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Abstract— This paper investigates the optimality of the
binning approach in distributed source coding for both
uniform and nonuniform sources. While the algebraic
binning scheme is optimal for uniform sources both asymp-
totically and at finite lengths, it is shown that the optimality
holds only asymptotically for nonuniform sources. High-
performance turbo codes are used with the binning scheme
on several source distributions to quantify how close they
can get to the theoretical limit with relatively large block
sizes. For nonuniform sources, optimal code design and
variable-length bin-indexes are exploited as a useful exten-
sion to the conventional binning scheme. It is shown that the
two strategies combined can improve the compression rate
by as much as 0.22 bit/symbol for highly biased sources.

I. INTRODUCTION

The syndrome/coset/binning scheme used in the proof
of the Slepian-Wolf boundary in distributed source cod-
ing (DSC) [1] provides a generic approach for asym-
metric compression where one source is assumed loss-
lessly available at the decoder (e.g. via conventional
entropy-achieving compression method) and the other is
compressed as much as possible. This paper studies the
optimality of the binning approach with binary memo-
ryless sources that are either uniformly or nonuniformly
distributed. That the binning scheme is optimal for uni-
form sources both asymptotically and at finite lengths is
well-established [1][2]. The case of nonuniform sources,
however, is much less studied. It should be noted that
nonuniform sources are not uncommon in real life. For
example, many binary images (e.g.. facsimile images)
may contain as much as 76% of redundancy which
corresponds to a source distribution of p0 = 0.96 and
p1 = 0.04 [3]. For most communication and signal
processing problems, it can be assumed that a front-end
compression will be performed to get rid of the source
redundancy before the intended signal processing and/or
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transmission. For distribued source coding, however,
such a pre-process will either ruin the cource correlation
or make the correlation analytically intractable and,
hence, is not possible.

We first show that, while the generic binning concept
does not make any assumption on the underlying source
distribution and is in principle optimal regardless the
uniformity of the sources, in practice, the algebraic
binning scheme using linear codes is optimal for nonuni-
form sources only asymptotically. Specifically, we show
that the nonuniformity in the source distribution and the
geometry uniformity of a linear code (which is required
by the binning construction) present two factors that
oppose each other, causing a loss in compression rate
unless the length of source sequences goes to infinity.
Next, we show that, by exploiting optimal code selection
and variable-length bin-indexes, the suboptimality of
the binning approach (for nonuniform sources) can be
mitigated. To give a quantitative feel of how much can be
achieved, we explore high-performance turbo codes with
the algebraic binning scheme [4][5] for several source
distributions. For uniform sources, as shown in [4][5],
the turbo-binning scheme can perform as close as 0.07
bit/symbol from the theoretic limit with fairly large block
sizes. For (highly) nonuniform sources, we show that not
using the proposed strategies (i.e. optimal channel code
and variable-length bin-indexes) sees a huge gap (e.g.
0.36 bit/symbol) between the achievable compression
rate and the theoretical limit. Using these remedies can
close the gap by as much as 0.22 bit/symbol, but the
performance is nevertheless 0.14 bit/symbol away from
the limit.

The rest of the paper is organized as follows. Section
II introduces the system model and the Slepian-Wolf
boundary. Section III discusses the theoretical binning
concept and the practical binning scheme, and analyzes
their optimality with uniform and nonuniform sources.
Section IV discusses the turbo-binning scheme to quan-
tify the gap between the achievable performance and the
theoretical results. Finally Section V concludes the paper.



II. SYSTEM MODEL AND THE SLEPIAN-WOLF

BOUNDARY

Consider two binary i.i.d. sources X and Y that are
content-correlated but physically-separated (i.e. no com-
munication between the sources). The problem of dis-
tributed source coding is to devise efficient ways to sep-
arately encode/compress but jointly decode/decompress
the sources. Mathematically, this is to find a triple of
mappings (f, g, φ) where the encoders f and g map Xn

and Y n into some codeword sets
�

and � , respectively,
and the decoder φ maps

�
× � back into Xn and Y n.

The famous Slepian-Wolf theorem shows that as long
as the joint distribution Px,y is known to the encoders,
separate encoding can reach the same compression rate
as jointly encoding [1]. The achievable rate region is
given by the Slepian-Wolf boundary [1]:

Rx ≥ H(X |Y ), Ry ≥ H(Y |X), Rx+Ry ≥ H(X, Y ).
(1)

Specifically, the corner points of the Slepian-Wolf
boundary, i.e. asymmetric compression, can be effec-
tively transformed to a channel coding problem with de-
coder side information (SI). The equivalent transmission
channel is specified by the correlation between the two
sources (e.g. P (Y |X)).

In a general setup, correlation between two binary
i.i.d. sources requires two parameters to describe (e.g.
P (Y 6= X |X = 0) and P (Y 6= X |X = 1)) and
the equivalent virtual channel between X and Y is
correspondingly a binary asymmetric channel (BAC).
Since content-dependent crossover probabilities make
the channel difficult to analyze, here we consider a
subset of the general problem by imposing a symmetry
condition on the source correlation: P (Y 6= X |X =
0) = P (Y 6= X |X = 1). This translates the virtual
channel to a binary symmetric channel (BSC). We use
q

∆
= P (Y 6= X) to denote the crossover probability of

the equivalent BSC X → Y , and use p0
∆
= P (x=0) to

denote the distribution of source X . We refer to the case
of p0 = 0.5 as “uniform source DSC”, and “nonuniform
source DSC” otherwise. Clearly, the distribution of Y is
irrelevant since Y is treated as the side information that
is losslessly available at the decoder.

III. THE BINNING APPROACH

To solve the DSC problem, in theory, only a code-
book that specifies the (optimal) mappings: f : Xn →�

, g : Y n → � and φ :
�

× � → Xn × Y n, is needed.
In practice, however, a pair of practically-implementable
encoder and decoder (i.e. with manageable complexity)
is also needed. The former can usually be approached
using typical sequences. The latter is helped by the
algebraic binning scheme first proposed in [1]. The alge-
braic binning scheme, through the use of linear channel

codes, provides a simple and general framework for
constructing encoder/decoder pairs as well as defining
code-books.

A. The Generic Binning Concept

For binary i.i.d. sources X ∈ {0, 1}n, Y ∈ {0, 1}n (n
can be either finite or infinite), the combined information
content is given by the joint entropy H(Xn, Y n) =
nH(X, Y ). The generic binning concept refers to the
idea of using approximately 2nH(X,Y ) sequences to
describe i.i.d. sources (Xn, Y n), where the 2nH(X,Y )

sequences will be placed in 2nH(X|Y ) bins with 2nH(Y )

sequences in each bin. Clearly, nH(X |Y ) bits are
needed to specify a particular bin and nH(Y ) bits to
specify a particular sequence in the bin.

B. The Algebraic Binning Scheme

The above binning concept is practically implemented
by exploiting the uniformity (regularity) of the code
space of a linear code. By grouping source sequences
(i.e. codewords of the linear code) into bins/cosets
and transmitting the short bin-index (i.e. syndrome of
the linear code) instead of the long source sequence,
compression is achieved. The key steps are summarized
below:

Constructing Bins: Partitioning the codeword space
{0, 1}n into 2n−k subspaces (disjoint sets, bins or cosets)
such that each subspace {0, 1}n\2n−k contains 2k code-
words of length n and the same distance properties
are preserved in each subspace. Such a partitioning
is possible and not unique. In fact, any (n, k) binary
linear channel code automatically defines a partition
where codewords having the same syndrome belong to
the same subspace. It follows naturally that the 2n−k

syndromes of length n−k each can be used to index the
subspaces/bins1.

Encoder: The encoder (Fig. 1) is essentially a syn-
drome former (SF) which maps a codeword sequence to
its syndrome/bin-index, and thus achieves a compression
rate of n : (n−k).

Decoder: The decoder (Fig. 1) employs a combination
of an inverse syndrome former (ISF) and the original
channel decoder. The role of the ISF is to find an
arbitrary codeword, X̃n, that is associated with the
given syndrome/bin-index. The combination of the SI
Y n and X̃n is then treated as a noise-corrupted version
of a valid codeword and passed to the channel decoder.
If the channel decoder can decode codewords on the
equivalent channel with (near-)zero error probability,
then its output, when subtracting X̃n, will almost surely
recover the original source sequence Xn. The efficacy

1It should be noted that the assignment of syndromes to bins can be
random as long as the all-zero syndrome is assigned to the subspace
that contains all the valid codewords [5].



of this process is warranted by the fact that the same
distance property is preserved in each bin (due to the
geometric uniformity of a linear code), and detailed
discussion can be found, for example, in [5].
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Fig. 1. Encoder and decoder structure using the algebraic binning
approach.

C. Optimality Analysis

Comparing the generic binning concept with the alge-
braic binning scheme, it becomes clear that, to achieve an
overall optimality, the process of assigning bin-indexes
needs to achieve “entropy compression” for the bins,
where each bin is associated with the cumulative prob-
ability of all codewords in the bin. Since the algebraic
binning scheme based on linear codes uses fixed-length
syndromes as bin-indexes, the bin-indexes are an optimal
assignment only when the bins are balanced. Here we
mean balanced in the sense that each bin contains exactly
2k codewords and that the cumulative probability of all
codewords in any bin is 2k−n.

Uniform Sources: Clearly, the requirement for bal-
anced bins is automatically fulfilled when the source
distribution is uniform (i.e. p0 = 0.5) and the algebraic
binning approach is therefore optimal (for both finite and
infinite lengths). It should be pointed out that “the opti-
mality of the binning approach” and “the achievability of
the theoretic limit” are two related but different concepts.
To achieve maximal compression rate in a DSC setup
using channel codes, two key issues need to be resolved:
(i) converting the source coding problem to an equivalent
channel coding problem and (ii) finding a capacity-
approaching channel code for the equivalent transmission
channel. The former refers to the bridging work that
brings the solution of channel coding to serving the
problem of source coding, and the latter should certainly
take advantage of the rich literature available on channel
coding research. Apparently, the binning approach is
an efficient and general solution for the former. Hence,
for uniform sources, the optimality of the binning ap-
proach, together with an optimal channel code on the
equivalent channel, will guarantee the achievability of
the theoretic limit. It should also be noted that none
of the above concepts has assumed infinite lengths. In
fact, [2] presents an neat example where the algebraic
binning scheme using a (3, 1) repetition code (finite
length) is shown to achieve the compression limit for
two i.i.d. binary uniform sources with a particular corre-
lation. Nonuniform Sources: When the algebraic binning
scheme is used for nonuniform sources, no matter what

linear channel code is used (random or structured),
except for the asymptotic case where there are infinite
number of codewords in each bin, the cumulative prob-
abilities of codewords in different bins will be different.
Hence, the practice of using fixed-length syndromes to
index bins, although stems naturally from the structure
of a linear code, is suboptimal for any finite length.
Instead, variable-length bin-indexes need to be assigned
according to the bin probabilities in order to get close to
the optimal compression rate (nH(X |Y ) for the bins).
A one-step implementation of this idea is difficult, but a
two-step approach is straight-forward. That is, following
the fixed-length bin-index assignment, a conventional
entropy-approaching compression method can be used
to further compress bin-indexes/syndromes. As we shall
see in the turbo-binning example, this second step of
compressing fixed-length bin-indexes to their entropy
can be critical for highly biased source distributions.

One can also view the optimality issue from the
perspective of typical sequences. From the previous
discussion on the binning concept, we know that typical
sequences are used to describe sources. For uniform
sources, all codewords are typical sequences and will
thus all go into bins. For nonuniform sources, however,
only a (small) subset of all codewords are typical se-
quences (those sequences whose possessions of 0’s and
1’s agree with the respective probabilities in the source).
The use of a small typical set to describe the entire
space suggests that some form of entropy compression
is imperative. This element is unfortunately not inclusive
in the algebraic binning practice.

IV. A CASE STUDY OF THE TURBO-BINNING

SCHEME

A. The Turbo-Binning Scheme

As a useful supplement to the above general discus-
sion, we conduct a case study on turbo codes to give a
quantitative feel of how far the practical performance is
from the theoretical limit for finite-length uniform and
nonuniform sources. The reason for using turbo codes
are three-fold: (i) turbo codes are very powerful channel
codes which exhibit perform stably and uniformly well
on a variety of channels; (ii) a turbo encoder is cheap to
implement (thus appealing for applications like sensor
networks where the computation on the transmitter side
needs to be minimized); and (iii) the length of a turbo
code can be easily changed, making it possible to track
and adapt to the varying correlation between sources.

To employ turbo-binning approach, we need to firstly
construct a syndrome former and its matching inverse
syndrome former. The construction of a valid SF-ISF
pair is a straightforward task with most blocks codes
and coset codes, but less so with turbo codes due to



the random interleaver in the code structure. The turbo-
DSC scheme by Liveris, Xiong and Georghiades [6] is
the first to overcome the random interleaver problem
but does not make explicit use of the binning scheme.
The implicit binning approach therein involves merging a
principle trellis with a complementary trellis to construct
a source coding trellis that contains parallel branches.
If the component RSC code has rate 1/k, the resulting
source coding trellis will have 2k−1 parallel branches
between a pair of states. Encoding is performed by
a walk through the trellis (or the corresponding state
diagram), and decoding requires a modified turbo de-
coder to accommodate the time-variant trellis [6]. A
simpler and more efficient approach as well as the first
approach to explicitly exploit the binning scheme by
constructing SF-ISF pairs for parallel turbo codes is
given in [4]. The turbo-binning scheme therein does not
require redesign of the code structure nor modification of
the turbo decoder. It is directly applicable to all existing
turbo codes including asymmetric turbo codes2 [4] and,
hence, allows the rich literary available on turbo codes
to serve directly the DSC problem at hand.
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Fig. 2. The SF-ISF pair for a turbo code. (a) Structure of the syndrome
former. (b) Structure of the inverse syndrome former.

Fig. 2 illustrates the structure of a valid SF-ISF pair for
a parallel turbo code that is based on (sub) SF-ISF pairs
of the constituent RSC codes [4][5]. The SFs of the RSC
codes, denoted as H1

T and H2
T , are simply the trans-

fer polynomials/matrices of the respective convolutional
codes [8]. (A transfer matrix/polynomial of a convolu-
tional code, HT , is defined as GHT = 0, where G is the
generator polynomial/matrix of the convolutional code
[8].) The ISFs of the RSC codes, denoted as (H−1

1 )T

and (H−1
2 )T , are left inverses of their respective SFs,

where superscript T refers to the matrix/vector transpose
operation, and superscript −1 refers to the left inverse
operation of a matrix/vector. Whereas the choice of SF-
ISF for a convolutional code is not unique, it should
be emphasized that, in order for the simple structure

2Asymmetric turbo codes have non-identical component codes, and
bear certain advantage in terms of joint optimization of both the error
floor and the waterfall region [7].

in Fig. 2 to work (i.e., to avoid the potential problem
of “systematic bits misalignment” due to the random
interleaver), the ISFs of the constituent RSC codes need
to always find the codeword with the all-zero systematic
bits in the bin for any given bin-index. This restricts
the format of the ISF to (H−1)T = [0, J], where
J is a square matrix. For example, for the common
case where the constituent RSC code has generator
polynomial G(D)=[1, U(D)/V (D)], the corresponding
SF-ISF pair takes the form of HT = [U(D)/V (D), 1]
and (H−1)T = [0, 1]. Due to the space limitation,
detailed discussion is skipped. Interested readers please
refer to [4][5].

B. Optimal Code Selection

As discussed above, the channel code in use needs to
be carefully selected, since its performs directly affects
the overall compression rate. For BSC channels with
uniform sources, long turbo codes are known to perform
very close to the channel capacity. For nonuniform
sources, however, turbo codes are less well performing.

First we note that turbo codes as well as other linear
channel codes are inherently suboptimal for nonuniform
sources. In a pure channel coding problem, nonuni-
form sources can be passed through a nonlinear source-
shaping code before getting to a linear error correcting
code3. Such a treatment, however, is not possible with
the DSC problem. Recall that the channel code in a DSC-
binning approach plays a dual role: (i) to conduct error
correcting on the equivalent transmission channel and (ii)
to specify how codewords should be grouped into bins.
The second role requires the code to be linear in order
to preserve the same distance properties in each bin (a
pre-requisite for the algebraic binning scheme to work).
Clearly, the combination of the source-shaping code and
the error correcting code results in an overall nonlinear
code and, hence, is not applicable in DSC.

Despite the fundamental sub-optimality, turbo codes
can, subject to the individual code space mapping, ex-
hibit different error correcting behaviors with nonuni-
form sources. Specifically, the work of [9] and [10]
reveals that it is possible for a turbo code to fall behind
its peer (of similar complexity) with uniform sources
but well outperform it with nonuniform sources. This
suggests that code selection for nonuniform sources
needs to adopt different criteria from that of uniform
sources.

Optimal code selection on Gaussian and Rayleigh
fading channels is discussed in [9][10] and that on
BSC channels is discussed in [11]. The basic method
is via computer search. Due to the time and complex-
ity involved, only 16-state turbo codes are considered.

3A nonlinear source-shaping code can be implemented, for example,
using a table-lookup encoder and a maximum likelihood decoder.



We employ a constrained iterative search, i.e., fix the
feed-forward polynomial and search for the best feed-
back polynomial, then fix the feed-back polynomial and
search for the best feed-forward polynomial, and so on
[11]. Results from this search procedure reveal that,
although the (37, 21) Berrou code exhibits remarkable
waterfall region performance with uniform sources, the
best turbo codes for BSC channels with source distribu-
tions p0 = 0.7, 0.8, 0.9 are the (25, 23) code and the
(21, 23) code. Their performances, together with that
Berrou code, are compared in Fig. 3 for p0 = 0.7. We
observe that the two winning codes exhibit very similar
simulation performances with (25, 23) marginally better
for p0 = 0.7 and (21, 23) marginally better for p0 = 0.9.
Hence, we avoid making such statements as which is the
best code for which source distribution.

In addition to careful selection of the code polyno-
mial, the a posteriori probability (APP) decoding of the
constituent RSC code (the BCJR algorithm) also needs
to account for the (nonuniform) source distribution. That
is, the knowledge of the source distribution P (ak) needs
to be exploited as a priori information in every decoding
iteration [11]. The a priori message content (in the
form of log-likelihood ratio) due to source distribution
is computed using Lap(ak) = log p0

1−p0

.
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Fig. 3. Performance comparison of (35, 23), (31, 23), and (37, 21)
turbo codes on BSC(q) channels with source distribution p0 = 0.7.

C. Variable-Length Bin-Indexes

For uniform sources, fix-length bin-indexes are opti-
mal; for nonuniform sources, variable-length bin-indexes
are desirable. The question then is how much gain
variable-length bin-indexes have over their fixed-length
peers, or whether it is worth the trouble of further com-
pression. The answer to this question clearly depends
on a given source distribution and the specific channel
code (bin structure) in use. To give a quantitative feel,
here we take a (31, 23) turbo code, the winning code
from our computer search, as an example. Tab. I lists
the entropy rate of its syndrome bits obtained using the
SF-ISF pair presented in Fig. 2 [4][5]. Again, due to the

space limitation, the computation steps are omitted and
only the results are reported.

Tab. I shows that, when source distribution is near
uniform (p0 → 0.5), syndrome entropy is close to 1, the
maximum value, and fixed-length syndromes/bin-indexes
are sufficient for practical purposes. However, when the
source becomes highly biased (p0 → 1), syndrome bits
contain a significant amount of redundancy that can be
removed. For example, in the case of p0 = 0.95, an
optimal variable-length syndrome/bin-index assignment
can achieve an additional compression rate of 1 : 0.4529
over its fixed-length counterpart!

It should be noted that the entropy listed in the table
corresponds to that of the individual syndrome bit, H(S),
where syndrome bits as treated as if they were i.i.d.. Due
to the correlation among syndrome bits, the normalized
entropy of the syndrome sequence, 1

n−k
H(Sn−k), is

actually lower than H(S). Hence, the compression gain
will be even larger in theory. However, since it is very
difficult, if not impossible, for a practical compression
method to deploy the correlation among syndrome bits,
the entropy of the syndrome bits serves as a fair evalu-
ation of how much gain variable-length syndromes/bin-
indexes have over their fixed-length peers.

TABLE I

THE ENTROPY OF SYNDROME BITS OF THE (31, 23) TURBO CODE

FOR DIFFERENT SOURCE DISTRIBUTION p0

p0 0.5000 0.5500 0.6000 0.6500 0.7000
H(S) 1.0000 0.9999 0.9988 0.9941 0.9815

p0 0.7500 0.8000 0.8500 0.9000 0.9500
H(S) 0.9544 0.9044 0.8191 0.6801 0.4529

D. Simulations with Uniform Sources

For uniform sources, we simulate the performance
of the turbo-binning scheme using a rate-1/3, 8-state
turbo code with the same constituent codes as in [12][6]:
(18, 13). S-random interleavers of length 104 and 103

are used, ten turbo decoding iterations are performed
before the turbo decoder outputs its estimates, and
appropriate clip-values are applied to avoid numerical
overflows/downflows in the turbo decoder. Tab. II lists
the simulation results where n denotes the interleaver
length, and q the crossover probability. The interleaving
gain can be easily seen from the table. If a normalized
distortion of 10−6 is considered near-lossless, then this
turbo coding scheme can work for a virtual BSC with
q = 0.145. Since the compression rate is 2/3, there
is a gap of only 2/3 − H(0.145) = 0.07 from the
theoretical limit, which is quite impressive [4][5]. This
gap is noticeably smaller than those reported [6][12]4.
To get even closer to the limit, a longer turbo code with
a larger memory size can be used.

4The performance reported in [6] and [12] are 0.09 and 0.15 from
the limit, respectively. They have the same interleaver size as what is
used in this paper, but different code rate.



E. Simulations with Nonuniform Sources

Tab. III summarizes the results of the turbo-binning
scheme using optimized turbo codes and variable-length
bin-indexes. Code rate is 1/3 and interleaver size is
16k. For comparison, the performance of the Berrou
code with fixed-length bin-indexes is also included. In
the table, “P0” specifies the distribution of source X ,
“Attainable q” refers to the largest q = H(Y |X) (i.e. the
amount of the source correlation) that the turbo-binning
scheme can support for a compression distortion of 10−6

or less, and “H(X |Y )” denotes the corresponding theo-
retical limit for compressing source X (i.e., H(Y |X) =
qattainable, P (X = 0) = P0 and Y is losslessly avail-
able). Gap A, B and C refer to the gap between the
theoretical limit and the achievable compression rate
of turbo-binning schemes not using proposed strategies
(i.e. Berrou codes and fix-length bin-indexes), using
optimized turbo codes only, and using both optimized
turbo codes and variable-length bin-indexes, respectively.
As can be seen from the table, employing the proposed
strategies (optimal code selection and variable-length
bin-indexes) has significantly improved the overall com-
pression rate. Specifically, for the highly nonuniform
source like p0 = 0.9, the two strategies combined can
achieve an additional compression rate of as much as
0.3632−0.1444= 0.2188 bit/symbol! Nevertheless, the
gap to the theoretical limit is in the range of 0.12 to 0.14
bit/symbol for p0=0.7 to 0.9, which is noticeably larger
than that of the uniform source case.

TABLE II

PERFORMANCE OF THE TURBO-BINNING SCHEME WITH UNIFORM

SOURCES

Crossover Prob. Distortion
q n = 103 n = 104

0.110 1.5 × 10−6 -
0.140 8.0 × 10−4 4.1 × 10−7

0.145 4.0 × 10−3 6.4 × 10−7

0.150 8.3 × 10−6

0.155 3.5 × 10−2 3.9 × 10−3

TABLE III

PERFORMANCE OF THE TURBO-BINNING SCHEME WITH

NONUNIFORM SOURCES

source dist. Berrou Code + Fixed-Length Bin-Indexes
p0 Attainable q H(X|Y ) Gap A
0.7 0.139 0.5239 0.1427
0.8 0.139 0.4435 0.2232
0.9 0.136 0.3035 0.3632

source dist. Optimal Code + Variable-Length Bin-Indexes
p0 Attainable q H(X|Y ) Gap B Cap C
0.7 0.143 0.5330 0.1337 0.1213
0.8 0.143 0.4507 0.2159 0.1522
0.9 0.141 0.3090 0.3574 0.1444

V. CONCLUSION

We have studied the optimality of the binning ap-
proach for asymmetric compression of binary i.i.d.
sources. To illustrate exactly how much can be achieved

and is yet to be achieved with practical systems, a case
study of the turbo-binning scheme is conducted for both
uniform and nonuniform sources. Blow summarizes the
main results:

• The algebraic binning scheme based on linear codes
is optimal at both finite and infinite lengths for
uniform sources, but only at infinite lengths for
nonuniform sources. The suboptimality with finite-
length nonuniform sources is (in part) due to the
practice of assigning fixed-length bin-indexes to
bins with unequal probabilities.

• It is possible for a turbo code to outperform its peers
on uniform sources but falls behind on nonuniform
sources. For highly nonuniform sources with dis-
tribution p0 = 0.7 ∼ 0.9 on binary symmetric
channels, (35, 23) and (31, 23) turbo codes are
among the best.

• The conventional algebraic binning scheme using
turbo codes can get very close to the theoretical
limit for uniform sources, but not nearly so for
nonuniform. Simple strategies like employing op-
timal code selection and variable-length bin-index
assignment can significantly close up the gap, es-
pecially for highly biased sources.
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