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Abstract—In this work, we investigate the design of decoder side information can help in reconstructing the
scalar quantizers for the Wyner-Ziv problem, where the source so that smaller distortion can be achieved.
decoder has access to a noisy copy of the source. Necessary Quantizer design for this new scenario, which is
conditions are given for the design of optimum quantizers aferred to as Wyner-Ziv (WZ) problem, has been a
with a fixed number of partitions for a criterion consisting focused research area for some time. Early attempts
of a linear combination of distortion and rate. A simple ) . .'

to design quantizers for the Wyner-Ziv problem were

iterative algorithm is developed to tackle the new quantize . ) . .
design problem. The new algorithm generalizes the well- based on high dimensional nested lattices, followed

known Lloyd type | algorithm. The new approach will, by either fixed-rate coding or entropy coding of the
in general, yield different scalar quantizers than the quantization indices (see for example [7][8]). Recently,
traditional approaches and these new quantizers provide the application of scalar quantizers followed by Slepian-
some advantages. We also develop approximations towolf binning was proposed for the Wyner-Ziv problem
simplify quantizer design for high rate cases. With such in [9]. Although a heuristic approach was suggested, the
apprommatlons,. the traditional _optlmal fixed-rate and. focus was not on optimum quantizer design. In [10][11],
entropy-constrained scalar quantizers are shown to remain ., e ctivie function formed by a linear combination of
optimum under certain conditions. : . : : .
distortion and rate is proposed for quantizer design. An
iterative Lloyd algorithm based on local optimization is
proposed for quantizer design in a network source coding
Scalar quantizers have been of interest to both acgueblem. The encoding/decoding mapping function is
emic and industrial researchers for decades due to theratively chosen to minimize an objective function
simple implementation. Typically, the rate of a fixedassuming all other encoding/decoding mapping functions
rate scalar quantizer is determined by the number afe fixed. It is generalized to allow more general rate
partitions only. The design of such quantizers leads heeasures in [12].
finding the partitions and the associated reproductionsThis existing work has shed useful insight into the
which result in minimum distortion between the sourcgesign of WZ quantizers. Researchers have come to a
and its quantized version. The well known class @onsensus that a good quantizer for the Wyner-Ziv prob-
Lloyd-Max iterative algorithms [1], [2] provide efficientlem needs to be designed with explicit consideration of
methods to obtain these optimum partitions and théis correlation with the decoder side information as well
reproductions. The rate can be reduced if entropy codiag the nature of the succeeding index encoder. However,
is applied to the partition indexes, while the distortiofittle attempt has been made to analytically formulate
level is kept constant. Thus a better rate-distortion tradéxe quantizer design problem as an optimization over its
off is achieved at the price of increased complexity dysarameters, e.g. its partition boundaries, directly. Note
to the entropy coding. Fixed-rate scalar quantizer desigiiis is not tractable in a general framework. However,
is generalized to allow entropy coding in [3], [4], [Slwe may be able to do this for a specific type of quantizer
yielding what is often referred to as entropy-constrainetksign.
guantizer design. In this work, we focus on the scenario described in the
It has been shown in [6] that the rate of the quantizeriginal work by Wyner and Ziv [6], with emphasis on
can be reduced, when the decoder has access ttheoretically motivated algorithms for optimal (at least
noisy version of the source, by exploiting the statisticédcally optimal) scaler quantizer design. The simplicity
correlation between the source and the decoder sifescaler quantizers enables us to explicitly formulate a
information. Such rate reduction provides a new ratate-distortion objective function which unifies diverse
and distortion trade-off for quantizers. Additionallyeth cases and which can be numerically solved using practi-
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cal iterative algorithms. Hence, our approach is differemthere the expectation is with respect to the distribution
from those in [12], [11], [10], since we avoid theof X™ and Z™.

discretization approximations and training data methodsLet R denote the rate of the source code. We form the
in the design process. objective function as a weighted sum of distortion and

The rest of the paper is organized as follows. Serate as considered in [12], [11]:

tion Il formulates the problem we consider. Section Ili _

discusses the conditions for optimality, along with an J=({1=ND+AR (4)
iterative algorithm for numerical computations. High rateshere A € (0, 1).
approximations are also studied. Section IlI-E provides

some design examples. Finally, Section IV summarizes . _OPTIMAL Q_UANTIZE_R DESIGN .
the paper. In our optimum quantizer design, we seek to obtain

quantizers with minimumJ for a fixed number of
[l. PROBLEM FORMULATION partitions (and fixed\). Toward this goal, we compute

In this work, we use upper-case letters to represeﬁtandR in (4).

random variables, e.gX. We use the corresponding fLit Wi, = 1"'.'r’]N +_1’ denoted the en(i points
lower-case letters to represent realizations, e.gWe of the pgrtltlons withu, = —o0 and un+.1 -
Let v;;, ¢« = 1,...,N, denote the reproduction for

use a superscript to denote a sequence, £'g.=
L1,X2y...,Tn-

Consider the source coding problem with side info
mation at the decoder. The sour& is assumed to be a®

sequence of i.i.d. zero-mean Gaussian random variab Rb mean-square-error optimal estimator (reproduction
each with variance%. The decoder is assumed to hav qu Pt ! (reproduction)

access to a noisy version &f™ which is characterized or a partition given by Ehe intervgl, t) is shown in (5)
by (see [13]) where: = T ando = \/coyz.
Y — X" 4 gn (1) To simplify notatlon Iater we define the expected
distortion conditioned oY” =y and X € (s,t) as

where Z" is a sequence of i.i.d. zero-mean Gaussianf(y’s’t) — EIX2]Y =y, X € (s,1)] — v3(s5,1). (6)
variables, each with variance?, and n is the block
length. We assume that” is mdependent oz”. We The first term of the right hand side of (6) can be
define the correlation SNR d$log,, 2 dB. computed as in (7).

We adopt the system diagram proposed in [9] which Similarly, we define the expected distortion condi-
is depicted in Figure 1. The encoder consists of a scali@ned onX € (s,t) as
guantizer followed by an index encoder. The scalar
quantizer determines the partition of the source vector. F(s,t) = /_OO Fy, s, hpy (Y| X € (s,8))dy,  (8)

The index encoder maps a vector of partition indexeaherepy(mX € (s,1)) denotes the conditional pdf of

to a data stream which is sent to the decoder. The in ven X 1) (we employ similar notation for
decoder recovers the partition indexes with the help of 9 € (5,2) bloy
Ifferent variables later).

the side informationy™. The optimum estimator outputs
the reproduction vector for the source based on te EvaluatingD and R

partition indexes ang". Using (8), we can compute (3) as
The goodness of the reproduction is measured by some

partition (u;,u;+1). Let X denote a random variable

ywth the common probability density function (pdf) of
ach of Xy,..., X,,. Similarly, letY denote a random

E%rlable with the common pdf of each 6f,...,Y,.

distortion function quantifying the difference between D = [(X—X) ]
2™ and z". We adopt the mean square error distortion Uit
measure = Z / r)drF(ui, uiv1).  (9)
n o sn\ __ 1 . ~\2
dz", & )_ﬁZ<xi_%) @ since x is mdependent ofZ, the pdf in (8) can

=1 be computed as the convolution of two known pdfs:

throughout the paper. The expected distortion is giveR- (2| X € (s,t)) = px(z|X € (s,t)) * pz(z)). Without
by X loss of generality, we assumey = 1 and compute the
D = FE[d(X", X")] (3) convolution in (10).
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Fig. 1. Encoder-Decoder Structure
o(s,t) = E[X|Y =y,X € (s,1)]
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It has been shown in [14] that when ideal SWC isomplicated in general. However, we can lower bound it
assumed, the achievable rateis given by H(B|Y') = with I(B;Y’) which denotes the mutual information for

H(B)— I(B;Y), where B denotes the partition index.the fixed partition and distribution of. Thus assigning
Note that ideal SWC performs entropy coding and eX{ (B|Y) andlog,(N) — I(B;Y) to R provides lower
ploits the statistical correlation betweéhandY at the and upper bounds on the operational achievable rate.
same time. On the other hand, practical SWC schemespDefining the conditional differential entropy as

e.g. [15], [16], [17], are syndrome-based with linear

channel codes which exploit the statistical correlation g(s,t) = h(Y|X € (s,1))), (11)
but give up entropy coding. The achievable rate of those

schemes is given biog,(N) — C(B;Y) assuming that We find

linear codes are capable of approaching the capacity of N .
the virtual channelB — p(y|B) which is denoted by  [(B;Y) = h(Y) - ZQ(Uuuz‘H)/ px (2)dz.
C(B;Y). The computation of”(B;Y") could be quite izl u;

(12)



SinceY is Gaussian with zero mean and variande+ whose (i, j)th entry is 83_25]“, is positive definite at the
0%, we haveh(Y) = 3 log, (2me(0% + 0%)). Further  solution point. Such a check can be easily implemented

numerically.

Uit1 Uig1
H(B)=-) < / PX<$W> log,( / px(2)dz). ¢ Modified Lloyd Type I Algorithm
i=1 Ui i
(13) In this section, we propose a modified Lloyd type |
For given A and N, the necessary conditions foralgorithm to solve the equations in (14) numerically. The

minimum J are idea is to adjust partition end points sequentially. We
oJ , start with an initial partition(uy,--- ,unx+1). Then we
du; 0, j=2...,N. (14) " assume that;_; andu;;, are fixed, and update; to
, satisfy (17) and (18) respectively fgr= 2 to N. These
From (13), we find updates are repeated until convergencd @ observed.
OH(B) erf(uj+1/v2) —erf(u;/v/2)  Further, due to the fact thaix(z) is symmetric, we
ouj px (uj) log, erf(u;/v/2) — erf(uj—1/v?2) focus on symmetric partitions to reduce the number of

, _ , variables fromN — 1 to N/2 — 1 for evenN, and(N —
for j = 2,...,N. From (12), we obtaih(15) for j = 1)/2 for odd N. Note that our algorithm does not require
2,...,N. From (9), we obtain (16) foj =2,..., N. symmetry of the partitions.

Using these results in (4), we can rewrite (14) for thé \oy we analyze this algorithm. First, we consider the
two cases we consider here as update ofu; via (18). Recall thay(s, ) is the conditional

1) Ideal SWC:R = H(BY). differential entropy as defined in (11). Increasing the

oJ 13 oD A&H(B) )\OI(B;Y) width of the interval(s,t) yields higher uncertainty of
aiuj = (- )Tuj t du B Ouj Y, thus yielding higher entropy. Hence we hagge< 0
=0 (17) and% >o.

Combining these results with (15) and using the fact

2) Practical SWC:R = log,(N) — I(B;Y). that the function erf is monotonically increasing, we find

0J _ 50D _\0IBsY) that lim,, ., , 228 > 0 andlim,,,,,, 2570 <
ou; )Tuj O 0. Also note thatF'(s,t) is the conditional expected
= 0 (18) distortion as defined in (8). Decreasing the width of

_ _ _ the interval (s,t) yields smaller distortion. Hence we
Note that the simultaneous equations obtained frOﬁr&\le OF  _ ( and 2F

. : : s 5 > 0. Following the same
(14) are complicated nonlinear equations. There See%ument above. w aD
to be no easy way to solve them analytically in closed- oD '

e havimy, ..,_, 5> < 0 and
form. Therefore we propose a modified Lloyd iterativelmu-{_’“f+1 ou, = 0. Corgblnlng these results Wgh (18),
algorithm [2] to solve those equations numerically. ~ We find thatlim,, ., , 55 < 0 andlimy, .., & ;
0. Hence we can guarantee that a solution 4Qrin
B. Sufficient Conditions for Optimality the interval (u;_1,u;1) can be found. We call this
In the previous section, we have given, in generdlfacketingu;. If there is only one solution fow; in
only necessary conditions in (14) for minimwh They (uj-1,u;+1), it must be a local minimum for/ due
may not be sufficient conditions. For example, whei@ the fact thathJ; is negative atu; 1 and positive
entropy coding is allowed, the conditions in (14) magt w;41. In many of the cases we considered, our
lead to maximum.J instead of minimum.J. In such numerical study seemed to suggest that (18) had only
cases, we found that minimizing sometimes leads toone solution in(u;_1,u;j.1). Since we have bracketed
convergence of neighboring end points, resulting in g in (u;-1,uj11), we can apply the bisection search to
degenerate quantizer design with- 1 partitions instead solve (18) numerically.
of IV partitions. One way to address the problem, besidesNext, we consider the update of via (17). Note that
varying N, is to vary\. For example, decreasingin (4) lim,, ., , Mgf) — oo andlimy, ., mgf) — 0.

can be helpful. In general, as discussed in [1], (14) yielggith this dominant term, we havém,, . | % >0
sufficient conditions for a local minimum if the matrlxandhmuj_)qu % < 0. Due to this, the solution to (17)

J .
"Here 22, ..., means to set the variablgs, t) = (u;_1,u;) could lead to a local maximum of rather than a local

after the derivative where, ¢ are as used in (11) minimum, and in this case the local minimum &fis




oI(B;Y 0 erf(u; /v/2) — erf(u;_1 /2
E9~) = pX(“j)(g(Uﬁujﬂ)—g(uj—buj))—679 (/v2) (4j-1/V2)
Uj t (uj—1,uy) 2
g erf(uj+1/v2) — erf(u; /v2) (15)
95| (4, 511 2
JHWi+1
oD erf(u; /v/2) — erf(u,;_ 2) OF
OD ) (Plugor. ) = Flug,uyen)) + S V2) ey 1 [V3) OF
“ 2 ot (uj—1,u5)
erf(uﬁl/\f)—erf(uj/f) OF
(16)
2 88 (uj,uj41)

achieved at one end point. This is not surprising con-We apply two approximations for largg€. Firstly, note
sidering the fact that reducing the number of partitiortkat the performance gain of knowing in the optimum
leads to a smaller entropy. estimator (see Figure 1) diminishes &8 increases.
As we just showed, finding minimund by solving Hence we can use a fixed set of reproductions and
(14) could be problematic. To avoid such difficultysimplify the computation of (3) to
we apply tuning to adjust the iterative algorithm when N
necessary. We take discrete samples between and - it 2
u;j,1 and try to bracket; in an interval Wr\:qg% is b= Z/ v = v)px(a)d
negative at the left end point and positive at the right
end point. If it succeeds, the bisection search is appliedSecondly, we apply the following approximation for
to solve foru;. Otherwise, we keep; unchanged and the error function whemAz is small
move to update:; . 9 ,
We apply another level of control to help guide the erf(z + Az) — erf(z) ~ —=e~ @222 Az (20)
algorithm. Beforeu; is updated, we compute the current v
J and theJ after the update. If/ decreases, then weAssumings and¢ are close enough, we rewrite (10) as
finish the update. Otherwise, we abandon the update.

(19)

— 1 (p—stt)2
ThusJ cannot increase after any update. If the algorithm px (z| X € (s,t)) * pz(z) = ! ¢ =)
fails to update any.;, we decrease and try the updates V2royz 1)

again.

Since J is lower bounded by O, the iterative algo-
rithm will terminate with a solution which may not be
optimum. Then we check if all the equations in (14) are
balanced. If there are unbalanced equations, we decrease

A, which reduces the impact of rate Otherwise, we cheﬁk h h (22 h 11
the matrix with i, th entry 2 is positve definie. ote that with (22), we havé(B;Y) = }log,(1 + & )
If it is, we have found a local optlmum If it is not, WeWh'Ch 's a constant for given correlatlon SNR. Wi

decrease\. I(B;Y) being constant, we find that minimizing in
(4) is equivalent to minimizing(1 — A\)D + AH(B)

D. High Rate Approximation when ideal SWC is assumed, or equivalent to minimizing

By high rate, we mean that we assume largeIln D when SWC based on a linear code is assumed.
such cases, the intervdl;, ;1) (here we exclude The former corresponds to the conventional entropy-
consideration of the two intervals at the boundaries) besnstrained quantizer design and the latter corresponds
comes so small that we can apply certain approximatiotus the fixed-rate quantizer design. In other words, for
to simplify the task of quantizer design. WitN being large N, the optimal entropy-constrained and fixed-rate
large, we ignore the effect of the two boundary partitiorguantizers remain optimal for the problem considered
hereafter. here.

With the approximation in (21), we can compute the
conditional differential entropy as

1
g(s,t) = B logy(2mea’). (22)




E. Numerical results

TABLE |
DESIGN EXAMPLES

Note that the conventional fixed-rate and entropy—l o)

WZ Scalar Quantizers Using Practical SWC |

constrained scalar quantizer designs are special cases [Oly

the problem described in the previous section for the

case where the correlation SNR goes-tso. Numerical
results indicate that the proposed modified Lloyd type

| algorithm, which aims to obtain the optimal partition

directly, yields the same fixed-rate quantizers reported nl

[1]. We have verified this when starting from a uniform

initial partition.

Next, we consider the case where the decoder has
access to a noisy version of the source. We repor

A u D R
4 [ 05 (0 0.837 o) 0.0457 | 0.776
4 | 0.05 (0 0.758 00) 0.045 | 0.781
8 [ 05 | (00.453 0.946 1.563 co) | 0.0215| 1.464
8 0.05 | (0 0.428 0.892 1.462 co) | 0.0211| 1.466
(B) WZ Scalar Quantizers Using Ideal SWC |
N A u D R
4 [ 0.05 (0 1.039 c0) 0.049 | 0.677
4 | 0.01 (0 0.714 00) 0.045 | 0.786
8 0.01 | (0 0.457 0.941 1.508 o) | 0.0213| 1.379
8 0.005| (0 0.431 0.892 1.441 oo0) | 0.021 | 1.408

some design examples for cases where practical SWC is
assumed in Table I-A Design examples for cases where

ideal SWC is assumed are provided in Table I-B. Thé®
correlation SNR is set to be 10 db. All the quantizerss)
reported in this work satisfy the necessary conditions

in (14) and sufficient condition for locally optimality [
discussed in Section IlI-B.
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R.C. Wood. On optimum quantizationlEEE Trans. Inform.
Theory pages 248-252, Mar. 1969.

IV. SUMMARY

In this paper, we studied optimum scalar quantize[r7]
design for the Wyner-Ziv problem. Based on necessary
conditions for optimality of an objective function which [8]
combines distortion and rate, we developed an iterati
algorithm to find the optimum partitions numerically. It
can be viewed as a generalization of the well-known
Lloyd algorithm and can be used to design optim&Ol
scalar quantizers when the decoder does or does Q
have access to a noisy version of the source. When
decoder side information is available, the complexity of
the computation needed to solve the necessary conditib¥fé R- Zhang D. Rebollo-Monedero and B. Girod.
increases over that needed when the decoder side infor-
mation is not available. Such difficulty is more evidents]
when the number of partitions is large. For those cases,
we developed high rate approximations based on tHél
characteristics of the error function and prove that for a
large number of partitions the traditional (single-solircgLs)
optimal fixed-rate quantizers and entropy-constrained
guantizers remain (near) optimal when decoder side

information is available.
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