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Probability Theory: Probability Measure and Sigma Algebra

Goal: To quantify notions of randomness and chances formally.

Probability Measure: For a given sample space (2, and subsets A, B c Q, we want
« P(Q) = 1,and P(@) = 0.
« PP(A) € [0,1]
« P(AUB) = P(A) + P(B) if A, B are disjoint
« P(USZ, 4)) = 252, P(4;) if A;, A; are pairwise disjoint

Sigma Algebra: Let  be a set. A collection of subsets A S P(Q) is called a sigma
algebra if:
c 0,0€ A The elements of A are
+ IfA€ A, thenA® = O\A € A SElles et

* [fAl,Az, .. € UQ, then U;o=1A] E A

HIRGH ﬁiﬁkﬁgw Durrett, Rick. Probability: theory and examples. VVol. 49. Cambridge university press, 2019. S
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Probability Theory

Probability Measure (formal definition): Let A S P (L) be a sigma algebra. A map
P: A — [0,1] is called a probability measure if:
« P(Q) = 1,and P(®) = 0.

« P(UjZ14;) = X572, P(4)) if sets A; and A; are pairwise disjoint.

Conditional Probability: For a given probability space (Q, A, IP), given B € A with
P(B) # 0, then, the conditional probability of A under B is

P(A|B) (ANnB)
P(B)
|
0 e ]\:_IIRGH ﬁiﬁkﬁgm Durrett, Rick. Probability: theory and examples. VVol. 49. Cambridge university press, 2019. 6 ) O
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Random Variable

=)

Goal: To put all the relevant information of a random experiment into one object.

Random Variable: Let (Q, A) and (ﬁ, JZ) be measurable spaces. A map X: Q — Qis

called a random variable if X _1(/1) € Aforall A € A.

Some important notation: Let (Q,A) and (£, A) be measurable spaces. Then,
P(X € 4) =P (X(4)) = P({w € 2| X(w) € 4}).

Distribution: Given a probability space (Q, A, P), and X: Q — R be a random variable.

Then, Pyx: B(R) — [0,1] defined by Py(4) == P (X‘l(/T)) = PP(X € A) is called the

probability distribution of X.

Some important notation: If P is a probability measure and Py = P, then we say X ~ P.

EHIGH ﬁiﬁkﬁgw Durrett, Rick. Probability: theory and examples. VVol. 49. Cambridge university press, 2019. !
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What iIs risk?

Let us consider our investment as has a loss (or profit) distribution,
which can be represented by a random variable, i.e., X.
* One way of looking at the risk is how badly the loss is going to
be, e.g., the expected loss.

» Or, with some certain level of confidence €, the loss is going to

be less than some certain value with probability 1 — ¢

Let us also consider a platoon of two cars driving closely to each
other with their inter-vehicle distance is a random variable d, and
the unwanted event is the inter-vehicle collision.

» Then the risk is how closely both cars are going to

experience the inter-vehicle collision.

d Intelligent
q'TYRblth ‘
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Risk Measures: VaR

Value at Risk (VaR) : For a given random variable X which takes values in R, the VaR at
level € € (0,1) is defined as:

VaR,(X) =inf{x e R| P(X > x) < ¢}
or

VaR,(X) =inflx e R|P(X <x) >1—¢}

This risk measure is epically suitable for random

variables that obtain continuous probability distributions,
and 1t describes the expected loss given certain
confidence level.

VaR does not control scenarios exceeding the VaR

https://analytica.com/risk-management-and-var-not-safe-for-
everybody/

I I IG I I AJIRLab Uryasev, Stan, et al. "VaR vs CVaR in risk management and optimization." CARISMA conference. 2010. 10 A% [0
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Risk Measures: VaR

Value at Risk (VaR) : For a given random variable X which takes values in R, the VaR at
level € € (0,1) is defined as:
VaR,(X) =inf{x e R| P(X > x) < ¢}
or
VaR,(X) =inflx e R|P(X <x) >1—¢}

For normally distributed random variables, VaR is proportional to the standard deviation.
If X ~ N (u,0?) and Fx(z) is the cumulative distribution function of X, then,
VaR_.(X)=F;'(1—-8) =u+k(1—¢)o

where k(1 — &) = V2 erf~1(1 — 2¢) and erf(z) = (\/iﬁ) foze‘t2 dt.

H IGH &IRLab Uryasev, Stan, et al. "VaR vs CVaR in risk management and optimization." CARISMA conference. 2010. 11
R Autonomous and Intelligent 7 <
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Risk Measures: Systemic Sets

In the case that the undesired event is not in a continuous manner, e.g., inter-vehicle
collision, the risk measures can still be established by defining a systemic set of the

undesired event.

Let us assume the set of undesirable values of the system is given
by U. Then, we can define a collection of systemic sets, Us,
parametrized by 6 € [0, oo]. The systemic set is defined in the

manner that it enjoys the following properties:

* Us, € Us, when §; > 6.

 lim Us = Nj-, Us = U forany sequence {8,},-4

n—>0oo

with lim §,, = co.

n—>00

stonomous and Intelligent platooning: Time-delay—induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8

H IGH AIRLab Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 12 {
N Autor |
/ E R ST TY |potics Laboratory (2019): 3544-3559. \




Risk Measures: Systemic Sets

Let us assume the set of undesirable values of the system is given by U. Then, we
can define a collection of systemic sets, Ug, parametrized by 6 € [0, ]. The

systemic set is defined in the manner that it enjoys the following properties:

® U(Sl (e U(SZ when 61 > 62.

« lim Us = Ny=; Us, = U for any sequence {6, },~; with lim &, =
n—-oo

n—oo

0,

'g Vi
Design a collection of systemic sets for this s .
problem that satisfies the above conditions : 7/ /{
o
U = (OO, O) 1 ! >

U5=?
C1
ml
0+ c,

Us = ( )

Autonomous and Intelligent platooning: Time-delay-induced limitations and tradeoffs.” IEEE Transactions on automatic control 65.8 s L
S T T Y | Robotics Laboratory (2019): 3544-3559. \

H IGH AIRLab Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 13 {
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Risk Measures: VaR with systemic sets

Then, for a real-valued random variable y with probability space (2, F, P), we define the

systemic event as {y € U}, and the VaR is defined as follows.

Value at Risk: (New definition using systemic sets) For a given
random variable y, the VaR at level € € (0,1) is defined as:

VaR.(y) =inf{ § > 0 | P(y € Us) < €}.

The parameter € € (0,1) denotes the level of confidence in the systemic events (e.g.,
inter-vehicle collision). The smaller this value, the higher the confidence of the random
variable y stays away from the systemic set U.

The value-at-risk measure, VaR, represents the intuitive notion of "risk." The higher its

value, the higher chance the system will be steered into the undesirable ranges of values.

H IGH AIRLab Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 14 [
wze! NIk
7 3 R A b T .

utonomous and Intellisent platooning: Time-delay—induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8
> / sa g
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Risk Measures: A V@R

Conditional Value at Risk (CVaR) / Average Value at Risk (AV@R) /Expected Shortfall:

For a given random variable X, the AV@R at level € € (0,1) is defined as:

+ 0o
AV@R, = f zdFs ¢

where

0 whenz <VaR{_.(X)
Fire(2)=<{Fy(@Z)—1+¢

. when z > VaR,_.(X)

 AV@R is continuous with respect to «

 AV@R isconvexinX

I l IG I I AIRLab Uryasev, Stan, et al. "VaR vs CVaR in risk management and optimization." CARISMA conference. 2010. 15 A 1
R Autonomous and Intelligent 4 =
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Risk Measures: AV@R

Some equivalent definition of AV@R for better understanding:

Optimization:
. 1 .
AV@R,(X) = inf {c + mIE[X —c]*} :
c — -
where
0 l f X S C CVAR D Loss
_ ot =
[X —c] {X —cifX>c e —
Expected Shortfall: AV@R,(X) = % foa VaRg(X) dp.

Expected shortfall is calculated by averaging all of the returns in the distribution that are

worse than the VAR of the portfolio at a given level of confidence.

Pflug, Georg Ch. "Some remarks on the value-at-risk and the conditional value-at-risk." Probabilistic constrained {

HI H AIRLab optimization: Methodology and applications (2000): 272-281. 16
J G Autonomons and Intellizent A\CETDI, Carlo. "Spectral measures of risk: A coherent representation of subjective risk aversion.” Journal of gLl
UNIVERSITY |popoticsiaboratory Banking & Finance 26.7 (2002): 1505-1518. \




Risk Measures: AV@R

Frequency

VaR Deviation

Mean

* AV(@R has superior mathematical properties

versus VaR
— * AV(@R accounts for losses exceeding VaR,
loss
Freliiy 1.e., it captures the severity of the failure

/aR

* AV@R deviation is a strong competitor to the

CVaR Deviation————»{ LOSS

s Dot ——————— 7 Standard Deviation

S 1

Autonomous and Intelligent
Robotics Laboratory
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Coherent Risk Measures

Some properties of risk measures:

Translation Invariance: For all X, and every constant a € R, the risk measure p satisfies

p(X+a)=pX)+a.

Subadditivity: For all X; and X, the risk measure p satisfies

p(X1 + X3) < p(X1) + p(X2).

Positive Homogeneity: For all X, and every A > 0 the risk measure p satisfies

p(AX) < A p(X).

Monotonicity: For X; < X, almost surely, the risk measure p satisfies

p(X1) < p(X3).

|
BIICIB]) 2Htel, 19 wgn
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Coherent Risk Measures

Coherent Risk Measure: The risk measure p is called coherent if it satisfies the
translation invariance, subadditivity, positive homogeneity, and monotonicity. Otherwise,

it is incoherent.

Are those risk measures coherent?
e VaR: No. VaR is not sub-additive.
* AVwR: Yes.

{
HIGH |AIRLab 20w
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What’s the next step?

In most real-world applications, the probability measure (density) of the uncertainty
IS unknown or inaccurate.
Ambiguity Set: We aim to focus on a certain set of probability measures that lies

within certain distance to a target probability measure
Mm={Q | d(P,Q) <r}

Wasserstein Metric: For any p € [1, o), the type-p Wasserstein distance between

two probability measures Q and Q' on R™ is defined as :

N = in — &P ! ]_j
W) = (_int [ - elpaias.ae))

where [](Q, Q") denotes the set of all joint probability measures of ¢ and ¢’ with

marginals Q and Q'.

= L) HIGH ﬁ}‘RLab 22
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Wasserstein Metric

Wasserstein Metric: For any p € [1, o), the type-p Wasserstein distance between

two probability measures Q and Q" on R™ is defined as .

N = in — &P NP
W@ @) = (_int [ - elpaias,ae))

where [](Q, Q") denotes the set of all joint probability measures of ¢ and ¢’ with
marginals Q and Q'.

Example: For two normal distributions with equal means, the type-2 Wasserstein

metric is given by

W(Z1,5,) = \/Tr[2]+Tr[22 — 2Ty [\/\/_zl\ﬁ]

AIRLab 23 gl

d Intellig 2om
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Distributionally Robust Risk Measures

How should we construct a distributionally robust risk measure?

Best-case Estimation among all probability measures
Worst-case Estimation among all probability measures
Average Estimation among all probability measures
Estimation of a randomly selected probability measures

Estimation of a User Specific probability measure

T ®m e 0w

I don’t know, let’s talk about it tomorrow

R UNIVE SITY
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Distributionally Robust Risk Measures

Distributionally Robust Risk Measure: For a given random variable X € R and the
ambiguity set 9, the distributionally robust risk measure is defined as

p(X) = sup EV [X]
QeMm

Distributionally Robust Optimization: For a given random variable X () € R and
the ambiguity set O, the distributionally robust optimization problem is

formulated as

J = minimize,cr sup E? [ X (7)]
QeM

\-
¥ UNIVE SITY
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reformulations." Mathematical Programming 171.1-2 (2018): 115-166.

Micheli, Francesco, Tyler Summers, and John Lygeros. "Data-driven distributionally robust
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Motivation: Why rendezvous?

ren-dez-vous

Verb
meet at an agreed time and place.
"| rendezvoused with Bea as planned”

Rendezvous in time Rendezvous in place

LEHIGH |AIRLab | e e 20 alle
T Saldana, David, et al. Modquad: The flying modular structure that self-assembles in midair. (ICRA 2018) 2o L
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Problem Statement: Rendezvous in Time

A team of n agents talk and decide when to meet. Their initial beliefs are

given by x,(0), ..., x,,(0) and they are updated as follows:

dxi(t) = u;(t) dt +|b dw; (), ‘ Gaussian Noise

() = Zkl,(x,a 1) —x(t = 7))

\ Time Delays
Communication Graph Structure

The input weight k;; denotes how much each agent will trust the beliefs from

the other agent. By collecting all the input weights, the closed loop dynamic

can be converted into a compact form using the graph Laplacian matrix.

HIGH AIRLle}bltl 31
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Problem Statement: Rendezvous in Time

Let’s put it in a compact form, with L the graph Laplacianand B = b I,,,

dxt — _L xt_T dt + B th.

The graph Laplacian matrix a defined element-wise as

—kl-j ifi#]
(L)ij={Xkij ifi=j .
0 otherwise

When the graph is connected, the eigenvalues of the Laplacian matrix L enjoys the
following property:

« The smallest eigenvalue is zero with algebraic multiplicity one.
* The spectrum of L can be orderedas 0 = 4; < - < 4,,.

* The eigenvector corresponding to Ay, is g, with g; = \/iﬁ
« L =QAQT, where Q = [q4]| | g,,] is an orthogonal matrix and A = diag[0|2,] --:| A,,]

|
BIICIB]) 2Htel, 2 uiin
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Problem Statement: Rendezvous In Time

In a big picture:

* A team of agents aim to meet at the same time.

» FEach agent has its initial opinion/belief.

* They exchange and update their opinions via a communication network.

* There exists uncertainty and time-delay for the communication.

6
'Agen(' a Agenl al
Agent b Agent b
Agentc 4 Agentc
Agent d Agentd
——Agent e Agent e |
Consensus 2
FRaf
¢
D p
0 2000 4000 6000 8000 10000 12004 0 2000 4000 6000 8000 10000 1200
Agents and their initial beliefs State vs time Deviation vs time
AIRLab Somarakis, C., Ghaedsharaf, Y. and Motee, N., 2019. Time-delay origins of fundamental tradeoffs between risk 33
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Robotics Laboratory




Section Overview

* Motivation

* Problem Statement

* Preliminary Result

* Risk of Large Fluctuation

* Risk of Cascading Large Fluctuation
* Fundamental Limits and Trade-offs

 Conclusions

® LEHIGH |AIRLab “ il

R nous and Intelligent
7 o
UNIVERSITY Robotics Laboratory ‘



Preliminary Results: Conditions for Consensus

How do we know agents will reach the consensus? There are two assumptions.

Assumption 1: The communication graph is undirected and connected.

Assumption 2: The closed loop system is stable if and only if the time-delay

satisfies T < —.
27,

. 1
In absence of exogenous noise, the system reaches the consensus of g2?21 x;(0) as
t — oo,

Consequently, the exogenous noise excites the observable modes of the network, and
the state fluctuates around the consensus.

gl LEHIGH AIRLab Somarakis, C., Ghaedsharaf, Y. and Motee, N., 2019. Time-delay origins of fundamental tradeoffs between risk 35
Autor

Y UNIVERSITy |Autonomousandintelligent  of |arge fluctuations and network connectivity. IEEE Transactions on automatic control, 64(9), pp.3571-3586.
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Preliminary Results: Observables and their statistics

Observables: Deviation between agent’s state and the current average
Ye = My x¢,
in which M,, = I,, — % 1,,17 is the centering matrix, and y, will oscillate around 0

in the steady-state.

Steady-state Statistics: When the network has reached the consensus, the steady-
state statistics of y = y, is shown by

y~ N(0,%),
And the elements of £ = |o;;| are shown by

_1;2 yvn cos(AxT) T T
9 b k=2 Ak (1=sin(Ax1)) (mi qk)(m] qk)’

O-ij

where m; denotes the i-th column of M,,, and A, is the k-th eigenvalue of L.

= L) HIGH ﬁ}‘RLab 36
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Preliminary Results: What is the FAILURE?

C-consensus event: Since the observable y fluctuates around 0, °
we allow some tolerance of the disagreement such that
[ | [ | [ |
>
|y|00 S Cl ) 1\ 0 :
which is also named as c-consensus event. ¢y
Large Fluctuation: The failure is considered as the i-th | : | o
agent fails to reach the c-consensus such that - 0 C ']‘
lyil > c. ¢ 7
Somarakis, C., Ghaedsharaf, Y. and M , N., 2019. Time-del rigins of fundamental tradeoff
HIGH ﬁIRLab bgthean r?sk of Iargg flic?uztionsaand n(;tteweork ConnectivityéIETEEyT?ags;czonus or?ajtotr?ﬁattiac o 37 { i
UNIVER !

SITY | utonomous and Intelligent Control, 64(9), pp3571‘3586 xa‘u
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Preliminary Results: What is the RISK?

The value at risk measure is defined as
R, =inf { § > 0|P{y; € Us} < €}.

Vi

Probability Density

The distribution of y;

—d—c —c 0 C 0+c

The confidence level € € (0,1) and use it to find the systemic set Us = (—o0, —§ —
c)U(d + ¢,0) with U, = U.

The undesired set of values U = {—oo}U{oo}.

HIGH AIRLab Rockafellar, R.T. and Uryasev, S., 2000. Optimization of conditional value-at-risk. Journal of risk, 2, 38 { :
= R il

A d Intellig .21-42.
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Risk of Large Fluctuation

Lemma 1: The conditional distribution of y; follows a normal distribution N (i}, 5]-2)

Theorem 1: The risk of large fluctuation of a single agent j is given by

1 C
] _ .
RS—\/EO']-LS—C, if o> \/—T'
le
where i, = erf71(1 —¢)
HIGH ﬁIRLﬁbl Y. L. Tong. The multivariate normal distribution. Springer Science & Business Media, 2012. 40 AJ: il
UNIVERSITY ttonomous and Inte lgﬁ.’]lt o
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Risk of Cascading Failures: Why cascading failures?

In realistic systems the large fluctuation is inevitable even

if we design control laws against them. And if the failure

happens, designing for the “what now" 1s a good 1dea ( e.g.

cascading risk)

We want our network to be able to isolate the existing

failure and prevent the future failures.

0.3 . . " .
9000 9200 9400 9600 9800 10000

yt vs time

04

0.2

0.1 £ N
X Y Gl e
O WAy e
" RN AP
0.1 f ,A‘WWK‘«M/‘ A‘.,, ,\,LC.' v\/\’\‘/\/a‘\q )
02 \ AL

-0.3

9000 9200 9400 9600 9800 10000

yt vs time

G. Liu, C. Somarakis, and N. Motee. “Risk of Cascading Failures in Time-Delayed Vehicle Platooning”. IEEE CDC (2021).
M. Rahnamay-Naeini and M. M. Hayat. “Cascading Failures in Interdependent Infrastructures: An Interdependent Markov-

Robotics Laboratory

AIRLab Chain Approach”. In: IEEE Transactions on Smart Grid 7.4 (2016)
H IGH Autonomons and Intelligent Y. Zhang and O. Yagan. “Robustness of interdependent cyber-physical systems against cascading failures”. In: IEEE 41
UNIVERSITY |, . “ Transactions on Automatic Control 65.2 (2019)



Risk of Cascading Failures: Conditional Distribution

We construct the cascading failure by considering the conditional distribution of j-th
agent when some agent has failed to reach the c-consensus, e.g., y; | [y;| > c.

Lemma 2: The conditional distribution of y; | |y;| = yf > ¢ follows a normal
distribution V' ({1, 62) such that

~ 0j ~
U= Pij;]i)’f, G° = sz(l _pizj) ,

where Pij = O'ij/O'iO'j, and |pU| < 1.

H IGH AIRLab Y. L. Tong. The multivariate normal distribution. Springer Science & Business Media, 2012.
R Autonomous and Intelligent
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Risk of Cascading Failures: Conditional Distribution

We construct the cascading failure to rendezvous by considering the conditional
distribution of the j —th agent when some agents with ordered indices 7,,, = {i1, ..., i;n }
with j € J,, for some m <n — 1 have failed to rendezvous, I.e., ¥ = yy.

Let us form a 2 x 2 block matrix in R(m+Dx(m+1)

i — [z::ll z::12] ’
2:21 2:22

where 3., =02, %, =3 =lo:: ,...,0:; l,and %, = |o e RMxm,
11 ] 12 21 [ ],ll ],lm] 22 [ kl'kz]kl,kZEjm

Lemma 3: The conditional distribution of y;|y; follows a multivariate normal
distribution V' ({i, %) such that

[ = ~12§2_21()’f)» 62 =515 —51,857%,,.

I I IG I I AIRLab Y. L. Tong. The multivariate normal distribution. Springer Science & Business Media, 2012. 43
R Autonomous and Intelligent
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Risk of Cascading Failures

 UNTIVE

In the view of failure to reach consensus, we define the event of under the risk of

failure for y; as

Us = (—o0,—8 — c)U(6 + ¢, o) with U, = U.

for § € [0, | and ¢ = 1. The risk of cascading failure is measured by assuming the

i'th (or 7, = {iy, ..., 1;} ) agents have failed to reach consensus, i.e.,

Ry =inf {8 > 0| P{y; € Us| |y;| =y} < &}

or
R,™ = inf {6 > 0| P{y; € Us|y; | = y,} < &}

&E
with the confidence level € € (0,1).

[—] IG [—] AIRLab G. Liu, C. Somarakis, and N. Motee. “Risk of Cascading Failures in Time-Delayed Vehicle Platooning”. IEEE 44
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Risk of Cascading Failures: Single Existing Failure

Theorem 2: Suppose the network reaches the steady-state and the i-th agent
has failed to reach the consensus with the observable |y;| = ys. The risk of

cascading large fluctuation at the j-th agent is

" <f 0, if 1 —%(erf(lcé',];r) + erf(;cf)',j_)) <e¢

_ S(6), otherwise

_ (5 + C)O'iz + O-ijyf

2 2 2
ai\/Z(aiaj — 0f;

Ks +

S(§) = inf{@ >0 |erf(ic(i5’,];r) + erf(ic(is’,j_) > 2(1 — e)}

H IRGH Autonomous and Intelligent

\-
¥ UNIVE SITY
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Risk of Cascading Failures: Single Existing Failure

0, if 1-— % (erf(ic(i,’,];r) + erf(ic(i,”j_) ) <¢

A narrow distribution or a low confidence level

S(6), otherwise

A wide distribution or a high confidence level Us Us

HIGH f},{RLab 46 { i
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Risk of Cascading Failures: Multiple Existing Failure

Theorem 3: Suppose the network reaches the steady-state and the agents with
indices 7,,, = {iy, ..., i;,} have failed to reach the consensus with the observable
|7gm| = ¥y . The risk of cascading large fluctuation at the j-th agent is

r

0, if 1——(erf(lc0+)+erf( gm’))Ss

L S(6), otherwise

R:]m'j: — <

&

L m (6+c)xfi
2t V26

S(8) = inf{s > 0 | erf (i7n)) + erf(i7m) > 2(1 - &)}

AIRLab 47
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Update Law for Computation of Cascading Risk

We consider the scenatio where agents with labels 7, are found in failure
states and we aim to update the statistics of the agent of interest, i.e., ¥;|y; =

Vs when a new failure at agent k € J,, is discovered.

Let us consider the following notations
i = i12(]')22_21(37)' 5j2= sz — 21,(NE32 221 (),
i =202(053 (vr), 6k = of = £1,(0)555 551 (),

Theorem 4: Suppose that y; follows NV (fi;, 5]-2) when m agents have already
failed with label with label J,,,. The updated conditional distribution y; when a
new agent fails, i.e., agent k € J,,, with observable | yfk| > ¢, N (@', 6'?) such

that
0 oy
~ o~ Jjk [ ~ ~I12 __ ~2 Jjk
B=pj = —5 (= yp,), 6= 0f ——5,
k k
~ _ i~ ""_1"" .
where Ojk = Oji — L12(k)Z33 221 ().

' LEHIGH |AIRLab 8 sl
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Risk of Cascading Failures: Single Existing Failure

®-O

Path Graph
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Risk of Cascading Failures: Shortest Path: Single Existing Failure

12

1-cycle graph 5-cycle graph
’ /\/ \W <™\

. 8 —7=0 . .
Increasing trend ) — =005 Less increasing
=" i trend
4
2
5 0
5 10 15 20 25 0 5 10 15 20 25
Shortest Path Shortest Path

7=0.02

=
7=0.031

b ’ J Complete graph 35 ‘—;fo Path graph

e s No trend Trend depends on
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4
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Risk of Cascading Failures:
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Risk of Cascading Failures: Multiple Existing Failures
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Fundamental Limits and Trade-offs

Lemma 4: For a team of agents adopting the complete graph with their steady-
states observables y ~ NV (0, X) , the elements of its covariance matrix X is

shown by
s n—21 cos(lnr)b2 Cifi = j
Oiji= < 2n4 1-sin(nt)
& 1 cos(nt)b? T
¢ 2n2 1-sin(nt)’ J

Lemma 5: For the steady-state statistics of the observables y, the diagonal
elements of its covariance matrix X satisfies the lower bound

n—1
o; = \/ b’tf = o,

n

with f = 1.52, the lower bound of f.

\-
¥ UNIVE SITY
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Fundamental Limits and Trade-offs

Theorem 5: In a complete communication graph, there exists a fundamental
limit on the cascading large fluctuation.

-
0, if 1- % (erf(¢5y) + erf(¢5_) ) < e

_ S7(d), otherwise

(m—1(6 +c¢) tyy
0*\/2n(n —2)

Cg,i —

S*(8) =inf { § > 0 |erf({5,) + erf({5_) > 2(1 —¢)}

HIGH |AIRLab

£ mous and Intelligent
 E SITY . “
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Conclusions

e Value-at-risk framework of cascading systemic failures.

* Risk profile of cascading failures is quantified using the steady-state statistics
obtained from the system observables.

* The cascading risk quantifies the impact from the existing failures on the consensus
network.

* Time-delayed fundamental limit on special graph structures.
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Motivation: Why car platoon?

platooning

In transportation, platooning or flocking is a method for driving
a group of vehicles together. It is meant to increase the capacity of
roads via an automated highway system.

https://www.wikiwand.com/en/Platoon https://pnorental.com/truck-platooning-the-future-of-road- https://www.c4isrnet.com/2022/08/10/us-army-
_%?28automobile%29 transport/ lethality-task-force-looks-to-ai-to-decrease-
casualties/
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Problem Formulation: Vehicle Platooning

What conditions need to be satisfied to form a platoon?

A. Time-invariant inter-vehicle distance

C. Converge to the steady-state

E. The velocity needs to be positive

HIGH |AIRLab

£ mous and Intelligent
SITY . “
Robotics Laboratory

B. Same velocity

D.©

F. All the inter-vehicle distances

must be the same

61



Problem Formulation: \ehicle Platooning

A team of n self-driving vehicles communicates to others and aim to form a
platoon with a constant velocity and inter-vehicle distance. For the i’th
vehicle, its position and velocity is shown by xt(i) and vt(i). And the vehicle-

wise dynamics is governed by —

y

Vi S N

dx,fi) = vt(i)dt,

dvt(i) = ugl)dt Brownian motions

where the control input u( ) |

n
0= 3k (i =i5) ) by (42, ~ o)
j=1

‘\T1me Delays f Time Delays
Communication Graph Structure

AIRLab Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle
d Intellig platooning: Time-delay—induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8
R b otic L]b )ril oTYy (2019): 3544-3559.

IS given by
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Problem Formulation: \ehicle Platooning

Let’s put it in a compact form, with L denotes the Laplacian matrix of the

communication graph

dxt = vt dt,
dvt = —L vt_T dt - ﬁL(xt_T —T)dt + gd ft’
T
where x; = [xt(l),xt(z), .. n)] and v; = l (1) (2), e vt(n)] are collections of

positions and velocities of vehicles, r = [r, 2r, ..., nr]T is the vector of target inter-

vehicle distances.

H IGH AIRLab Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 63
/ E R

d Intellig platooning: Time-delay-induced limitations and tradeoffs.” IEEE Transactions on automatic control 65.8
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Problem Formulation: \ehicle Platooning

In a big picture:

e A team of self-driving vehicles aim to form a platoon.

* The platoon has constant inter-vehicle distance and velocity.

* They exchange and update their states via a communication network.

* There exists uncertainty and time-delay for the communication and the

control input.

4 2
= pair 1 % pair 1
— 5 pair 2 o pair 2
- = 2 pair 3 _§ 1.5 pair 3
5 : B :
_ . = ) pair 4 pair 4
©
o090 oo oo 0o Vo |3 S /
E -2 - 05
© 2
o <
Car platoon with the complete 4 0
communication graph o 2 4 6 8 10 °o 2z 4 6 8 0
Time Time
Pairwise velocity diff vs time Inter-vehicle distance vs time

- 1 . 1 N alav_i ~O 1 tati > - ~nffe " - “acty 3 P atic o g
Y T R s | Autonomous and inteligent platooning: Time-delay—induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8
) o b Raobotics Laboratory (2019): 3544-3559. ‘
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Preliminary Results: Steady-State and Stability Conditions

The steady-state of the platoon with g = 0 as when

lim |vt(j) — vt(i)| = 0 and lim xt(j) — xt(i) —({—j)r|=0,

t—>oo t—>oo

for all i, j and initial conditions.

The afore mentioned noise-free consensus network will

converge and form the platoon if and only if (4;t,ft) € S

foralli = 2,...,n, where

§ = {(81,52) € R?

s;1€(0,3),5, € (oﬁ)}

with a € (0, g) the solution of a sin(a) = sy, and 4; is the ST

i’th eigenvalue of the graph Laplacian L in the non-

decreasing order.

B LEHIGH

AIRLab Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle
UNIVERSITY |2

e e e R platooning: Time-delay-induced limitations and tradeoffs.” IEEE Transactions on automatic control 65.8
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Preliminary Results: Steady-state Inter-\ehicle Distance

Consequently, the exogenous noise excites the steady-state observable modes of the

network, and the state fluctuates around the consensus.

Observables: In order to ensure the safety of the platoon, let us consider the

observable as the (steady-state) inter-vehicle distances, such that

cfi: = lim (xt(i+1) — xgi))

t—oo

whenever it exists. The collection of the inter vehicle distances is shown by d =

d;, ..., d;] € R* L.

Steady-state Statistics: Once the network has reached the consensus, the steady-state
inter-vehicle distance d is proven to be a random vector in R”~! and it follows a

multi-variate normal distribution, such that

d~ N@l,_,%)

. AIRLab Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle [
' LEHIGH 67 i
Autor 2023
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Autonomous and Intelligent platooning: Time-delay—induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8
Raobotics Laboratory (2019): 3544-3559. ‘
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Preliminary Results: Steady-state Inter-\ehicle Distance

Steady-state Statistics: The steady-state inter-vehicle distance vector d ~

N (r1,,_1, 2) has a mean of the target platoon distance r and its covariance matrix

Y= [al-, j] 1s shown element-wise by

3 _ _
515 = 9% 5= Y (& a) (& a)f uer, ),
k=2
foralli,j=1,..,n—1and

~ dr
f(s1,82) = j}R (518, —r?cos(r))? + r?(s; —rsin(r))?

In the expression above, A, denotes the k’th eigenvector of L, q; denotes its
corresponding normalized eigenvector, and e; is given by e;,; — e;.

H IGH AIRLab Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 68
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FAILURE? RISK?

2 LEHIGH

" UNIVERSITY

Inter-vehicle Collision: In this work, we consider the event of failure as the inter-

vehicle collision, which is given by

{Czi € (—OO, O)}

Level sets and Value-at-Risk Measure: A family of level
sets C5 = (—oo, i) helps to construct an alarm zone ~ Probability Density

that describes how vehicles are dangerously close to the

1
1
1
1
1
|
I
r

collision. The Value-at-Risk measure is an effective ! .
0 : i Inter-vehicle Distance
tool to quantify the chance of failure by evaluating e
R = inf{§ > 0| P{d; € Cs} < &}.
AIRLab Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 70 {
Autonomous and Intelligent platooning: Time-delay—induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8 [R5
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Risk of Inter-vehicle Collision

Suppose that the network of vehicles form a platoon in the steady-state. For every

i =1,..,n—1, the risk of inter-vehicle collision is

( , r c—1 1
0 if 0; < or € > —
KeV2 € 2
R = ¢ L P Sk S
: P = ﬁ;gaﬁ-\/i &E\/ﬁ TC ' /@E\/ﬁ
00 it o; >
\ KZE\/§

where k, = erf "1(1 — 2¢) > 0.

* For a large enough 7, the inter-vehicle collision is

. Probability Density
unlikely to occur.

*  When g; exceeds the € dependent cutoff, the risk 1s co

S b

since the collision can not be avoided with probability r

Inter-vehicle Distance

higher than 1 — €.

H IGH AIRLab Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 71 {
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Time-delay induced fundamental limits

Facts: An engineer has almost no control over the communication time-delay and

exogenous disturbances.

Question: Can I still design an optimal communication topologies to minimize the

risk in the networked control system?

Short answer: Somehow yes. There exists some communication graph topologies
that can reduce the risk, but there also exists a fundamental limit on the best

achievable risk.

H IGH AIRLab Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 73 {
Aut L
R
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Time-delay induced fundamental limits

The marginal standard deviation g; satisfy the lower bound

3
0, = /01 =0 = /ﬂj_flglrf

foralli =1,..,n—1,where f == inf f(s{,s,) = 25.4603.

(51152)65
Key steps:
* f is nonnegative over S
. o . 3
* f obtains a minimum (j_f) inside S 0;j = g2 - z (éiqu)(é}'qk)f(AkT, L),
k=2

. . T 112
+ Yi=z(&lar)(elar) = |l&f]|" =2
Independent to communication graph topologies!!!

‘tonomous and Intelligent platooning: Time-delay—induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8
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Time-delay induced fundamental limits

Then, the previous result can be immediately applied to the risk of inter-vehicle

collisions.

There is an inherent fundamental limit on the best achievable values of risk of inter-

vehicle collision in the platoon that is given by

(0 £ o r c—1 - 1
if o or € > —
ﬁ,‘g\/? C - 2
: r r c-— r
R > < —c if <ot <
T ) r— 4.026.|g|T3/ ReV2 ¢ KeV/2
r
00 if o* >
\ B f{s\/i

For any feasible T and g, the optimal communication topology is a complete graph

with link weights k; ; = for all i,j=1,.

I IIGI I AIRLab Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 75 {
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In order to reduce the risk of inter-vehicle collision to the extreme, how should we

alter the communication graph connectivity?

Increase the connectivity as much as possible
Decrease the connectivity as much as possible
Increase the connectivity, but only to some extent

Decrease the connectivity, but only to some extent

mio o w »

I don’t know, maybe ask chatgpt

LEH IGH AIRLab Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle
v 1o : Autonomous and Intellizent platooning: Time-delay—induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8
¥ UNIVERSITY |pobotics Laboratory (2019): 3544-3559.
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Trade-offs

In addition to the fundamental limits of the risk, there also exists a counter-intuitive

trade-off between the risk of collision and the network connectivity.

Effective Resistance: For a given communication graph, the effective resistance is

n
5 = nz 1/,
=2

The smaller the value of £, the stronger the connectivity of G.

defined as

The best achievable level of risk of inter-vehicle collision and the communication

connectivity emerges as follows

7 = 2(71—1) >
RE-\/:g> HTE(T—FTnZlOZm)

: I EI IIGI I AIRLab Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 77 {
' e platooning: Time-delay—induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8 L
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= = limit on R
e trale-off

==== limit on V=g

feasibility region

GH AIRLab Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 78 {
S5l I
Aut

platooning: Time-delay—induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8

itonomous and Intelligent

AL
S I T Y | Robotics Laboratory (2019): 3544-3559.

For a nontrivial range of network parameters,
the only way to maintain a safer (low-risk)
network is trough weakening the communication
connectivity, e.g., by decreasing the feedback
gain between vehicles or sparsifying the

communication graph.

Strengthening the connectivity of the network
also increases the risk of inter-vehicle collision

between vehicles.
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Risk of Cascading Failures: Why cascading failures?

In real world platoons, the inter-vehicle collision is
Inevitable even if we design control laws against it. When

the collision occurs, instead of asking “what if”, we should

design for the goal of “even if”. https://tenor.com/search/domino-gifs
" 2 " 2

We want our network to be able to isolate 5 " 5 1

the existing failure and prevent the future j roTTTTTT E% j i

failures. o om 040 1060 - 1 o 1040 1050 1080 1100
Distances when no collision Distances when pair 4 has collided

As collisions may cascade, there may exist more than one failures, and one needs to

quantify the likelihood such cascade 1s going to occur.

: LEH IGH AIRLab G. Liu, C. Somarakis, and N. Motee. “Risk of Cascading Failures in Time-Delayed Vehicle Platooning”. IEEE 80 sl I
Autor
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Risk of Cascading Failures: Conditional Distribution

In order to evaluate the impact from one system failure to the other inter-vehicle

distance, we investigate how it will change the distribution.

Given one pair of vehicle d; has encountered the systemic failure with inter-

vehicle distance of d, the conditional distribution of cfj|cfi = d, 1s given by
N (i1, 6%) with

u—'r+pz] (d—T‘) and 0:0-32'(1_/0?3')

0;

where ,OU = O-i,j/o-io-j and |pl,]| < 1.

sity

The situation of inter-vehicle collision

can be interpreted as d,. = 0.

Probability Den

: d Intellig
SITY Pb ¢ Laborator

HIRGH AIRLab Y. L. Tong. The multivariate normal distribution. Springer Science & Business Media, 2012. 81




Risk of Cascading Failures: Conditional Distribution

In the case of multiple existing collisions, we measure the risk of cascading
collisions by considering the conditional distribution of the j’th pair when some pairs

of vehicles with ordered indices 7,, = {i, ..., 1,,} Withj & 7., forsomem <n — 1

have collided, i.e., d; = 0.

Let us form a 2 X 2 block matrix in R(Mm+1x(m+1)

S _ 2% _ ST _ . - ¥, = e
Where 211 = O-] . 212 — 221 = [O-];ll’ ""O-];lm]’ and 222 [O-kl'kZ]kl,RZEf]m (S ]R .

The conditional distribution of d ! |ajm = 0 follows a multivariate normal
distribution V'({I, 52) such that

A=1+2,57(-r1,), 62 =3, —2,857%,,.

H IGH AIRLab G. Liu, C. Somarakis, and N. Motee. “Risk of Cascading Failures in Time-Delayed Vehicle Platooning”. IEEE 82 sl I
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Risk of Cascading Collision

In the view of inter-vehicle collisions, we define the event of under the risk of

collision for cfj as

_ , d
{d; € Cs} with Cy = (—oo, 5t c)

for 6 € [0,] and ¢ = 1. The risk of cascading collision is measured by assuming

the i'th pair (or 7,,, = {i4, ..., i;,} ) of vehicles has collided, i.e.,

Ro =inf {6 > 0 | P{d; € Cs|d; = 0} < &}
or
REmI =inf {§ > 0| P{d; € Cs|dz,, =0} <&}

with the confidence level € € (0,1).

[—] IG [—] AIRLab G. Liu, C. Somarakis, and N. Motee. “Risk of Cascading Failures in Time-Delayed Vehicle Platooning”. IEEE 83 S0 e I
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Risk of Cascading Collision: Single existing collision

Suppose that the conditions of stability hold, and the i’th pair has collided. The risk

of cascading inter-vehicle collision at the j’th pair is

N o . o
R = — L it E (H:gé’j), ﬁlg””)
(2, 5,€) y
LOO 1f H:(()?Sj) Z le
where i, = erf71(2¢ — 1),
- 1 ;
A = - (6 +piy L - 1) and (i, j,€) = 101054/ 2(1 — pj;) + 107 — Tpij0;
2(1 . PEJ)UJ +c 0;
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Risk of Cascading Collision: Single existing collision

When two pairs of vehicles are not correlated, 1.e., p;;, the risk of cascading collision

can be reduced into the risk of single collision:

Y(%, J, €) = Le0;0; \/2(1 — pfj) + ro; — rp;;0;
= LEO'Z'O'J'\/§ 4 s

then

T
A = —C
v(%, 5, €) L2+ T
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Risk of Cascading Collision: Multiple existing collisions

Suppose the platoon reaches the steady-state and vehicle pairs with label 7,,, have

collided such that Hgm = 0. The risk of cascading collision at the |-th pair is

4 .. T—-CH
<
0, if T
7m;j_ — r _ _ﬁ r Cﬁ
RS . < \/Elea__l_p: C, If L{;‘ E (\/Ea:’ Zac)
-
(0] —_—
_ If g = e
where (. = erf"1(2 ¢ — 1), and
~ _ S S-1 ~2 _ S Sl
fg=1+2%1525, (—r 1m); 0° = 211 —212225 2.

HIGH |AIRLab

= 1us and Intelligent
 E SITY “

Robotics Laboratory

86



Risk of Cascading Collision

A narrow distribution or a low confidence level

Probability Density ]}D{&j € C0|a:,m = 0} <&
= v d
r—cu ' l
0, if <1 :
’ V2gc — ¢ |
1/ 1 -
0 LR Inter-vehicle Distance
A wide distribution or a high confidence level
Probability Density ]]D{Jj € Coolaj'm = 0} > ¢
- — U 5
o, If =—=2=>1 :
’ 26 ¢ :
i
0 r Inter-vehicle Distance
Probability Density
. —uU r—-cp
— —¢, If (L E — :
V2 1.5 +]i ’ € (ﬁa’ﬁac) o
0 r r Inter—vehicle'Distance
d+c
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Risk of Cascading Collisions: Case Study

n = 50 vehicles aims to form a © @ OO OO (R

platoon with various @ ® @ ® @ ® @ S
communication graphs ® @ @ 0 =0 O=0)

Path Graph 1-Cycle Graph 2-Cycle Graph Complete Graph

Change of the variance of the inter-vehicle distance
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Risk of Cascading Collisions: Case Study
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Risk of Cascading Collisions: Case Study

Risk profiles of a platoon with n = 50 vehicles, ® @ 0@ 0.6 O
® ® @ ® @ OXO, ®
assuming pairs 7,,, = {23,24,25,26,27} have 6 b6 odF O
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Characteristics of Collisions: Numbers of Existing Collisions

+1)

lug(l().'R?:(‘l'

Risk profiles of a platoon withn =

log(L0*RE7 + 1)
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Characteristics of Collisions: Sparsity of Existing Collisions

Risk profiles of a platoon with n = 50 vehicles, assuming pairs {1,2,3,4,5} and {d +
1,d+2,d+3,d+ 4,d + 5} have collided for d = 0, ..., 29.
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Characteristics of Collisions: Adding New Edges

When one is allowed to alter the
communication by adding an edge
to the existing communication,
the location of the existing
failures and the added edge will

both affect the risk profile.

LT oF :
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Conclusion

 Second-order consensus network with communication time-delay
and input noise

« Steady-state statistics of the observable

 Value-at-risk framework of a single collision

* Time-delay induced fundamental limits and trade-offs
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Problem Formulation: Synchronous Power Networks

A network of n synchronous generators connected over m transmission lines.

The i'th generator is defined through the (static) triplet (/;, £;, E;) and dynamic

state vector (Qt(i), a)t(i)). Let us consider the following benchmark model

JQ(%) _/339(2) + Z E,E;Y;; 811’1(9 9 ) + D;

7=1
fori=1,..,n
HIGH AIRLab Somarakis, Christoforos, Guangyi Liu, and Nader Motee. "Risk of Phase Incoherence in Wide 100
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Problem Formulation: Synchronous Power Networks

For fixed voltage magnitudes, admittances, and power inputs, the equilibrium point
belongs to the manifold

J=1

b= {(va) € R |w =0 and 69 — 69] < = with p, = Y BLE,Y; sin(6" - 9&”)}

withi,j =1, ..,n

Let us consider the equilibrium point of the system as (6,,0) € S, and using the

linearization around the equilibrium to obtain the error dynamics

i) = |5 | |+ | s

with D = diag {ﬁl . ﬁ”} H =ndiag{Jy, ..,Jn} " and L = [1;;],

J1 " In

| {J;lEiEmj cos(6) — oY)
ij =

— Zk;éi Lik
HIGH AIRLab Somarakis, Christoforos, Guangyi Liu, and Nader Motee. "Risk of Phase Incoherence in Wide 101 [ l
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Problem Formulation: Synchronous Power Networks

The state feedback control is given by

i) = [ 2o 8] e L) 7]

uf? = =3 [miy (02 +0def ™) + by (w2, +/agf )]

g=1l

with

The closed-loop network can be written in a compact form

[dgt] =A [9’1 dt + K [9”] dt + Hd¢,

dwy Wt t—T

In which

10 I B 0 0 B 0 0 0 X 3n
a0 ke ] | .

1K]: ?’]J_l n!M an
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Problem Formulation: Synchronous Power Networks

In a big picture:

» A network of identical generators aim to synchronize.

 Existence of the communication time-delay, exogenous noise, and
measurement noise.

 Fluctuate around the equilibrium point

HIGH AIRLab Somarakis, Christoforos, Guangyi Liu, and Nader Motee. "Risk of Phase Incoherence in Wide 103 ssel il
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Simultaneous Diagonalizable Feedback Control

Assumption: The feedback gain matrices M and K are designed such that each pair

out of L, M, K commutes.

An equivalent formulation: There exists a unitary matrix Q such that Q7 UQ is
diagonal for every U € {L, M, K}, such that QTLQ = A;, QTKQ = Ay, and QT MQ =
Ay, Where

A, = diag{1, ..., 1,;}

Ay = diag{yy, ..., un}

Ag = diag{kq, ..., kK, }

Example: Simultaneously diagonalizable structures: L = I, M is a graph Laplacian

matrix, and K is a centering matrix

[—] IG [—] AIRLab Somarakis, Christoforos, Guangyi Liu, and Nader Motee. "Risk of Phase Incoherence in Wide 105
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Preliminary Result: Stability Condition

The unperturbed network will reach the steady state with non-zero time-delay 7 > 0

if and only if

3

(&T, )\sz;usz,ﬁ:jT) € UWT
where =

Wo(s: k) SER?,_. keR? : sy=k =0, { |k2|<51}U{k2>51, \;‘kg—s%<arccot(—51/ k%—s%) }}

Wi (s: k) SERi, keR? @ s2>k% ky+s, >0, ky +59 >0, k§+282—8%§21;’5%—k%}

Wao(s; k)

SERi, keR? 1 s2<k? kyts; >0, ky+sy >0, ’y‘+(s;k)<f,o+(.s;k)}

Wa(s; k)

—_—i— —— —— ——

sERY, kER® ¢ s3> ki, ko+s1 >0, ky +52 >0, k3 +2s9 — 57 >24/s3 —k}, (ve(s:k), ps(s:k)) ejs;k}

[dﬂt} =A {et} dt + K [zt”} dt + Hdg,

dwy Wt t—1
10 I . 0 0 - 0 0 0 o x3n
A= [—L —D} K= [—JlM —JlK} , and H = [nJl oM k| R
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Preliminary Result: Observable

To quantify the risk of the phase incoherence between two generators, let us
consider the observable as
Yt = B 0,

where the n2=2 x n complete incidence matrix B,, is given by
2

1 if edge ¢ leaves node j

bij = ¢ —1 if edge i enters node j

L 0 otherwise

Example: In the case of 3 generators, we have

B il 1
I -1 0 3
B,=10 1 -1
-1 0 1
- - 2
HIGH AIRLab Somarakis, Christoforos, Guangyi Liu, and Nader Motee. "Risk of Phase Incoherence in Wide 107 { il
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Preliminary Result: Steady-state Statistics

In the steady-state, the output converges, in distribution, to
1
y~N ( B,Q diag{f} QTBT>

where
0 ifl=1

=1 Bz + 1 ((kl)? + (kQ)%)} f((s;k)) if1>1

(s; k), represents (sy, S ky, ko); = (d 7, 4,72 4y T2, ,;7), and

dr
f(s; k) = 2 2 : 4 2 2 2 2 2
R 2((s1ka — k1)r? + sak1) cos(r) — 2r(kar? + s1k1 — kosa)sin(r) +r* + (s2 + k3 — 2s2)r2 + 53 + k3
HIGH AIRLab Somarakis, Christoforos, Guangyi Liu, and Nader Motee. "Risk of Phase Incoherence in Wide 108
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FAILURE? RISK?

Phase Incoherence: For the observable between generators i and j, we consider the

event of phase incoherence in the steady-state as

{ly@] € (¢, )}.

Level sets and Value-at-Risk Measure: A family of

level sets Us = (¢ g, o) helps to construct an

Probability Density

alarm zone that describes how a pair of generators

are dangerously close to the incoherence. The VaR :

measure is then given by - -

R =inf {8 = 0 | P{ |y)| € Us} < &}.
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Risk of Phase Incoherence

When the network reaches the steady-state, the risk of phase incoherence between

generator i and j Is given by

P
0 if O3 § i
Clg
. O;:V/-C — .
¢ — OijVe Clg Ve
“+00 if Uz'j 2 £
\ Ve
i 1 — i
with o = o lz_;(qﬁ — ;1) and v, the solution of
Ve 5
/ e U 2dt = v2m(1 —€)
Ve
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Risk of Phase Incoherence

A narrow distribution or a low confidence level
ogvec—( . (¢ ]
J if — < 05 < —
C — 045V Clg | Ve : :
| | [l | | [l e »
- S 0 ¢ {

‘g Vi
A wide distribution or a high confidence level : ™
I I
g 3 [ 3 ! —
- _$ 0 ¢ ¢
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Risk of Phase Incoherence: Two-Machine System

20" = —0.150" + 1.584 (6% — 0! 1 distrb;
26 = —0.1560% + 1.584 (8™ — 0 1 distrbs

Consider the phase difference as 6, = 0(1) et(z)

uniform feedback control gain, then

, and both generators use the

20; = —0.1560; — 3.1686; — ki 0;_, — pu6;_,, + distrb
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Risk of Phase Incoherence: Two-Machine System
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Risk of Phase Incoherence: Two-Machine System
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Time-delay induced fundamental limits

Due to the existence of the time-delay and the stability constraint, the variance of the

phase difference of any two generators is lower bounded by

3/2 n

T T] . o
min E il — g 1
JN 21 (i#7) o (q : Q’jl) l

Ojij Z Oy - —
with

fir=" min  f((s;k)).

- (Sle)EUr,?:l W

Independent to the feedback control design !!!
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For a particular type of the state feedback controller with
M=uL and K =k L,
there exists a best achievable lower bound on the product of the risk and the power

network connectivity.

Given systemic set parameters ¢, ¢, and the acceptance level € € (0,1), there exists a

common limit for the product of the systemic risk and the effective resistance

R. VEk +Zu >0
where Q is a universal constant depending on the grid properties, time-delay, and

uncertainty constants n,n’.
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Conclusion

« Synchronous power network with communication time-delay,

Input noise, and exogeneous noise
« Stability condition for the phase consensus
« Steady-state statistics of the observable
 Value-at-risk framework of phase incoherence

* Time-delay induced fundamental limits and trade-offs

[—] IG [—] AIRLab Somarakis, Christoforos, Guangyi Liu, and Nader Motee. "Risk of Phase Incoherence in Wide 119 [ I
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Section Overview

* Motivation

* Problem Formulation

 Data-driven Statistics Estimation

 Cost Metric and the Construction of AV@R

 Case Study
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Speed Limit

Stop Sign

Motivations:

« The environment (visual input) is always noisy.
« The autonomous driving vehicle is prone to make unsafe decisions with noisy
input.

» Such unsafe decisions may result in a cascade of accidents or violation of traffic

rules.
HIGH AIRLab Liu, G., Kamale, D., Vasile, C. I., & Motee, N. (2023). Symbolic Perception Risk in 122 sl I 0
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Problem Formulation

Speed Limit Do not Pass Stop Sign Do not Enter Attention Rough Road Construction  Traffic Light ~ Ahead Only Roundabout
(SL) (DP) (SS) (DE) (AT) (RR) (CO) (TL) (AO) (RO)

| el =]A] N A JOR

®

« Autonomous driving vehicle equipped with onboard

perception unit to classify the detected traffic sign.

Speed Limit

« The detected image of the traffic sign suffers from a time-

=T

Lot A P
Al — Al — — —

varying resolution and additive Gaussian noise.
« Evaluating the risk of misperceiving the traffic sign and

find the safest decision (action).

LEHIGH AIRLab Liu, G., Kamale, D., Vasile, C. I., & Motee, N. (2023). Symbolic Perception Risk in 123 i
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Problem Formulation

Speed Limit Do not Pass Stop Sign Do not Enter Attention Rough Road Construction  Traffic Light ~ Ahead Only Roundabout
(SL) (DP) (SS) (DE) (AT) (RR) (CO) (TL) (AO) (RO)

| Fel=]A] N AJOR

» Asimple VGG-19 model with a

SoftMax layer, trained with original

images from the dataset.

 For each detected image, the perception

unit generates a belief output p; €
argmax{p} R10

T -Perception
L D]

Detected Image Belief Output Perception Output . - c c
* The belief output p; lies with in a
R simplex.
LEHIGH AIRLab Liu, G., Kamale, D., Vasile, C. ., & Motee, N. (2023). Symbolic Perception Risk in 124 8l <l i
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Data-driven Statistics Estimation

Unlike any of the previous case, we can

not solve a system equation to obtain the . : - %,

Continuous-time
Observations

statistics of the output, i.e., p;.

resenton (e e e il GNN) - - - (TN N[ NN )

- - - : VS ’
We will consider the data-driven Totimated th Zl SRR zlta
. Evaluated
approach to obtain an accurate Risk Profile Ry, Ry, Tt Ry

estimation of the output statics instead.

» We assume that the statistics of p, do not change drastically in any sufficiently
short time interval.

* For each short time interval, the vehicle is able to collect sufficient amount of

belief output p;’s.
HIGH AIRLab Liu, G., Kamale, D., Vasile, C. 1., & Motee, N. (2023). Symbolic Perception Risk in 126 o ‘ m
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Data-driven Statistics Estimation

0

Considering the fact that p, lie within the simplex, it e Sr

Observations

IS intuitive to consider estimating its statistics by the oea ISR - - - (ENNEHEGTY
Dirichlet distribution, for which its density functionis s L | 6
given by

- F(Z?ll ;) o il
a H:il ['(cv) 1} v

(3

fD(zla coog Zms O, aam)

and it enjoys the following property

Zzz-zl, and z; > 0
ieM

The estimated value of a; can be updated as follow given the set of belief outputs,

.e.,
= 1
newy __ old
lIJ(O%,z‘ ) = \1"( E :Odt,j> -+ q E log py ;
j=1 e
AN LEHIGH AIRLab Liu, G., Kamale, D., Vasile, C. ., & Motee, N. (2023). Symbolic Perception Risk in 127
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Cost of Traffic Sign Misperception

Misperceiving traffic signs often leads to poor decisions from autonomous vehicles,

which are primarily associated with high potential costs in real-world driving scenarios.

Simply interpreting the belief output as “correct” or “wrong” does not provide adequate

information for safe autonomous driving since the high-level actions associated with

each traffic sign do not yield the same potential cost.

S

A

A

A

AO@®

Sign | SL DP S8 DE AT RR co TL AO RO
SL 0 174 103 103 123 123 121 103 121 120
DpP 117 0 105 105 117 117 119 105 97 113
SS 135 109 0 96 110 110 110 96 135 135
DE 117 117 995 0 117 500 117 17 117 117
AT 71 1115 102 92 0 50 0 102 51 137.5
RR 1445 168 82 82 50 0 50 140 168 258
co 102 41.5 82 82 30 0 0 41 83 173
TL 97 97 775 715 39 73 73 0 73 163
AO 91 91 86.5 865 455 455 455 91 0 182
RO 83 83 165 165 415 415 415 63 200 0

TABLE I: The cost metric for traffic sign misperception (unit:
€1000).

HIGH |AIRLab
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Connecting the Perception Output to Cost

In order to quantify the risk of misperceiving on traffic sign into another, we should

construct a new random variable r that represents the cost associated with the

perception output z, OO0 SALAAAD®

Sign | SL DP SS DE AT RR  CO TL A0 RO

SL 0 174 103 103 123 123 121 103 121 120
DP 17 0 105 105 117 117 119 105 97 113
SS 135 109 0 96 110 110 110 96 135 135

. DE | 117 11T 995 0 17 500 117117117117
— AT 71 1nLs 102 92 0 50 o 102 51 137.5
(r‘ y Z t —_— y ]_ Z t Y RR | 1445 168 82 82 50 0 50 140 168 258
1 J 1 J CO [102 415 82 8 30 0 0 4 83 B
TL 97 97 715 715 39 73 73 0 73 163
A0 | 91 91 865 865 455 455 455 91 0 182
RO | 83 83 165 165 415 415 415 63 200 0

TABLE I: The cost metric for traffic sign misperception (unit:
€1000).

Are we good to go?

There might be a case when different traffic sign will yield the same cost, and the cost

are not ordered yet. For each label i, we sort the unique cost values as

gré.é}&icﬁ = (Ci)l > 00> (C’i)mg = §I€l}\I/[l iji

4% LEHIGH AIRLab Liu, G., Kamale, D., Vasile, C. 1., & Motee, N. (2023). Symbolic Perception Risk in 130 : “ "
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Probability of Misperception

(c1)1, - (€1)s (c2)1s s (€2)6

\Zt/
(C3)1, ...,(C3 8

For each element of ordered cost vector ¢;, the probability of P{r;(z;) = (c;);} is

iven b
% Plri(z) = ()i} =prg= D, Pla Vi)

k|Ck i=(ci);

where

S () par

0 ?,75]{,‘ t,i F(atgk)

AIRLab Liu, G., Kamale, D., Vasile, C. I., & Motee, N. (2023). Symbolic Perception Risk in
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Risk of Misperception

During each small time interval, given the estimated belief output z;, the risk of
misperception with the i'th label is given by
_ 1 v A v A
R~ (D = ) )
j=1 j=1

where the integer value v Is given by

Key observations:
« AV@R for discrete random variable

 Splitting a probability atom

HIGH AIRLab Liu, G., Kamale, D., Vasile, C. 1., & Motee, N. (2023). Symbolic Perception Risk in 132 1 “ m
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Case Study

Speed Limit Do not Pass Stop Sign Do not Enter Attention Rough Road Construction  Traffic Light ~ Ahead Only Roundabout
(SL) (DP) (SS) (DE) (AT) (RR) (CO) (TL) (AO) (RO)

Accumulated Risk
Accumulated Risk
Accumulated Risk

Accumulated Risk

(a) True label: Speed-limit (SL) (b) True label: Do not enter (DE) (¢) True label: Construction (CO) (d) True label: Roundabout (RO)
w(SL) =Slow_down p(DE) =Slow_down & p(CO) =Goslow & Caution @(RO) =Follow_directions
Change_direction

St LEHIGH AIRLab Liu, G., Kamale, D., Vasile, C. I., & Motee, N. (2023). Symbolic Perception Risk in 134 l
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Case Study

Speed Limit Do not Pass Stop Sign Do not Enter Attention Rough Road Construction  Traffic Light ~ Ahead Only Roundabout
(SL) (DP) (SS) (DE) (AT) (RR) (CO) (TL) (AO) (RO)

=A] - |N

el

= 1r = 1r

E risk output E

§ perception output §

g 0.5 g 0.5 — risk output

= i) perception output

g L . S | g . .. . =
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 10 20 30 40 50 60 70 80 90 100

Noise Magnitude Relative Resolution (%)
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Conclusion

« Autonomous driving vehicle that detect and classify the traffic sign

 The detected traffic sign suffers from the time-varying noise and

resolution change
 Estimation of the statistics of the belief output
 Construction of the AV@R and the cost metric

 Evaluating the risk in terms of cost, but not the perception output
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Guangyi Liu gliu@lehigh.edu
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