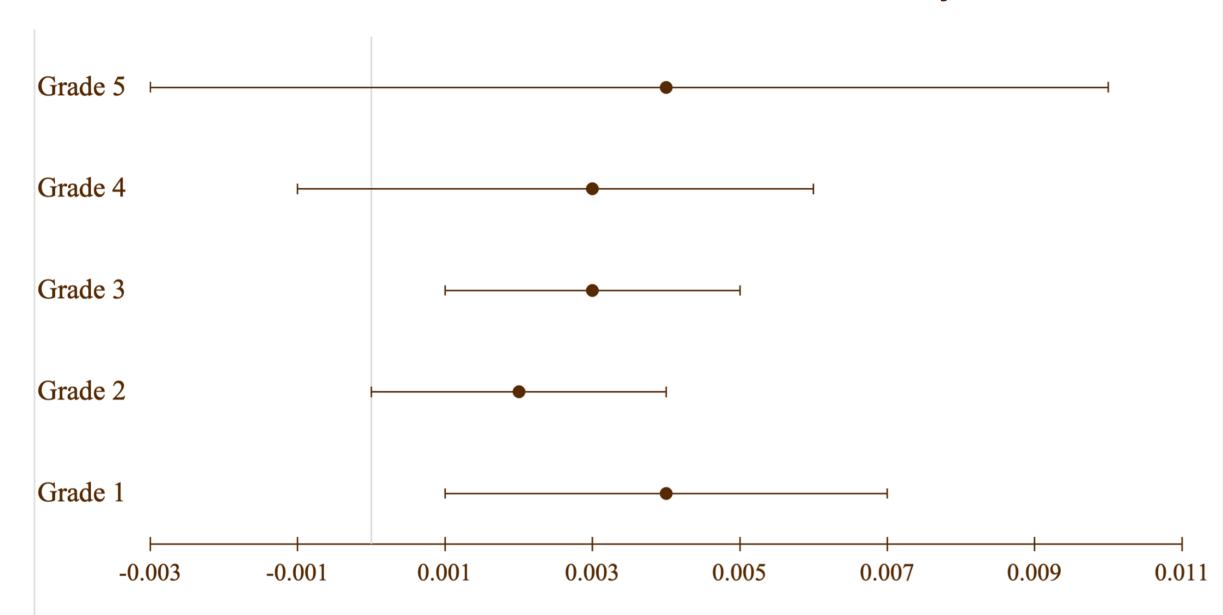
$$P(\beta|y,X) = \frac{P(y|\beta,X) * P(\beta|X)}{P(y|X)}$$

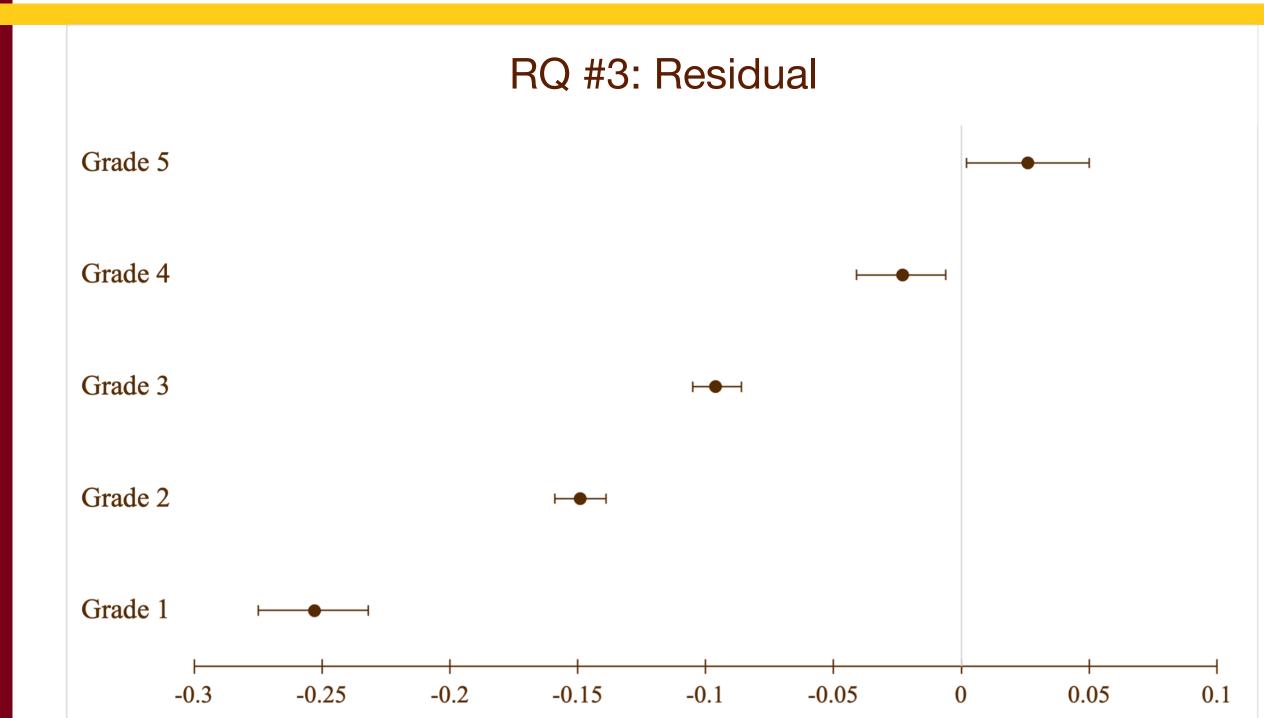
Make probabilistic statements about differences

Data Analysis

- RQ#1: Differences between fixed effects for growth from each measure for each grade
- RQ #2: Differences in random effects for slope terms from each measure for each grade
- RQ #3: Differences residual variance between each measure for each grade
- Did any part of the 95% CI of the Posterior Distributions of Differences overlap with 0?
- Was the mean of the distribution + or -?


Results


Univariate Hierarchical Growth Models


CBM	Grade One	Grade Two	Grade Three	Grade Four	Grade Five
Fixed	B (<i>SE</i>)				
Intercept	15.41 (1.46)	41.12 (0.95)	71.70 (1.07)	82.58 (1.48)	96.17 (2.17)
Slope	1.19 (0.04)	1.10 (0.02)	0.84 (0.02)	0.72 (0.03)	0.58 (0.05)
Kandom	SD	SD	SD	SD	SD
Intercept	22.68	30.40	33.07	28.31	28.73
Slope	0.59	0.49	0.41	0.36	0.29
Residual	9.90	11.34	13.09	17.31	16.63
Correlation	r	r	r	r	r
Intercept, Slope	.28	.01	05	.04	20
SR	Grade One	Grade Two	Grade Three	Grade Four	Grade Five
Fixed	B (<i>SE</i>)				
Intercept	719.13 (5.32)	820.58 (2.58)	895.01 (2.45)	931.82 (3.33)	970.90 (4.98)
Slope	3.38 (0.16)	2.03 (0.06)	1.34 (0.05)	0.96 (0.07)	0.99 (0.09)
Random	SD	SD	SD	SD	SD
Intercept	70.32	78.11	73.08	63.86	66.94
Slope	1.38	1.11	0.70	0.60	0.33
Residual	57.07	42.59	37.17	35.98	35.84
Correlation	r	r	r	r	r

RQ #2: Between-Student Variability

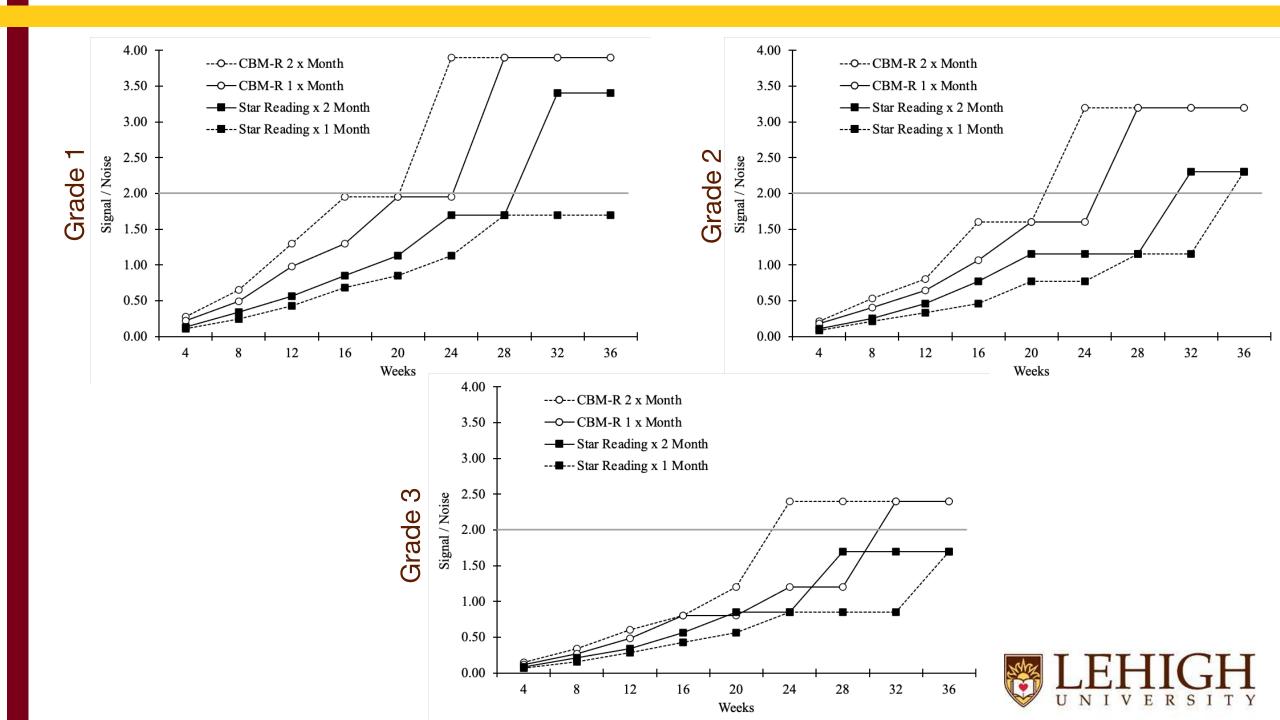
Discussion

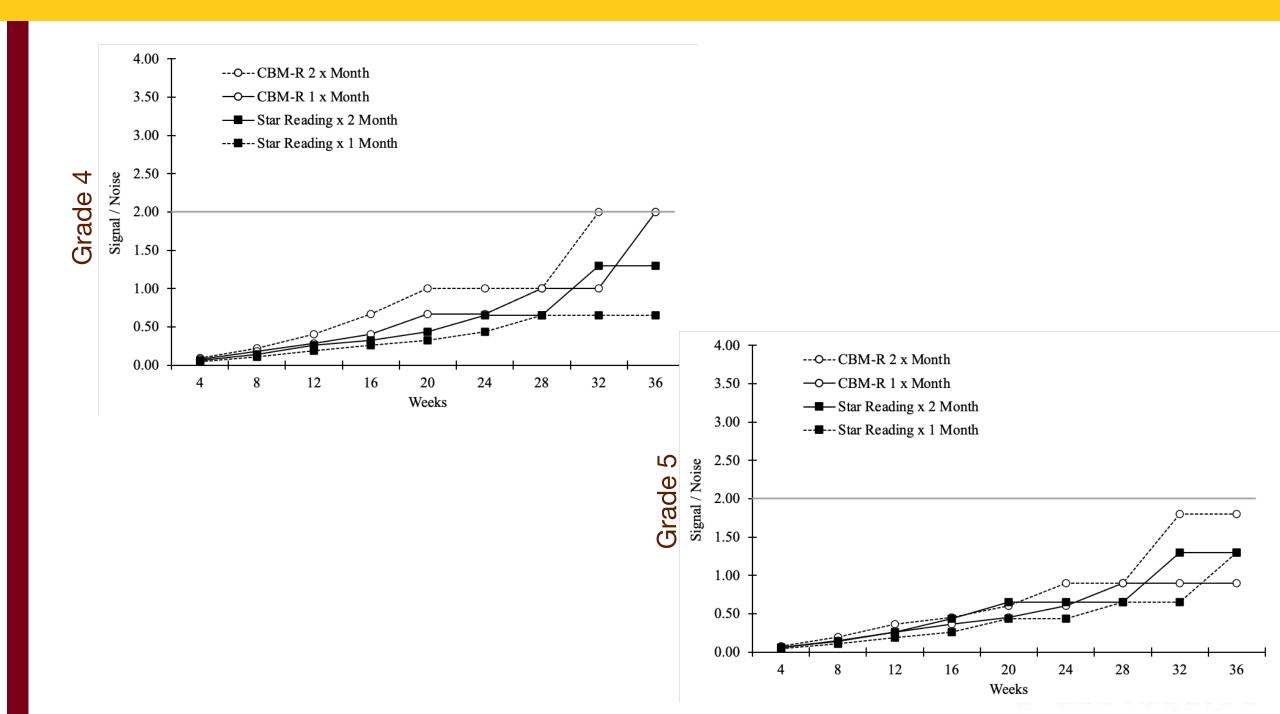
The purpose of this presentation is to determine whether CBM and CAT yield distinct growth trajectories in reading skills across a school year.

Research Questions:

- 1. To what degree does growth, on average, measured concurrently via CBM-R and SR differ, across a school year?
- 2. To what degree do the assessments differ in their capacity to capture meaningful variability in growth between students?
- 3. To what degree does the magnitude of residual variance, or error, differ between assessments?

Discussion


- RQ#1: The average rate of growth observed via CBM-R and CAT across grade levels was highly similar.
- RQ#2: The magnitude of between-student variability in growth was also highly similar.
- RQ#3: The most noticeable differences in progress monitoring outcomes occurred when comparing the magnitude of error, or residual variance.
 - Grades 1-4: SR > CBM-R
 - Grade 5: CBM-R > SR
 - Why?



Signal-to-Noise Ratio

- One way to contextualize typical growth on assessments
- Signal = average rate of improvement
- Noise = amount of residual variance
- Recommendation = 2:1
 - Growth at least twice as large as error (Christ et al., 2013b)

Discussion – Why?

CBM-R

- Measures oral reading rate
- Single skill → less unwanted bounce or error associated between time points
- Suitable for monitoring progress towards yearlong goals

SR

- Measures any number of broader, more complex skills
- Each test is individualized to each test-taker → unwanted bounce or error may be likely
- Suitable for monitoring progress across multiple years

Implications – CBM or CAT?

CBM-R

- Evaluate instructional effects within a single-school year
- Monitoring younger students, grades 1-3
 - Or older students with consistent reading difficulties
- Instruction/intervention = early reading skills and building fluent reading

SR

- Assess general achievement
 over several years
 - Compare student performance across grade levels
- Monitoring older students, grades 4-5
- Instruction/intervention = building comprehension

Limitations & Future Directions

- Only one type of CBM-R and reading CAT were evaluated
- Data collected infrequently across an entire school year
- Limited demographic information available at student-level
- We assumed monotonic linear growth across the school year
 - Future research \rightarrow quadratic growth
- No access to if students received any supplemental support

References

Carlson, R. D. (1994). Computer adaptive testing: A shift in the evaluation paradigm. *Journal of Educational Technology Systems, 22*(3), 213-224. https://doi.org/10.2190/QP36-WV9L-ATT3-FYWK

- Christ, T. J. (2006). Short-term estimates of growth using curriculum-based measurement of oral reading fluency: Estimating standard error of the slope to construct confidence intervals. *School Psychology Review*, *35*(1), 128-133. https://doi.org/10.1080/02796015.2006.12088006
- Christ, T. J., Zopluoglu, C., Monaghen, B. D., & Van Norman, E. R. (2013b). Curriculum-based measurement of oral reading: Multi-study evaluation of schedule, duration, and dataset quality on progress monitoring outcomes. *Journal of School Psychology*, *51*(1), 19-57. https://doi.org/10.1016/j.jsp.2012.11.001
- Deno, S. L. (1985). Curriculum-based measurement: The emerging alternative. *Exceptional Children*, 52(3), 219-232. https://doi.org/10.1177/001440298505200303
- Deno, S. L. (2003). Curriculum-based measures: Development and perspectives. Assessment for Effective Intervention, 28(3-4), 3-12. https://doi.org/10.1177/073724770302800302
- Meijer, R. R., & Nering, M. L. (1999). Computerized adaptive testing: Overview and introduction. *Applied Psychological Measurement, 23*(3), 187-194. https://doi.org/10.1177/01466219922031310

Renaissance Learning. (2021). Star CBM Reading Technical Manual.

Renaissance Learning. (2022). Star Assessments[™] for Reading Technical Manual.

https://help.renaissance.com/US/PDF/SR/SRRPTechnicalManual.pdf

Shinn, M. R. (2007). Identifying students at risk, monitoring performance, and determining eligibility within response to intervention: Research on educational need and benefit from academic intervention. *School Psychology Review, 36*(4), 601-617. https://doi.org/10.1080/02796015.2007.12087920

Wang, H., & Shin, C. D. (2010). Comparability of computerized adaptive and paper-pencil tests. Test, Measurement and Research Service Bulletin, 13,

Questions?

Thank you for listening!

Emily Forcht <u>erf220@lehigh.edu</u> Ethan Van Norman <u>erv418@lehigh.edu</u>

QuALITY Lab: https://wordpress.lehigh.edu/quality/

