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Probability Theory: Probability Measure and Sigma Algebra

Goal: To quantify notions of randomness and chances formally.

Probability Measure: For a given sample space Ω, and subsets 𝐴, 𝐵 ⊂ Ω, we want

• ℙ Ω = 1, and ℙ ∅ = 0.

• ℙ A ∈ 0,1

• ℙ(𝐴 ∪ B) = ℙ A + ℙ B if 𝐴, 𝐵 are disjoint

• ℙ(ڂ𝑗=1
∞ 𝐴𝑗) = σ𝑗=1

∞ ℙ A𝑗 if 𝐴𝑖 , 𝐴𝑗 are pairwise disjoint

Sigma Algebra: Let Ω be a set. A collection of subsets 𝒜 ⊆ 𝒫(Ω) is called a sigma 

algebra if: 

• ∅, Ω ∈ 𝒜

• If 𝐴 ∈ 𝒜, then 𝐴𝑐 ≔ Ω\A ∈ 𝒜

• If 𝐴1, 𝐴2, … ∈ 𝒜, then ڂ𝑗=1
∞ 𝐴𝑗 ∈ 𝒜

The elements of 𝒜 are 

called events!

5Durrett, Rick. Probability: theory and examples. Vol. 49. Cambridge university press, 2019.



Probability Theory

Probability Measure (formal definition): Let 𝒜 ⊆ 𝒫(Ω) be a sigma algebra. A map 

ℙ:𝒜 → [0,1] is called a probability measure if:

• ℙ Ω = 1, and ℙ ∅ = 0.

• ℙ 𝑗=1ڂ
∞ 𝐴𝑗 = σ𝑗=1

∞ ℙ(𝐴𝑗) if sets 𝐴𝑖 and 𝐴𝑗 are pairwise disjoint.

Conditional Probability: For a given probability space Ω,𝒜,ℙ , given 𝐵 ∈ 𝒜 with 

ℙ 𝐵 ≠ 0, then, the conditional probability of 𝐴 under 𝐵 is 

ℙ 𝐴 𝐵 ≔
ℙ 𝐴 ∩ 𝐵

ℙ 𝐵
.

6Durrett, Rick. Probability: theory and examples. Vol. 49. Cambridge university press, 2019.



Random Variable

Random Variable: Let Ω,𝒜 and ෩Ω, ሚ𝒜 be measurable spaces. A map 𝑋:Ω → ෩Ω is 

called a random variable if 𝑋−1 ሚ𝐴 ∈ 𝒜 for all ሚ𝐴 ∈ ሚ𝒜.

Some important notation: Let Ω,𝒜 and ෩Ω, ሚ𝒜 be measurable spaces. Then,

ℙ 𝑋 ∈ ሚ𝐴 ≔ ℙ 𝑋−1 ሚ𝐴 = ℙ 𝜔 ∈ Ω 𝑋 𝜔 ∈ ሚ𝐴} .

Goal: To put all the relevant information of a random experiment into one object.

7

Distribution: Given a probability space Ω,𝒜,ℙ , and 𝑋:Ω → ℝ be a random variable. 

Then, ℙ𝑋: ℬ ℝ → [0,1] defined by ℙ𝑋 ሚ𝐴 ≔ ℙ 𝑋−1 ሚ𝐴 = ℙ 𝑋 ∈ 𝐴 is called the 

probability distribution of 𝑋.

Some important notation: If ෩ℙ is a probability measure and ℙ𝑋 = ෩ℙ, then we say 𝑋 ∼ ෩ℙ.

Durrett, Rick. Probability: theory and examples. Vol. 49. Cambridge university press, 2019.
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What is risk? 

Let us consider our investment as has a loss (or profit) distribution, 

which can be represented by a random variable, i.e., 𝑋. 

• One way of looking at the risk is how badly the loss is going to 

be, e.g., the expected loss. 

• Or, with some certain level of confidence ε, the loss is going to 

be less than some certain value with probability 1 − ε

9

Let us also consider a platoon of two cars driving closely to each 

other with their inter-vehicle distance is a random variable 𝑑, and 

the unwanted event is the inter-vehicle collision. 

• Then the risk is how closely both cars are going to 

experience the inter-vehicle collision.



Risk Measures: VaR

Value at Risk (VaR) : For a given random variable 𝑋 which takes values in ℝ, the VaR at 

level 휀 ∈ 0,1 is defined as: 

𝑉𝑎𝑅 𝑋 = inf 𝑥 ∈ ℝ ℙ 𝑋 > 𝑥 < 휀}

or

𝑉𝑎𝑅 𝑋 = inf 𝑥 ∈ ℝ ℙ 𝑋 < 𝑥 > 1 − 휀}

This risk measure is epically suitable for random 

variables that obtain continuous probability distributions, 

and it describes the expected loss given certain 

confidence level. 

https://analytica.com/risk-management-and-var-not-safe-for-

everybody/

VaR does not control scenarios exceeding the VaR 

Uryasev, Stan, et al. "VaR vs CVaR in risk management and optimization." CARISMA conference. 2010. 10



Risk Measures: VaR

Value at Risk (VaR) : For a given random variable 𝑋 which takes values in ℝ, the VaR at 

level 휀 ∈ 0,1 is defined as: 

𝑉𝑎𝑅 𝑋 = inf 𝑥 ∈ ℝ ℙ 𝑋 > 𝑥 < 휀}

or

𝑉𝑎𝑅 𝑋 = inf 𝑥 ∈ ℝ ℙ 𝑋 < 𝑥 > 1 − 휀}

Uryasev, Stan, et al. "VaR vs CVaR in risk management and optimization." CARISMA conference. 2010. 11

For normally distributed random variables, VaR is proportional to the standard deviation. 

If 𝑋 ∼ 𝒩(휇, 𝜎2) and 𝐹𝑋 𝑧 is the cumulative distribution function of 𝑋, then,

𝑉𝑎𝑅1− 𝑋 = 𝐹𝑋
−1 1 − 휀 = 휇 + 𝑘 1 − 휀 𝜎

where 𝑘 1 − 휀 = 2 erf−1(1 − 2휀) and erf 𝑧 =
2

𝜋
0
𝑧
𝑒−𝑡

2
𝑑𝑡.



Risk Measures: Systemic Sets

In the case that the undesired event is not in a continuous manner, e.g., inter-vehicle 

collision, the risk measures can still be established by defining a systemic set of the 

undesired event. 

Let us assume the set of undesirable values of the system is given 

by 𝑈. Then, we can define a collection of systemic sets, 𝑈𝛿, 

parametrized by 𝛿 ∈ [0,∞]. The systemic set is defined in the 

manner that it enjoys the following properties:

• 𝑈𝛿1 ⊂ 𝑈𝛿2 when 𝛿1 > 𝛿2.

• lim
𝑛→∞

𝑈𝛿𝑛 = 𝑛=1ځ
∞ 𝑈𝛿𝑛 = 𝑈 for any sequence  𝛿𝑛 𝑛=1

∞

with lim
𝑛→∞

𝛿𝑛 = ∞.

12
Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 

platooning: Time-delay–induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8 

(2019): 3544-3559.



Risk Measures: Systemic Sets

Let us assume the set of undesirable values of the system is given by 𝑈. Then, we 

can define a collection of systemic sets, 𝑈𝛿, parametrized by 𝛿 ∈ [0,∞]. The 

systemic set is defined in the manner that it enjoys the following properties:

• 𝑈𝛿1 ⊂ 𝑈𝛿2 when 𝛿1 > 𝛿2.

• lim
𝑛→∞

𝑈𝛿𝑛 = 𝑛=1ځ
∞ 𝑈𝛿𝑛 = 𝑈 for any sequence  𝛿𝑛 𝑛=1

∞ with lim
𝑛→∞

𝛿𝑛 =

∞.
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Design a collection of systemic sets for this 

problem that satisfies the above conditions

𝑈𝛿

𝑈 = (∞, 0)

𝑈𝛿 = ?

𝑈𝛿 = (∞,
𝑐1

𝛿 + 𝑐2
)

Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 

platooning: Time-delay–induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8 

(2019): 3544-3559.



Risk Measures: VaR with systemic sets

Then, for a real-valued random variable 𝑦 with probability space (Ω, ℱ, ℙ), we define the 

systemic event as {𝑦 ∈ 𝑈}, and the VaR is defined as follows.

14
Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 

platooning: Time-delay–induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8 

(2019): 3544-3559.

Value at Risk: (New definition using systemic sets) For a given 

random variable 𝑦, the VaR at level 휀 ∈ 0,1 is defined as: 

𝑉𝑎𝑅 𝑦 = inf 𝛿 > 0 ℙ 𝑦 ∈ 𝑈𝛿 < 휀}.

The parameter 휀 ∈ 0,1 denotes the level of confidence in the systemic events (e.g., 

inter-vehicle collision). The smaller this value, the higher the confidence of the random 

variable 𝑦 stays away from the systemic set 𝑈. 

The value-at-risk measure, VaR, represents the intuitive notion of "risk." The higher its 

value, the higher chance the system will be steered into the undesirable ranges of values.



Risk Measures: AV@R

Conditional Value at Risk (CVaR) / Average Value at Risk (AV@R) /Expected Shortfall: 

For a given random variable 𝑋, the AV@R at level 휀 ∈ 0,1 is defined as: 

𝐴𝑉@𝑅 = න
−∞

+∞

𝑧 𝑑𝐹𝑋
1−

where

𝐹𝑋
1− 𝑧 = ቐ

0 𝑤ℎ𝑒𝑛 𝑧 < 𝑉𝑎𝑅1− (𝑋)

𝐹𝑋 𝑍 − 1 + 휀

휀
𝑤ℎ𝑒𝑛 𝑧 ≥ 𝑉𝑎𝑅1− (𝑋)

.

• AV@R is continuous with respect to 𝛼

• AV@R is convex in 𝑋

15Uryasev, Stan, et al. "VaR vs CVaR in risk management and optimization." CARISMA conference. 2010.



Risk Measures: AV@R

Pflug, Georg Ch. "Some remarks on the value-at-risk and the conditional value-at-risk." Probabilistic constrained 

optimization: Methodology and applications (2000): 272-281.

Acerbi, Carlo. "Spectral measures of risk: A coherent representation of subjective risk aversion." Journal of 

Banking & Finance 26.7 (2002): 1505-1518.

Some equivalent definition of AV@R for better understanding:

Expected shortfall is calculated by averaging all of the returns in the distribution that are 

worse than the VAR of the portfolio at a given level of confidence.

16

Optimization:

𝐴𝑉@𝑅𝛼 𝑋 = inf
c
{𝑐 +

1

1 − 𝛼
𝔼 𝑋 − 𝑐 +}

where

𝑋 − 𝑐 + = ቊ
0 𝑖𝑓 𝑋 ≤ 𝑐
𝑋 − 𝑐 𝑖𝑓 𝑋 > 𝑐

Expected Shortfall: 𝐴𝑉@𝑅𝛼 𝑋 =
1

𝛼
0
𝛼
𝑉𝑎𝑅𝛽 𝑋 𝑑𝛽.



Risk Measures: AV@R

• AV@R has superior mathematical properties 

versus VaR

• AV@R accounts for losses exceeding VaR, 

i.e., it captures the severity of the failure

• AV@R deviation is a strong competitor to the 

Standard Deviation

17Uryasev, Stan, et al. "VaR vs CVaR in risk management and optimization." CARISMA conference. 2010.
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Coherent Risk Measures

Some properties of risk measures:

19

Translation Invariance: For all 𝑋, and every constant 𝑎 ∈ ℝ, the risk measure 𝜌 satisfies 

𝜌 𝑋 + 𝑎 = 𝜌 𝑋 + 𝑎.

Subadditivity: For all 𝑋1 and 𝑋2, the risk measure 𝜌 satisfies 

𝜌 𝑋1 + 𝑋2 ≤ 𝜌 𝑋1 + 𝜌(𝑋2).

Positive Homogeneity: For all 𝑋, and every 휆 > 0 the risk measure 𝜌 satisfies 

𝜌 휆𝑋 ≤ 휆 𝜌 𝑋 .

Monotonicity: For 𝑋1 ≤ 𝑋2 almost surely, the risk measure 𝜌 satisfies 

𝜌 𝑋1 ≤ 𝜌 𝑋2 .



Coherent Risk Measures

Coherent Risk Measure: The risk measure 𝜌 is called coherent if it satisfies the 

translation invariance, subadditivity, positive homogeneity, and monotonicity. Otherwise, 

it is incoherent.

20

Are those risk measures coherent? 

• VaR: No. VaR is not sub-additive.

• AV@R: Yes. 
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In most real-world applications, the probability measure (density) of the uncertainty 

is unknown or inaccurate.

What’s the next step?

22

Ambiguity Set: We aim to focus on a certain set of probability measures that lies 

within certain distance to a target probability measure

Wasserstein Metric: For any 𝑝 ∈ [1,∞), the type-p Wasserstein distance between 

two probability measures ℚ and ℚ′ on ℝ𝑚 is defined as 

where ∏(ℚ,ℚ′) denotes the set of all joint probability measures of 휉 and 휉′ with 

marginals ℚ and ℚ′.



Wasserstein Metric

23

Wasserstein Metric: For any 𝑝 ∈ [1,∞), the type-p Wasserstein distance between 

two probability measures ℚ and ℚ′ on ℝ𝑚 is defined as 

where ∏(ℚ,ℚ′) denotes the set of all joint probability measures of 휉 and 휉′ with 

marginals ℚ and ℚ′.

Example: For two normal distributions with equal means, the type-2 Wasserstein 

metric is given by  



Distributionally Robust Risk Measures

24

How should we construct a distributionally robust risk measure?

A. Best-case Estimation among all probability measures 

B. Worst-case Estimation among all probability measures

C. Average Estimation among all probability measures

D. Estimation of a randomly selected probability measures

E. Estimation of a User Specific probability measure

F. I don’t know, let’s talk about it tomorrow 



Distributionally Robust Risk Measures

25

Distributionally Robust Risk Measure: For a given random variable 𝑋 ∈ ℝ and the 

ambiguity set 𝔐, the distributionally robust risk measure is defined as

Distributionally Robust Optimization: For a given random variable 𝑋(𝜋) ∈ ℝ and 

the ambiguity set 𝔐, the distributionally robust optimization problem is 

formulated as



Some Useful References
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Motivation: Why rendezvous?

ren·dez·vous
Verb

meet at an agreed time and place.
"I rendezvoused with Bea as planned"

Rendezvous in time Rendezvous in place

Saldana, David, et al. Modquad: The flying modular structure that self-assembles in midair. (ICRA 2018)
29
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Problem Statement: Rendezvous in Time

d𝑥𝑖 𝑡 = 𝑢𝑖 𝑡 d𝑡 + 𝑏 d𝑤𝑖 𝑡 ,

𝑢𝑖 𝑡 =

𝑗=1

𝑛

𝑘𝑖𝑗 𝑥𝑗 𝑡 − 𝜏 − 𝑥𝑖(𝑡 − 𝜏)

A team of 𝑛 agents talk and decide when to meet. Their initial beliefs are 

given by 𝑥1 0 ,… , 𝑥𝑛 0 and they are updated as follows: 

Gaussian Noise

Time Delays

Communication Graph Structure

The input weight 𝑘𝑖𝑗 denotes how much each agent will trust the beliefs from 

the other agent. By collecting all the input weights, the closed loop dynamic 

can be converted into a compact form using the graph Laplacian matrix.

31



Problem Statement: Rendezvous in Time

d𝒙𝑡 = −𝐿 𝒙𝑡−𝜏 d𝑡 + 𝐵 d𝒘𝑡.

Let’s put it in a compact form, with 𝐿 the graph Laplacian and  𝐵 = 𝑏 𝐼𝑛,

The graph Laplacian matrix a defined element-wise as 

𝐿 𝑖,𝑗 = ൞

−𝑘𝑖𝑗 𝑖𝑓 𝑖 ≠ 𝑗

σ𝑘𝑖𝑗 𝑖𝑓 𝑖 = 𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.

When the graph is connected, the eigenvalues of the Laplacian matrix 𝐿 enjoys the 

following property: 

• The smallest eigenvalue is zero with algebraic multiplicity one.

• The spectrum of 𝐿 can be ordered as 0 = 휆1 ≤ ⋯ ≤ 휆𝑛. 

• The eigenvector corresponding to 휆𝑘 is 𝑞𝑘 with 𝑞1 =
1

𝑛
.

• 𝐿 = QΛ𝑄𝑇, where Q = [𝑞1| ⋯| 𝑞𝑛] is an orthogonal matrix and Λ = diag[0|휆2| ⋯| 휆𝑛]

32



Problem Statement: Rendezvous in Time

In a big picture: 

• A team of agents aim to meet at the same time. 

• Each agent has its initial opinion/belief.

• They exchange and update their opinions via a communication network.

• There exists uncertainty and time-delay for the communication.

4

3

4
9

1

Agents and their initial beliefs State vs time

A

B

E

C

D

Deviation vs time

33Somarakis, C., Ghaedsharaf, Y. and Motee, N., 2019. Time-delay origins of fundamental tradeoffs between risk 

of large fluctuations and network connectivity. IEEE Transactions on automatic control, 64(9), pp.3571-3586.
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Preliminary Results: Conditions for Consensus

How do we know agents will reach the consensus? There are two assumptions.

Somarakis, C., Ghaedsharaf, Y. and Motee, N., 2019. Time-delay origins of fundamental tradeoffs between risk 

of large fluctuations and network connectivity. IEEE Transactions on automatic control, 64(9), pp.3571-3586.

Assumption 1: The communication graph is undirected and connected.

Assumption 2: The closed loop system is stable if and only if the time-delay 

satisfies 𝜏 <
𝜋

2𝜆n
.

In absence of exogenous noise, the system reaches the consensus of  
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖(0) as 

𝑡 → ∞.

Consequently, the exogenous noise excites the observable modes of the network, and 

the state fluctuates around the consensus.

35



Preliminary Results: Observables and their statistics

Observables: Deviation between agent’s state and the current average

𝒚𝑡 = 𝑀𝑛 𝒙𝑡,

in which 𝑀𝑛 = 𝐼𝑛 −
1

𝑛
1𝑛1𝑛

𝑇 is the centering matrix, and 𝒚𝑡 will oscillate around 0

in the steady-state.

Steady-state Statistics: When the network has reached the consensus, the steady-

state statistics of ഥ𝒚 = 𝒚∞ is shown by

ഥ𝒚 ∼ 𝒩 0, Σ ,

And the elements of Σ = 𝜎𝑖𝑗 are shown by

𝜎𝑖𝑗 =
1

2
𝑏2 σ𝑘=2

𝑛 cos 𝜆𝑘𝜏

𝜆𝑘 1−sin 𝜆𝑘𝜏
(𝒎𝑖

𝑇𝒒𝑘)(𝒎𝑗
𝑇𝒒𝑘),

where 𝑚𝑖 denotes the i-th column of 𝑀𝑛, and 휆𝑘 is the k-th eigenvalue of 𝐿.

36



Preliminary Results: What is the FAILURE?

C-consensus event: Since the observable ഥ𝒚 fluctuates around 0, 

we allow some tolerance of the disagreement such that

ഥ𝒚 ∞ ≤ 𝑐,

which is also named as c-consensus event.

0

ത𝑦𝑖

c-

c

0

ത𝑦𝑖

c-

c

Large Fluctuation: The failure is considered as the i-th 
agent fails to reach the c-consensus such that 

| ത𝑦𝑖| > c.

Somarakis, C., Ghaedsharaf, Y. and Motee, N., 2019. Time-delay origins of fundamental tradeoffs 

between risk of large fluctuations and network connectivity. IEEE Transactions on automatic 

control, 64(9), pp.3571-3586.
37



Preliminary Results: What is the RISK?

The value at risk measure is defined as

ℛ = inf 𝛿 > 0 ℙ ത𝑦𝑖 ∈ 𝑈𝛿 < 휀}.

Rockafellar, R.T. and Uryasev, S., 2000. Optimization of conditional value-at-risk. Journal of risk, 2, 

pp.21-42.

ത𝑦𝑖

The distribution of ത𝑦𝑖

0 𝑐−𝑐 𝛿 + 𝑐−𝛿 − 𝑐

𝑈𝛿 𝑈𝛿

𝜺

𝟐

𝜺

𝟐

The confidence level 휀 ∈ 0,1 and use it to find the systemic set 𝑈𝛿 = (
)

−∞,−𝛿 −
𝑐 𝛿)ڂ + 𝑐,∞) with 𝑈∞ = 𝑈.

38

The undesired set of values 𝑈 = −∞ ڂ ∞ .
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Risk of Large Fluctuation

Lemma 1: The conditional distribution of ത𝑦𝑗 follows a normal distribution 𝒩(휇𝑗 , 𝜎𝑗
2)

Y. L. Tong. The multivariate normal distribution. Springer Science & Business Media, 2012. 40

Theorem 1: The risk of large fluctuation of a single agent j is given by 

ℛ
𝑗
= 2𝜎𝑗휄 − 𝑐, 𝑖𝑓 𝜎𝑗 >

𝑐

2휄
,

where 휄 = erf−1(1 − 휀)



Risk of Cascading Failures: Why cascading failures?

In realistic systems the large fluctuation is inevitable even 

if we design control laws against them. And if the failure 

happens, designing for the “what now" is a good idea ( e.g. 

cascading risk)
𝒚𝑡 vs time 

We want our network to be able to isolate the existing 

failure and prevent the future failures.

𝒚𝑡 vs time 

G. Liu, C. Somarakis, and N. Motee. “Risk of Cascading Failures in Time-Delayed Vehicle Platooning”. IEEE CDC (2021).

M. Rahnamay-Naeini and M. M. Hayat. “Cascading Failures in Interdependent Infrastructures: An Interdependent Markov-

Chain Approach”. In: IEEE Transactions on Smart Grid 7.4 (2016)

Y. Zhang and O. Ya ̆gan. “Robustness of interdependent cyber-physical systems against cascading failures”. In: IEEE 

Transactions on Automatic Control 65.2 (2019)
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Risk of Cascading Failures: Conditional Distribution

We construct the cascading failure by considering  the conditional distribution of j-th

agent when some agent has failed to reach the c-consensus, e.g., ത𝑦𝑗 | | ത𝑦𝑖| > 𝑐.

Lemma 2: The conditional distribution of ത𝑦𝑗 | ത𝑦𝑖 = 𝑦𝑓 > 𝑐 follows a normal 

distribution 𝒩(휇, 𝜎2) such that 

휇 = 𝜌𝑖𝑗
𝜎𝑗

𝜎𝑖
𝑦𝑓, 𝜎2 = 𝜎𝑗

2(1 − 𝜌𝑖𝑗
2 ) ,

where 𝜌𝑖𝑗 = Τ𝜎𝑖𝑗 𝜎𝑖 𝜎𝑗, and 𝜌𝑖𝑗 < 1.

Y. L. Tong. The multivariate normal distribution. Springer Science & Business Media, 2012. 42



Risk of Cascading Failures: Conditional Distribution

Y. L. Tong. The multivariate normal distribution. Springer Science & Business Media, 2012. 43

We construct the cascading failure to rendezvous by considering the conditional

distribution of the j −th agent when some agents with ordered indices ℐ𝑚 = {𝑖1, … , 𝑖𝑚}
with 𝑗 ∉ ℐ𝑚 for some 𝑚 < 𝑛 − 1 have failed to rendezvous, i.e., ഥ𝒚ℐ𝑚 = 𝒚𝑓.

Let us form a 2 × 2 block matrix in ℝ 𝑚+1 × 𝑚+1

෨Σ =
෨Σ11 ෨Σ12
෨Σ21 ෨Σ22

,

where ෨Σ11 = 𝜎𝑗
2, ෨Σ12 = ෨Σ21

𝑇 = [𝜎𝑗,𝑖1 , … , 𝜎𝑗,𝑖𝑚], and ෨Σ22 = 𝜎𝑘1,𝑘2 𝑘1,𝑘2∈ ℐ𝑚
∈ ℝ𝑚×𝑚. 

Lemma 3: The conditional distribution of ത𝑦𝑗|ഥ𝒚ℐ𝑚 follows a multivariate normal 

distribution 𝒩(휇, 𝜎2) such that 

휇 = ෨Σ12 ෨Σ22
−1 𝒚𝑓 , 𝜎2 = ෨Σ11 −෨Σ12 ෨Σ22

−1 ෨Σ21.



In the view of failure to reach consensus, we define the event of under the risk of 

failure for ത𝑦𝑗 as

for 𝛿 ∈ 0,∞ and 𝑐 ≥ 1. The risk of cascading failure is measured by assuming the 

𝑖′th (or ℐ𝑚 = {𝑖1, … , 𝑖𝑚} ) agents have failed to reach consensus, i.e.,

with the confidence level 휀 ∈ 0,1 .

44

Risk of Cascading Failures

G. Liu, C. Somarakis, and N. Motee. “Risk of Cascading Failures in Time-Delayed Vehicle Platooning”. IEEE 

CDC (2021).

or

𝑈𝛿 = −∞,−𝛿 − 𝑐 𝛿)ڂ + 𝑐,∞) with 𝑈∞ = 𝑈.

ℛ
𝑖,𝑗
= inf 𝛿 > 0 ℙ ത𝑦𝑗 ∈ 𝑈𝛿 | ത𝑦𝑖 = 𝑦𝑓 < 휀}

ℛ
ℐ𝑚,𝑗

= inf 𝛿 > 0 ℙ ത𝑦𝑗 ∈ 𝑈𝛿 ഥ𝒚ℐ𝑚 = 𝒚𝑓 < 휀}



Risk of Cascading Failures: Single Existing Failure

Theorem 2: Suppose the network reaches the steady-state and the i-th agent 

has failed to reach the consensus with the observable | ത𝑦𝑖| = 𝑦𝑓. The risk of 

cascading large fluctuation at the j-th agent is 

ℛ
𝑖,𝑗
: =

S(𝛿), otherwise

0, if    1 −
1

2
erf 휅0,+

𝑖,𝑗
+ erf 휅0,−

𝑖,𝑗
≤ 휀

휅𝛿,±
𝑖,𝑗

=
𝛿 + 𝑐 𝜎𝑖

2 ± 𝜎𝑖𝑗𝑦𝑓

𝜎𝑖 2(𝜎𝑖
2𝜎𝑗

2 − 𝜎𝑖𝑗
2)

S 𝛿 = inf 𝛿 > 0 | erf 휅𝛿,+
𝑖,𝑗

+ erf 휅𝛿,−
𝑖,𝑗

> 2(1 − 휀)
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Risk of Cascading Failures: Single Existing Failure

ത𝑦𝑖
0, if    1 −

1

2
erf 휅0,+

𝑖,𝑗
+ erf 휅0,−

𝑖,𝑗
≤ 휀

0 𝑐−𝑐

𝑈0 𝑈0

𝜺

𝟐

𝜺

𝟐

A narrow distribution or a low confidence level

ത𝑦𝑖

0 𝑐−𝑐 𝛿 + 𝑐−𝛿 − 𝑐

𝑈𝛿 𝑈𝛿

𝜺

𝟐

𝜺

𝟐
S(𝛿), otherwise

A wide distribution or a high confidence level
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Risk of Cascading Failures: Multiple Existing Failure

47

ℛ
ℐ𝑚,𝑗

: =
S(𝛿), otherwise

0, if    1 −
1

2
erf 휅0,+

ℐ𝑚,𝑗
+ erf 휅0,−

ℐ𝑚,𝑗
≤ 휀

휅𝛿,±
𝑖,ℐ𝑚 =

𝛿 + 𝑐 ± 휇

2 𝜎

S 𝛿 = inf 𝛿 > 0 | erf 휅𝛿,+
ℐ𝑚,𝑗

+ erf 휅𝛿,−
ℐ𝑚,𝑗

> 2(1 − 휀)

Theorem 3: Suppose the network reaches the steady-state and the agents with

indices ℐ𝑚 = {𝑖1, … , 𝑖𝑚} have failed to reach the consensus with the observable

ഥ𝒚ℐ𝑚 = 𝒚𝑓 . The risk of cascading large fluctuation at the j-th agent is



Update Law for Computation of Cascading Risk 

48

We consider the scenatio where agents with labels ℐ𝑚 are found in failure

states and we aim to update the statistics of the agent of interest, i.e., ̄ത𝑦𝑗|ഥ𝒚ℐ𝑚 =

𝒚𝑓, when a new failure at agent 𝑘 ∉ ℐ𝑚 is discovered.

Let us consider the following notations

휇𝑗 = ෨Σ12(𝑗)෨Σ22
−1 𝒚𝑓 , 𝜎𝑗

2= 𝜎𝑗
2 − ෨Σ12(𝑗)෨Σ22

−1 ෨Σ21(𝑗), 

휇𝑘 = ෨Σ12(𝑘)෨Σ22
−1 𝒚𝑓 ,      𝜎𝑘

2 = 𝜎𝑘
2 − ෨Σ12(𝑘)෨Σ22

−1 ෨Σ21(𝑘),

Theorem 4: Suppose that ത𝑦𝑗 follows 𝒩(휇𝑗 , 𝜎𝑗
2) when m agents have already 

failed with label with label ℐ𝑚. The updated conditional distribution ത𝑦𝑗 when a 

new agent fails, i.e., agent k ∉ ℐ𝑚 with observable 𝑦𝑓𝑘 > 𝑐, 𝒩 휇′, 𝜎′2 such 

that 

휇′ = 휇𝑗 −
𝜎𝑗𝑘

𝜎𝑘
2 휇𝑘 − 𝑦𝑓𝑘 , 𝜎′2= 𝜎𝑗

2 −
𝜎𝑗𝑘

𝜎𝑘
2 ,

where          𝜎𝑗𝑘 = 𝜎𝑗𝑘 − ෨Σ12(𝑘)෨Σ22
−1 ෨Σ21(𝑗).



Risk of Cascading Failures: Single Existing Failure
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Risk of Cascading Failures: Shortest Path: Single Existing Failure

1-cycle graph

Increasing trend

5-cycle graph

Less increasing 

trend

Complete graph

No trend 

Same distance

Path graph

Trend depends on 

the time-delay 𝜏
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Risk of Cascading Failures: Multiple Existing Failures
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Fundamental Limits and Trade-offs

Lemma 4: For a team of agents adopting the complete graph with their steady-

states observables ഥ𝒚 ∼ 𝒩 0, Σ , the elements of its covariance matrix Σ is 

shown by

𝜎𝑖𝑗: =

𝑛−1

2𝑛2
cos 𝑛𝜏 𝑏2

1−sin(𝑛𝜏)
, if 𝑖 = 𝑗

−
1

2𝑛2
cos 𝑛𝜏 𝑏2

1−sin(𝑛𝜏)
, if 𝑖 ≠ 𝑗

Lemma 5: For the steady-state statistics of the observables ഥ𝒚, the diagonal 

elements of its covariance matrix Σ satisfies the lower bound

𝜎𝑖 ≥
𝑛 − 1

𝑛
𝑏2𝜏𝑓 = 𝜎∗,

with 𝑓 = 1.52, the lower bound of 𝑓.
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Fundamental Limits and Trade-offs

ℛ
𝑖,𝑗
≥

S∗(𝛿), otherwise

0, if    1 −
1

2
erf 휁0,+

∗ + erf 휁0,−
∗ ≤ 휀

휁𝛿,±
∗ =

(𝑛 − 1) 𝛿 + 𝑐 ± 𝑦𝑓

𝜎∗ 2𝑛(𝑛 − 2)

S∗ 𝛿 = inf 𝛿 > 0 | erf 휁𝛿,+
∗ + erf 휁𝛿,−

∗ > 2(1 − 휀)

55

Theorem 5: In a complete communication graph, there exists a fundamental 

limit on the cascading large fluctuation. 
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Conclusions

• Value-at-risk framework of cascading systemic failures.

• Risk profile of cascading failures is quantified using the steady-state statistics 

obtained from the system observables.

• The cascading risk quantifies the impact from the existing failures on the consensus 

network.

• Time-delayed fundamental limit on special graph structures.
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Motivation: Why car platoon?

platooning
In transportation, platooning or flocking is a method for driving 

a group of vehicles together. It is meant to increase the capacity of 
roads via an automated highway system.

https://www.wikiwand.com/en/Platoon

_%28automobile%29

https://pnorental.com/truck-platooning-the-future-of-road-

transport/

https://www.c4isrnet.com/2022/08/10/us-army-

lethality-task-force-looks-to-ai-to-decrease-

casualties/

60



Problem Formulation: Vehicle Platooning

61

What conditions need to be satisfied to form a platoon?

A. Time-invariant inter-vehicle distance B. Same velocity

C. Converge to the steady-state D. ☺

E.   The velocity needs to be positive F. All the inter-vehicle distances 

must be the same



𝑢𝑡
(𝑖)

=

𝑗=1

𝑛

𝑘𝑖,𝑗 𝑣𝑡−𝜏
(𝑗)

− 𝑣𝑡−𝜏
(𝑖)

+ 𝛽

𝑗=1

𝑛

𝑘𝑖,𝑗 𝑥𝑡−𝜏
(𝑗)

− 𝑥𝑡−𝜏
𝑖

− 𝑗 − 𝑖 𝑟

Problem Formulation: Vehicle Platooning

d𝑥𝑡
(𝑖)

= 𝑣𝑡
(𝑖)
d𝑡,

d𝑣𝑡
(𝑖)

= 𝑢𝑡
(𝑖)
d𝑡 + 𝑔 d휉𝑡

𝑖 ,

A team of 𝑛 self-driving vehicles communicates to others and aim to form a 

platoon with a constant velocity and inter-vehicle distance. For the 𝑖′th

vehicle, its position and velocity is shown by 𝑥𝑡
(𝑖)

and 𝑣𝑡
(𝑖)

. And the vehicle-

wise dynamics is governed by

Brownian motions

Time Delays

where the control input 𝑢𝑡
(𝑖)

is given by

Time Delays

Communication Graph Structure

62
Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 

platooning: Time-delay–induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8 

(2019): 3544-3559.



Problem Formulation: Vehicle Platooning

Let’s put it in a compact form, with 𝐿 denotes the Laplacian matrix of the 

communication graph

where 𝒙𝑡 = 𝑥𝑡
1
, 𝑥𝑡

2
, … , 𝑥𝑡

𝑛
𝑇

and 𝒗𝑡 = 𝑣𝑡
1
, 𝑣𝑡

2
, … , 𝑣𝑡

𝑛
𝑇

are collections of 

positions and velocities of vehicles, 𝒓 = 𝑟, 2𝑟, . . . , 𝑛𝑟 𝑇 is the vector of target inter-

vehicle distances.   

63

d𝒙𝑡 = 𝒗𝑡 dt,

d𝒗𝑡 = −𝐿 𝒗𝑡−𝜏 d𝑡 − 𝛽𝐿(𝒙𝑡−𝜏 −𝒓)d𝑡 + 𝑔d 𝝃𝒕,

Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 

platooning: Time-delay–induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8 

(2019): 3544-3559.



Problem Formulation: Vehicle Platooning

In a big picture: 

• A team of self-driving vehicles aim to form a platoon. 

• The platoon has constant inter-vehicle distance and velocity.

• They exchange and update their states via a communication network.

• There exists uncertainty and time-delay for the communication and the 

control input.

Car platoon with the complete 

communication graph

Pairwise velocity diff vs time Inter-vehicle distance vs time

64
Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 

platooning: Time-delay–induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8 

(2019): 3544-3559.
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Preliminary Results: Steady-State and Stability Conditions 

66

The steady-state of the platoon with 𝑔 = 0 as when

lim
𝑡→∞

𝑣𝑡
𝑗
− 𝑣𝑡

(𝑖)
= 0 and lim

𝑡→∞
𝑥𝑡

𝑗
− 𝑥𝑡

𝑖
− 𝑖 − 𝑗 𝑟 = 0,

for all 𝑖, 𝑗 and initial conditions. 

Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 

platooning: Time-delay–induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8 

(2019): 3544-3559.

The afore mentioned noise-free consensus network will 

converge and form the platoon if and only if 휆𝑖𝜏, 𝛽𝜏 ∈ 𝑆

for all 𝑖 = 2,… , 𝑛, where

𝑆 = 𝑠1, 𝑠2 ∈ ℝ2 𝑠1 ∈ 0,
𝜋
2 , 𝑠2 ∈ 0,

𝑎
tan 𝑎

,

with 𝑎 ∈ 0,
𝜋

2
the solution of 𝑎 sin 𝑎 = 𝑠1, and 휆𝑖 is the 

𝑖’th eigenvalue of the graph Laplacian 𝐿 in the non-

decreasing order.



Preliminary Results: Steady-state Inter-Vehicle Distance

Consequently, the exogenous noise excites the steady-state observable modes of the 

network, and the state fluctuates around the consensus.

67

Observables: In order to ensure the safety of the platoon, let us consider the 

observable as the (steady-state) inter-vehicle distances, such that

ҧ𝑑𝑖: = lim
𝑡→∞

(𝑥𝑡
(𝑖+1)

− 𝑥𝑡
(𝑖)
)

whenever it exists. The collection of the inter vehicle distances is shown by ഥ𝒅 =

ҧ𝑑𝑖 , … , ҧ𝑑𝑖
𝑇
∈ ℝ𝑛−1.

Steady-state Statistics: Once the network has reached the consensus, the steady-state 

inter-vehicle distance ഥ𝒅 is proven to be a random vector in ℝ𝑛−1 and it follows a 

multi-variate normal distribution, such that

ഥ𝒅 ∼ 𝒩(𝑟𝟏𝑛−1, Σ)

Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 

platooning: Time-delay–induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8 

(2019): 3544-3559.



Preliminary Results: Steady-state Inter-Vehicle Distance

In the expression above, 휆𝑘 denotes the 𝑘’th eigenvector of 𝐿, 𝒒𝑘 denotes its 

corresponding normalized eigenvector, and 𝒆𝑖 is given by 𝒆𝑖+1 − 𝒆𝑖.

68
Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 

platooning: Time-delay–induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8 

(2019): 3544-3559.

Steady-state Statistics: The steady-state inter-vehicle distance vector ഥ𝒅 ∼

𝒩 𝑟𝟏𝑛−1, Σ has a mean of the target platoon distance 𝑟 and its covariance matrix 

Σ = 𝜎𝑖,𝑗 is shown element-wise by

𝜎𝑖,𝑗 = 𝑔2
𝜏3

2𝜋


𝑘=2

𝑛

𝒆𝑖
𝑇𝒒𝑘 𝒆𝑗

𝑇𝒒𝑘 𝑓 휆𝑘𝜏, 𝛽𝜏 ,

for all 𝑖, 𝑗 = 1,… , 𝑛 − 1 and

𝑓 𝑠1, 𝑠2 = න
ℝ

𝑑 𝑟

𝑠1𝑠2 − 𝑟2 cos 𝑟 2 + 𝑟2 𝑠1 − 𝑟 sin(𝑟) 2 .
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FAILURE? RISK?

Inter-vehicle Collision: In this work, we consider the event of failure as the inter-

vehicle collision, which is given by

ҧ𝑑𝑖 ∈ −∞, 0 .

Level sets and Value-at-Risk Measure: A family of level 

sets 𝐶𝛿 = (−∞,
𝑟

𝛿+𝑐
) helps to construct an alarm zone 

that describes how vehicles are dangerously close to the 

collision. The Value-at-Risk measure is an effective 

tool to quantify the chance of failure by evaluating

ℛ ≔ inf 𝛿 ≥ 0 ℙ ҧ𝑑𝑖 ∈ 𝐶𝛿 < 휀}.

70
Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 

platooning: Time-delay–induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8 

(2019): 3544-3559.



Suppose that the network of vehicles form a platoon in the steady-state. For every 

𝑖 = 1,… , 𝑛 − 1, the risk of inter-vehicle collision is 

where 휅 ≔ erf−1 1 − 2휀 > 0.

Risk of Inter-vehicle Collision

71
Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 

platooning: Time-delay–induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8 

(2019): 3544-3559.

• For a large enough 𝑟 , the inter-vehicle collision is 

unlikely to occur.

• When 𝜎𝑖 exceeds the 휀 dependent cutoff, the risk is ∞

since the collision can not be avoided with probability 

higher than 1 − 휀.



Section Overview

• Motivation

• Problem Statement 

• Preliminary Result

• Risk of Inter-vehicle Collision

• Fundamental limitations and trade-offs

• Risk of Cascading Inter-vehicle Collision

• Conclusions

72



Time-delay induced fundamental limits 

73
Somarakis, Christoforos, Yaser Ghaedsharaf, and Nader Motee. "Risk of collision and detachment in vehicle 

platooning: Time-delay–induced limitations and tradeoffs." IEEE Transactions on automatic control 65.8 

(2019): 3544-3559.

Question: Can I still design an optimal communication topologies to minimize the 

risk in the networked control system?

Facts: An engineer has almost no control over the communication time-delay and 

exogenous disturbances.

Short answer: Somehow yes. There exists some communication graph topologies 

that can reduce the risk, but there also exists a fundamental limit on the best 

achievable risk.
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(2019): 3544-3559.

The marginal standard deviation 𝜎𝑖 satisfy the lower bound

𝜎𝑖 = 𝜎𝑖,𝑖 ≥ 𝜎∗ ≔ 𝜋𝑓 𝑔 𝜏
3
2

for all 𝑖 = 1,… , 𝑛 − 1, where 𝑓 ≔ inf
𝑠1,𝑠2 ∈𝑆

𝑓 𝑠1, 𝑠2 ≈ 25.4603.

Key steps:

• 𝑓 is nonnegative over 𝑆

• 𝑓 obtains a minimum (𝑓) inside 𝑆

• σ𝑘=2
𝑛 𝒆𝑖

𝑇𝒒𝑘 𝒆𝑖
𝑇𝒒𝑘 = 𝒆𝑖

𝑇 2
= 2

𝜎𝑖,𝑗 = 𝑔2
𝜏3

2𝜋


𝑘=2

𝑛

𝒆𝑖
𝑇𝒒𝑘 𝒆𝑗

𝑇𝒒𝑘 𝑓 휆𝑘𝜏, 𝛽𝜏 ,

Independent to communication graph topologies!!!
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(2019): 3544-3559.

There is an inherent fundamental limit on the best achievable values of risk of inter-

vehicle collision in the platoon that is given by

Then, the previous result can be immediately applied to the risk of inter-vehicle 

collisions.

For any feasible 𝜏 and 𝑔, the optimal communication topology is a complete graph 

with link weights 𝑘𝑖,𝑗 =
𝑠1

𝑛𝜏
for all  𝑖, 𝑗 = 1,… , 𝑛.
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(2019): 3544-3559.

In order to reduce the risk of inter-vehicle collision to the extreme, how should we 

alter the communication graph connectivity?

A. Increase the connectivity as much as possible

B. Decrease the connectivity as much as possible

C. Increase the connectivity, but only to some extent

D. Decrease the connectivity, but only to some extent 

E. I don’t know, maybe ask chatgpt
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(2019): 3544-3559.

In addition to the fundamental limits of the risk, there also exists a counter-intuitive 

trade-off between the risk of collision and the network connectivity.

Effective Resistance: For a given communication graph, the effective resistance is 

defined as 

Ξ𝒢 = 𝑛

𝑖=2

𝑛

1/휆𝑖

The smaller the value of Ξ𝒢, the stronger the connectivity of 𝒢.

The best achievable level of risk of inter-vehicle collision and the communication 

connectivity emerges as follows
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(2019): 3544-3559.

For a nontrivial range of network parameters, 

the only way to maintain a safer (low-risk) 

network is trough weakening the communication 

connectivity, e.g., by decreasing the feedback 

gain between vehicles or sparsifying the 

communication graph.

Strengthening the connectivity of the network 

also increases the risk of inter-vehicle collision 

between vehicles.



Section Overview

• Motivation

• Problem Statement 

• Preliminary Result

• Risk of Inter-vehicle Collision

• Fundamental limitations and trade-offs

• Risk of Cascading Inter-vehicle Collision

• Conclusions

79



Risk of Cascading Failures: Why cascading failures?

In real world platoons, the inter-vehicle collision is 

inevitable even if we design control laws against it. When 

the collision occurs, instead of asking “what if”, we should 

design for the goal of “even if”.

G. Liu, C. Somarakis, and N. Motee. “Risk of Cascading Failures in Time-Delayed Vehicle Platooning”. IEEE 

CDC (2021).

https://tenor.com/search/domino-gifs

We want our network to be able to isolate

the existing failure and prevent the future 

failures.
Distances when no collision Distances when pair 4 has collided

As collisions may cascade, there may exist more than one failures, and one needs to 

quantify the likelihood such cascade is going to occur. 

80



In order to evaluate the impact from one system failure to the other inter-vehicle 

distance, we investigate how it will change the distribution. 

81

Risk of Cascading Failures: Conditional Distribution

Y. L. Tong. The multivariate normal distribution. Springer Science & Business Media, 2012.

Given one pair of vehicle ҧ𝑑𝑖 has encountered the systemic failure with inter-

vehicle distance of 𝑑𝑐, the conditional distribution of ҧ𝑑𝑗| ҧ𝑑𝑖 = 𝑑𝑐 is given by 

𝒩 휇, 𝜎2 with

where 𝜌𝑖𝑗 = 𝜎𝑖,𝑗/𝜎𝑖𝜎𝑗 and |𝜌𝑖,𝑗| < 1.  

ҧ𝑑𝑗| ҧ𝑑𝑖 = 𝑑𝑐

0 d

The situation of inter-vehicle collision 

can be interpreted as 𝑑𝑐 = 0.



Risk of Cascading Failures: Conditional Distribution

In the case of multiple existing collisions, we measure the risk of cascading 

collisions by considering the conditional distribution of the 𝑗’th pair when some pairs 

of vehicles with ordered indices ℐ𝑚 = {𝑖1, … , 𝑖𝑚} with 𝑗 ∉ ℐ𝑚 for some 𝑚 < 𝑛 − 1

have collided, i.e., ҧ𝑑𝑖𝑚 = 0.

Let us form a 2 × 2 block matrix in ℝ 𝑚+1 × 𝑚+1

෨Σ =
෨Σ11 ෨Σ12
෨Σ21 ෨Σ22

,

where ෨Σ11 = 𝜎𝑗
2, ෨Σ12 = ෨Σ21

𝑇 = [𝜎𝑗,𝑖1 , … , 𝜎𝑗,𝑖𝑚], and ෨Σ22 = 𝜎𝑘1,𝑘2 𝑘1,𝑘2∈ ℐ𝑚
∈ ℝ𝑚×𝑚. 

82G. Liu, C. Somarakis, and N. Motee. “Risk of Cascading Failures in Time-Delayed Vehicle Platooning”. IEEE 

CDC (2021).

The conditional distribution of ҧ𝑑𝑗|ഥ𝒅ℐ𝑚 = 𝟎 follows a multivariate normal 

distribution 𝒩(휇, 𝜎2) such that 

휇 = 𝑟 + ෨Σ12 ෨Σ22
−1 −𝑟 𝟏𝑚 , 𝜎2 = ෨Σ11 −෨Σ12 ෨Σ22

−1 ෨Σ21.



In the view of inter-vehicle collisions, we define the event of under the risk of 

collision for ҧ𝑑𝑗 as

for 𝛿 ∈ 0,∞ and 𝑐 ≥ 1. The risk of cascading collision is measured by assuming 

the 𝑖′th pair (or ℐ𝑚 = {𝑖1, … , 𝑖𝑚} ) of vehicles has collided, i.e.,

with the confidence level 휀 ∈ 0,1 .
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Risk of Cascading Collision

G. Liu, C. Somarakis, and N. Motee. “Risk of Cascading Failures in Time-Delayed Vehicle Platooning”. IEEE 

CDC (2021).

or



84G. Liu, C. Somarakis, and N. Motee. “Risk of Cascading Failures in Time-Delayed Vehicle Platooning”. IEEE 
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Risk of Cascading Collision: Single existing collision

Suppose that the conditions of stability hold, and the 𝑖’th pair has collided. The risk 

of cascading inter-vehicle collision at the 𝑗’th pair is

where 휄 = erf−1(2휀 − 1) ,
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CDC (2021).

Risk of Cascading Collision: Single existing collision

When two pairs of vehicles are not correlated, i.e., 𝜌𝑖𝑗, the risk of cascading collision 

can be reduced into the risk of single collision:

then



Suppose the platoon reaches the steady-state and vehicle pairs with label ℐ𝑚 have 

collided such that ഥ𝒅ℐ𝑚 = 𝟎. The risk of cascading collision at the j-th pair is 

where 휄 = erf−1 2 휀 − 1 , and 

ℛ
ℐ𝑚,𝑗

: =

0, if    
𝑟 −𝑐 𝜇

2 𝜎 𝑐
≤ 휄

∞, if    
− 𝜇

2 𝜎
≥ 휄

𝑟

2 𝜄𝜀𝜎+𝜇
− 𝑐, if    휄 ∈ (

− 𝜇

2 𝜎
,
𝑟 −𝑐 𝜇

2 𝜎 𝑐
)

휇 = 𝑟 + ෨Σ12 ෨Σ22
−1 −𝑟 𝟏𝑚 , 𝜎2 = ෨Σ11 −෨Σ12 ෨Σ22

−1 ෨Σ21.
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Risk of Cascading Collision: Multiple existing collisions



Risk of Cascading Collision

A narrow distribution or a low confidence level

A wide distribution or a high confidence level

0, if    
𝑟 −𝑐 𝜇

2 𝜎 𝑐
≤ 휄

𝑟

2 𝜄𝜀𝜎+𝜇
− 𝑐, if    휄 ∈ (

− 𝜇

2 𝜎
,
𝑟 −𝑐 𝜇

2 𝜎 𝑐
)

∞, if    
− 𝜇

2 𝜎
≥ 휄
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Risk of Cascading Collisions: Case Study

Complete Graph Path Graph 5-cycle Graph

Change of the variance of the inter-vehicle distance

𝑛 = 50 vehicles aims to form a 

platoon with various 

communication graphs

Liu, Guangyi, Christoforos Somarakis, and Nader Motee. "Emergence of Cascading Risk and Role of Spatial 

Locations of Collisions in Time-Delayed Platoon of Vehicles." 2022 IEEE 61st Conference on Decision and 

Control (CDC). IEEE, 2022.



Path Graph

10-cycle Graph5-cycle Graph

Complete Graph
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Risk of Cascading Collisions: Case Study

Liu, Guangyi, Christoforos Somarakis, and Nader Motee. "Emergence of Cascading Risk and Role of Spatial 

Locations of Collisions in Time-Delayed Platoon of Vehicles." 2022 IEEE 61st Conference on Decision and 

Control (CDC). IEEE, 2022.



Risk of Cascading Collisions: Case Study

Risk profiles of a platoon with 𝑛 = 50 vehicles, 

assuming pairs ℐ𝑚 = 23,24,25,26,27 have 

collided.

Path Graph 1-cycle Graph 5-cycle Graph Complete Graph
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Characteristics of Collisions: Numbers of Existing Collisions

Risk profiles of a platoon with 𝑛 =

30 vehicles, assuming pairs 

1 , 1,2 , … , 1, … , 20 have 

collided.

∞ risk

pairs have collided

Path Graph 1-cycle Graph

5-cycle Graph

Complete Graph

2-cycle Graph

10-cycle Graph
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Characteristics of Collisions: Sparsity of Existing Collisions

Risk profiles of a platoon with 𝑛 = 50 vehicles, assuming pairs 1,2,3,4,5 and {𝑑 +
1, 𝑑 + 2, 𝑑 + 3, 𝑑 + 4, 𝑑 + 5} have collided for 𝑑 = 0,… , 29.

Path Graph 1-cycle Graph

5-cycle Graph Complete Graph
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Characteristics of Collisions: Adding New Edges

Risk profiles of a platoon with 

𝑛 = 50 vehicles, assuming pairs 

14,15,16,17,18 or 

{24,25,26,27,28} have collided.

5-cycle Graph with pair 

14,15,16,17,18 have failed

When one is allowed to alter the 

communication by adding an edge 

to the existing communication, 

the location of the existing 

failures and the added edge will 

both affect the risk profile. 

5-cycle Graph with pair 

24,25,26,27,28 have failed

Path Graph with pair 

14,15,16,17,18 have failed

Path Graph with pair 

24,25,26,27,28 have failed

o pairs have collided
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Control (CDC). IEEE, 2022.
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Conclusion

• Second-order consensus network with communication time-delay 

and input noise

• Steady-state statistics of the observable

• Value-at-risk framework of a single collision

• Time-delay induced fundamental limits and trade-offs

• Value-at-risk framework of cascading collisions

• The cascading risk quantifies the impact from the existing 

collisions on the platoon

• How changing the graph structure by adding edges will reshape 

the risk profile
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Problem Formulation: Synchronous Power Networks

A network of 𝑛 synchronous generators connected over 𝑚 transmission lines. 

The 𝑖′th generator is defined through the (static) triplet (𝐽𝑖 , 𝛽𝑖 , 𝐸𝑖) and dynamic 

state vector (휃𝑡
𝑖
, 𝜔𝑡

(𝑖)
). Let us consider the following benchmark model

100

for 𝑖 = 1, … , 𝑛.

Somarakis, Christoforos, Guangyi Liu, and Nader Motee. "Risk of Phase Incoherence in Wide 

Area Control of Synchronous Power Networks." submitted to IEEE-TAC



Problem Formulation: Synchronous Power Networks

101

For fixed voltage magnitudes, admittances, and power inputs, the equilibrium point 

belongs to the manifold

with 𝑖, 𝑗 = 1,… , 𝑛.

Let us consider the equilibrium point of the system as 휃∗, 0 ∈ 𝕊, and using the 

linearization around the equilibrium to obtain the error dynamics

with 𝐷 = 𝑑𝑖𝑎𝑔
𝛽1

𝐽1
, … ,

𝛽𝑛

𝐽𝑛
, 𝐻 = 휂 𝑑𝑖𝑎𝑔 𝐽1, … , 𝐽𝑛

−1 and 𝐿 = [𝑙𝑖𝑗], 

Somarakis, Christoforos, Guangyi Liu, and Nader Motee. "Risk of Phase Incoherence in Wide 

Area Control of Synchronous Power Networks." submitted to IEEE-TAC



Problem Formulation: Synchronous Power Networks

102

The state feedback control is given by 

with

The closed-loop network can be written in a compact form

in which

Somarakis, Christoforos, Guangyi Liu, and Nader Motee. "Risk of Phase Incoherence in Wide 

Area Control of Synchronous Power Networks." submitted to IEEE-TAC



Problem Formulation: Synchronous Power Networks

In a big picture: 

• A network of identical generators aim to synchronize. 

• Existence of the communication time-delay, exogenous noise, and 

measurement noise.

• Fluctuate around the equilibrium point

103Somarakis, Christoforos, Guangyi Liu, and Nader Motee. "Risk of Phase Incoherence in Wide 

Area Control of Synchronous Power Networks." submitted to IEEE-TAC
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Simultaneous Diagonalizable Feedback Control 

105

Assumption: The feedback gain matrices 𝑀 and 𝐾 are designed such that each pair 

out of 𝐿,𝑀, 𝐾 commutes.

An equivalent formulation: There exists a unitary matrix 𝑄 such that 𝑄𝑇𝑈𝑄 is 

diagonal for every 𝑈 ∈ 𝐿,𝑀, 𝐾 , such that 𝑄𝑇𝐿𝑄 = Λ𝐿, 𝑄𝑇𝐾𝑄 = Λ𝐾, and 𝑄𝑇𝑀𝑄 =

Λ𝑀, where 

Λ𝐿 = diag{휆1, … , 휆𝑛}

Λ𝑀 = diag{휇1, … , 휇𝑛}

Λ𝐾 = diag{휅1, … , 휅𝑛}

Example: Simultaneously diagonalizable structures: 𝐿 = 𝐼, 𝑀 is a graph Laplacian 

matrix, and 𝐾 is a centering matrix

Somarakis, Christoforos, Guangyi Liu, and Nader Motee. "Risk of Phase Incoherence in Wide 

Area Control of Synchronous Power Networks." submitted to IEEE-TAC



Preliminary Result: Stability Condition

106

The unperturbed network will reach the steady state with non-zero time-delay 𝜏 > 0

if and only if 

where

Somarakis, Christoforos, Guangyi Liu, and Nader Motee. "Risk of Phase Incoherence in Wide 

Area Control of Synchronous Power Networks." submitted to IEEE-TAC



Preliminary Result: Observable

107Somarakis, Christoforos, Guangyi Liu, and Nader Motee. "Risk of Phase Incoherence in Wide 

Area Control of Synchronous Power Networks." submitted to IEEE-TAC

To quantify the risk of the phase incoherence between two generators, let us 

consider the observable as 

𝑦𝑡 = 𝐵𝑛 휃𝑡

where the 𝑛
𝑛−1

2
× 𝑛 complete incidence matrix 𝐵𝑛 is given by

Example: In the case of 3 generators, we have 1

3
2

1

2

3



Preliminary Result: Steady-state Statistics

108Somarakis, Christoforos, Guangyi Liu, and Nader Motee. "Risk of Phase Incoherence in Wide 

Area Control of Synchronous Power Networks." submitted to IEEE-TAC

In the steady-state, the output converges, in distribution, to   

where

𝑠; 𝑘 𝑙 represents 𝑠1, 𝑠2; 𝑘1, 𝑘2 𝑙 ≔ ሚ𝑑 𝜏, 휆𝑙𝜏
2; 휇𝑙 𝜏

2, 휅𝑙𝜏 , and
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FAILURE? RISK?

Phase Incoherence: For the observable between generators 𝑖 and 𝑗, we consider the 

event of phase incoherence in the steady-state as

| ത𝑦 𝑖,𝑗 | ∈ 휁,∞ .

Level sets and Value-at-Risk Measure: A family of 

level sets 𝑈𝛿 = (휁
1+𝛿

𝑐+𝛿
, ∞) helps to construct an 

alarm zone that describes how a pair of generators 

are dangerously close to the incoherence. The VaR 

measure is then given by

ℛ ≔ inf 𝛿 ≥ 0 ℙ |ത𝑦 𝑖,𝑗 | ∈ 𝑈𝛿 < 휀}.

110Somarakis, Christoforos, Guangyi Liu, and Nader Motee. "Risk of Phase Incoherence in Wide 

Area Control of Synchronous Power Networks." submitted to IEEE-TAC



Risk of Phase Incoherence 

111Somarakis, Christoforos, Guangyi Liu, and Nader Motee. "Risk of Phase Incoherence in Wide 

Area Control of Synchronous Power Networks." submitted to IEEE-TAC

When the network reaches the steady-state, the risk of phase incoherence between 

generator 𝑖 and 𝑗 is given by

with                                                  and 휈 the solution of 



Risk of Phase Incoherence 
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Area Control of Synchronous Power Networks." submitted to IEEE-TAC
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Risk of Phase Incoherence: Two-Machine System 

113Somarakis, Christoforos, Guangyi Liu, and Nader Motee. "Risk of Phase Incoherence in Wide 

Area Control of Synchronous Power Networks." submitted to IEEE-TAC

Consider the phase difference as 휃𝑡 = 휃𝑡
1
− 휃𝑡

2
, and both generators use the 

uniform feedback control gain, then



Risk of Phase Incoherence: Two-Machine System 
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Uniform 휇 and 휅 Separate 휇 and 휅
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Uniform 휇 and 휅 Separate 휇 and 휅
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Time-delay induced fundamental limits 

117

Independent to the feedback control design !!!

Due to the existence of the time-delay and the stability constraint, the variance of the 

phase difference of any two generators is lower bounded by 

with

Somarakis, Christoforos, Guangyi Liu, and Nader Motee. "Risk of Phase Incoherence in Wide 

Area Control of Synchronous Power Networks." submitted to IEEE-TAC



Trade-offs

118Somarakis, Christoforos, Guangyi Liu, and Nader Motee. "Risk of Phase Incoherence in Wide 

Area Control of Synchronous Power Networks." submitted to IEEE-TAC

Given systemic set parameters 휁, 𝑐, and the acceptance level 휀 ∈ (0,1), there exists a 

common limit for the product of the systemic risk and the effective resistance

where Ω is a universal constant depending on the grid properties, time-delay, and 

uncertainty constants 휂, 휂′.

For a particular type of the state feedback controller with

𝑀 = 휇𝐿 and 𝐾 = 휅 𝐿,

there exists a best achievable lower bound on the product of the risk and the power 

network connectivity.



Conclusion

• Synchronous power network with communication time-delay, 

input noise, and exogeneous noise

• Stability condition for the phase consensus

• Steady-state statistics of the observable

• Value-at-risk framework of phase incoherence

• Time-delay induced fundamental limits and trade-offs

119Somarakis, Christoforos, Guangyi Liu, and Nader Motee. "Risk of Phase Incoherence in Wide 

Area Control of Synchronous Power Networks." submitted to IEEE-TAC
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Motivation

Motivations:

• The environment (visual input) is always noisy.

• The autonomous driving vehicle is prone to make unsafe decisions with noisy 

input.

• Such unsafe decisions may result in a cascade of accidents or violation of traffic 

rules.

Liu, G., Kamale, D., Vasile, C. I., & Motee, N. (2023). Symbolic Perception Risk in 

Autonomous Driving. 2023 American Control Conference (ACC 2023)
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Problem Formulation

• Autonomous driving vehicle equipped with onboard 

perception unit to classify the detected traffic sign.

• The detected image of the traffic sign suffers from a time-

varying resolution and additive Gaussian noise.

• Evaluating the risk of misperceiving the traffic sign and 

find the safest decision (action).

Liu, G., Kamale, D., Vasile, C. I., & Motee, N. (2023). Symbolic Perception Risk in 

Autonomous Driving. 2023 American Control Conference (ACC 2023)
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Problem Formulation

Liu, G., Kamale, D., Vasile, C. I., & Motee, N. (2023). Symbolic Perception Risk in 

Autonomous Driving. 2023 American Control Conference (ACC 2023)

• A simple VGG-19 model with a 

SoftMax layer, trained with original 

images from the dataset.

• For each detected image, the perception 

unit generates a belief output 𝑝𝑡 ∈

ℝ10.

• The belief output 𝑝𝑡 lies with in a 

ℝ9 simplex.
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Data-driven Statistics Estimation

Liu, G., Kamale, D., Vasile, C. I., & Motee, N. (2023). Symbolic Perception Risk in 

Autonomous Driving. 2023 American Control Conference (ACC 2023)

Unlike any of the previous case, we can 

not solve a system equation to obtain the 

statistics of the output, i.e., 𝑝𝑡. 

• We assume that the statistics of 𝑝𝑡 do not change drastically in any sufficiently 

short time interval.

• For each short time interval, the vehicle is able to collect sufficient amount of 

belief output 𝑝𝑡’s.

We will consider the data-driven

approach to obtain an accurate 

estimation of the output statics instead. 
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Data-driven Statistics Estimation

Liu, G., Kamale, D., Vasile, C. I., & Motee, N. (2023). Symbolic Perception Risk in 

Autonomous Driving. 2023 American Control Conference (ACC 2023)

Considering the fact that 𝑝𝑡 lie within the simplex, it 

is intuitive to consider estimating its statistics by the  

Dirichlet distribution, for which its density function is 

given by

and it enjoys the following property

The estimated value of 𝜶𝑡 can be updated as follow given the set of belief outputs, 

i.e., 
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Cost of Traffic Sign Misperception

Liu, G., Kamale, D., Vasile, C. I., & Motee, N. (2023). Symbolic Perception Risk in 

Autonomous Driving. 2023 American Control Conference (ACC 2023)

Misperceiving traffic signs often leads to poor decisions from autonomous vehicles, 

which are primarily associated with high potential costs in real-world driving scenarios.

Simply interpreting the belief output as “correct” or “wrong” does not provide adequate 

information for safe autonomous driving since the high-level actions associated with 

each traffic sign do not yield the same potential cost.
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Connecting the Perception Output to Cost

Liu, G., Kamale, D., Vasile, C. I., & Motee, N. (2023). Symbolic Perception Risk in 

Autonomous Driving. 2023 American Control Conference (ACC 2023)

In order to quantify the risk of misperceiving on traffic sign into another, we should 

construct a new random variable 𝑟 that represents the cost associated with the 

perception output 𝑧𝑡,

Are we good to go?

There might be a case when different traffic sign will yield the same cost, and the cost 

are not ordered yet. For each label 𝑖, we sort the unique cost values as 
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Probability of Misperception 

Liu, G., Kamale, D., Vasile, C. I., & Motee, N. (2023). Symbolic Perception Risk in 

Autonomous Driving. 2023 American Control Conference (ACC 2023)

𝑧𝑡

𝑐1 1, … , 𝑐1 5 𝑐2 1, … , 𝑐2 6

𝑐3 1, … , 𝑐3 8
...

For each element of ordered cost vector 𝑐𝑖, the probability of ℙ{𝑟𝑖 𝑧𝑡 = 𝑐𝑖 𝑗} is 

given by

where 
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Risk of Misperception

Liu, G., Kamale, D., Vasile, C. I., & Motee, N. (2023). Symbolic Perception Risk in 

Autonomous Driving. 2023 American Control Conference (ACC 2023)

During each small time interval, given the estimated belief output 𝑧𝑡, the risk of 

misperception with the 𝑖′th label is given by

where the integer value 𝑣 is given by

Key observations:

• AV@R for discrete random variable

• Splitting a probability atom
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Case Study

Liu, G., Kamale, D., Vasile, C. I., & Motee, N. (2023). Symbolic Perception Risk in 

Autonomous Driving. 2023 American Control Conference (ACC 2023)
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Case Study

Liu, G., Kamale, D., Vasile, C. I., & Motee, N. (2023). Symbolic Perception Risk in 

Autonomous Driving. 2023 American Control Conference (ACC 2023)



Conclusion

• Autonomous driving vehicle that detect and classify the traffic sign

• The detected traffic sign suffers from the time-varying noise and 

resolution change

• Estimation of the statistics of the belief output

• Construction of the AV@R and the cost metric

• Evaluating the risk in terms of cost, but not the perception output

136Liu, G., Kamale, D., Vasile, C. I., & Motee, N. (2023). Symbolic Perception Risk in 

Autonomous Driving. 2023 American Control Conference (ACC 2023)
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