
On Scalar Quantizer Design with Decoder Side
Information

Zhenyu Tu, Tiffany Jing Li and Rick S. Blum

Abstract— In this work, we investigate the design of
scalar quantizers for the Wyner-Ziv problem, where the
decoder has access to a noisy copy of the source. Necessary
conditions are given for the design of optimum quantizers
with a fixed number of partitions for a criterion consisting
of a linear combination of distortion and rate. A simple
iterative algorithm is developed to tackle the new quantizer
design problem. The new algorithm generalizes the well-
known Lloyd type I algorithm. The new approach will,
in general, yield different scalar quantizers than the
traditional approaches and these new quantizers provide
some advantages. We also develop approximations to
simplify quantizer design for high rate cases. With such
approximations, the traditional optimal fixed-rate and
entropy-constrained scalar quantizers are shown to remain
optimum under certain conditions.

I. I NTRODUCTION

Scalar quantizers have been of interest to both acad-
emic and industrial researchers for decades due to their
simple implementation. Typically, the rate of a fixed-
rate scalar quantizer is determined by the number of
partitions only. The design of such quantizers leads to
finding the partitions and the associated reproductions
which result in minimum distortion between the source
and its quantized version. The well known class of
Lloyd-Max iterative algorithms [1], [2] provide efficient
methods to obtain these optimum partitions and their
reproductions. The rate can be reduced if entropy coding
is applied to the partition indexes, while the distortion
level is kept constant. Thus a better rate-distortion trade-
off is achieved at the price of increased complexity due
to the entropy coding. Fixed-rate scalar quantizer design
is generalized to allow entropy coding in [3], [4], [5]
yielding what is often referred to as entropy-constrained
quantizer design.

It has been shown in [6] that the rate of the quantizer
can be reduced, when the decoder has access to a
noisy version of the source, by exploiting the statistical
correlation between the source and the decoder side
information. Such rate reduction provides a new rate
and distortion trade-off for quantizers. Additionally, the

decoder side information can help in reconstructing the
source so that smaller distortion can be achieved.

Quantizer design for this new scenario, which is
referred to as Wyner-Ziv (WZ) problem, has been a
focused research area for some time. Early attempts
to design quantizers for the Wyner-Ziv problem were
based on high dimensional nested lattices, followed
by either fixed-rate coding or entropy coding of the
quantization indices (see for example [7][8]). Recently,
the application of scalar quantizers followed by Slepian-
Wolf binning was proposed for the Wyner-Ziv problem
in [9]. Although a heuristic approach was suggested, the
focus was not on optimum quantizer design. In [10][11],
an objective function formed by a linear combination of
distortion and rate is proposed for quantizer design. An
iterative Lloyd algorithm based on local optimization is
proposed for quantizer design in a network source coding
problem. The encoding/decoding mapping function is
iteratively chosen to minimize an objective function
assuming all other encoding/decoding mapping functions
are fixed. It is generalized to allow more general rate
measures in [12].

This existing work has shed useful insight into the
design of WZ quantizers. Researchers have come to a
consensus that a good quantizer for the Wyner-Ziv prob-
lem needs to be designed with explicit consideration of
its correlation with the decoder side information as well
as the nature of the succeeding index encoder. However,
little attempt has been made to analytically formulate
the quantizer design problem as an optimization over its
parameters, e.g. its partition boundaries, directly. Note
this is not tractable in a general framework. However,
we may be able to do this for a specific type of quantizer
design.

In this work, we focus on the scenario described in the
original work by Wyner and Ziv [6], with emphasis on
theoretically motivated algorithms for optimal (at least
locally optimal) scaler quantizer design. The simplicity
of scaler quantizers enables us to explicitly formulate a
rate-distortion objective function which unifies diverse
cases and which can be numerically solved using practi-



cal iterative algorithms. Hence, our approach is different
from those in [12], [11], [10], since we avoid the
discretization approximations and training data methods
in the design process.

The rest of the paper is organized as follows. Sec-
tion II formulates the problem we consider. Section III
discusses the conditions for optimality, along with an
iterative algorithm for numerical computations. High rate
approximations are also studied. Section III-E provides
some design examples. Finally, Section IV summarizes
the paper.

II. PROBLEM FORMULATION

In this work, we use upper-case letters to represent
random variables, e.g.X. We use the corresponding
lower-case letters to represent realizations, e.g.x. We
use a superscript to denote a sequence, e.g.xn =
x1, x2, . . . , xn.

Consider the source coding problem with side infor-
mation at the decoder. The sourceXn is assumed to be a
sequence of i.i.d. zero-mean Gaussian random variables,
each with varianceσ2

X . The decoder is assumed to have
access to a noisy version ofXn which is characterized
by

Y n = Xn + Zn (1)

where Zn is a sequence of i.i.d. zero-mean Gaussian
variables, each with varianceσ2

Z , and n is the block
length. We assume thatXn is independent ofZn. We
define the correlation SNR as10 log10

σ2
X

σ2
Z

dB.
We adopt the system diagram proposed in [9] which

is depicted in Figure 1. The encoder consists of a scalar
quantizer followed by an index encoder. The scalar
quantizer determines the partition of the source vector.

The index encoder maps a vector of partition indexes
to a data stream which is sent to the decoder. The index
decoder recovers the partition indexes with the help of
the side informationyn. The optimum estimator outputs
the reproduction vector for the source based on the
partition indexes andyn.

The goodness of the reproduction is measured by some
distortion function quantifying the difference between
xn and x̂n. We adopt the mean square error distortion
measure

d(xn, x̂n) =
1

n

n
∑

i=1

(xi − x̂i)
2 (2)

throughout the paper. The expected distortion is given
by

D = E[d(Xn, X̂n)] (3)

where the expectation is with respect to the distribution
of Xn andZn.

Let R denote the rate of the source code. We form the
objective function as a weighted sum of distortion and
rate as considered in [12], [11]:

J = (1 − λ)D + λR (4)

whereλ ∈ (0, 1).

III. O PTIMAL QUANTIZER DESIGN

In our optimum quantizer design, we seek to obtain
quantizers with minimumJ for a fixed number of
partitions (and fixedλ). Toward this goal, we compute
D andR in (4).

Let ui, i = 1, . . . , N + 1, denote the end points
of the partitions withu1 = −∞ and uN+1 = ∞;
Let vi, i = 1, . . . , N , denote the reproduction for
partition (ui, ui+1). Let X denote a random variable
with the common probability density function (pdf) of
each ofX1, . . . , Xn. Similarly, let Y denote a random
variable with the common pdf of each ofY1, . . . , Yn.
The mean-square-error optimal estimator (reproduction)
for a partition given by the interval(s, t) is shown in (5)
(see [13]) wherec =

σ2
X

σ2
X+σ2

Z

andσ =
√

cσZ .
To simplify notation later, we define the expected

distortion conditioned onY = y andX ∈ (s, t) as

f(y, s, t) = E[X2|Y = y, X ∈ (s, t)] − v2(s, t). (6)

The first term of the right hand side of (6) can be
computed as in (7).

Similarly, we define the expected distortion condi-
tioned onX ∈ (s, t) as

F (s, t) =

∫ ∞

−∞
f(y, s, t)pY (y|X ∈ (s, t))dy, (8)

wherepY (y|X ∈ (s, t)) denotes the conditional pdf of
Y given X ∈ (s, t) (we employ similar notation for
different variables later).

A. EvaluatingD and R

Using (8), we can compute (3) as

D = E[(X − X̂)2]

=
N

∑

i=1

∫ ui+1

ui

pX(x)dxF (ui, ui+1). (9)

Since X is independent ofZ, the pdf in (8) can
be computed as the convolution of two known pdfs:
pY (x|X ∈ (s, t)) = pX(x|X ∈ (s, t)) ∗ pZ(x)). Without
loss of generality, we assumeσX = 1 and compute the
convolution in (10).
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Fig. 1. Encoder-Decoder Structure

v(s, t) = E[X|Y = y, X ∈ (s, t)]

= cy +
2

erf( t−cy√
2σ

) − erf( s−cy√
2σ

)

σ√
2π

(e−
(s−cy)2

2σ2 − e−
(t−cy)2

2σ2 ) (5)

E[X2|Y = y, X ∈ (s, t)] = σ2 + c2y2 +
2

erf( t−cy√
2σ

) − erf( s−cy√
2σ

)
·

( s−cy√
2σ

σ2 +
√

2cyσ)e−( s−cy
√

2σ
)2 − ( t−cy√

2σ
σ2 +

√
2cyσ)e−( t−cy

√

2σ
)2

√
π

(7)

pX(x|X ∈ (s, t)) ∗ pZ(x) =

∫ t

s

1

Pr(X ∈ (s, t))

1√
2π

e−w2/2 1√
2πσZ

e−(x−w)2/(2σ2
Z)dw

=
2

erf(t/
√

2) − erf(s/
√

2)

√
2e−x2/(2(σ2

Z+1))

4
√

π(σ2
Z + 1)



erf





−(1 + σ2
Z)s + x

√

2σ2
Z(1 + σ2

Z)



 − erf





−(1 + σ2
Z)t + x

√

2σ2
Z(1 + σ2

Z)







 . (10)

It has been shown in [14] that when ideal SWC is
assumed, the achievable rateR is given byH(B|Y ) =
H(B) − I(B; Y ), whereB denotes the partition index.
Note that ideal SWC performs entropy coding and ex-
ploits the statistical correlation betweenB andY at the
same time. On the other hand, practical SWC schemes,
e.g. [15], [16], [17], are syndrome-based with linear
channel codes which exploit the statistical correlation
but give up entropy coding. The achievable rate of those
schemes is given bylog2(N) − C(B; Y ) assuming that
linear codes are capable of approaching the capacity of
the virtual channelB 7→ p(y|B) which is denoted by
C(B; Y ). The computation ofC(B; Y ) could be quite

complicated in general. However, we can lower bound it
with I(B; Y ) which denotes the mutual information for
the fixed partition and distribution ofX. Thus assigning
H(B|Y ) and log2(N) − I(B; Y ) to R provides lower
and upper bounds on the operational achievable rate.

Defining the conditional differential entropy as

g(s, t) = h(Y |X ∈ (s, t))), (11)

we find

I(B; Y ) = h(Y ) −
N

∑

i=1

g(ui, ui+1)

∫ ui+1

ui

pX(x)dx.

(12)



SinceY is Gaussian with zero mean and varianceσ2
X +

σ2
Z , we haveh(Y ) = 1

2 log2 (2πe(σ2
X + σ2

Z)). Further

H(B) = −
N

∑

i=1

(∫ ui+1

ui

pX(x)dx

)

log2(

∫ ui+1

ui

pX(x)dx).

(13)
For given λ and N , the necessary conditions for

minimum J are
∂J

∂uj
= 0, j = 2, . . . , N. (14)

From (13), we find

∂H(B)

∂uj
= pX(uj) log2

erf(uj+1/
√

2) − erf(uj/
√

2)

erf(uj/
√

2) − erf(uj−1/
√

2)

for j = 2, . . . , N . From (12), we obtain1 (15) for j =
2, . . . , N . From (9), we obtain (16) forj = 2, . . . , N .

Using these results in (4), we can rewrite (14) for the
two cases we consider here as

1) Ideal SWC:R = H(B|Y ).

∂J

∂uj
= (1 − λ)

∂D

∂uj
+ λ

∂H(B)

∂uj
− λ

∂I(B; Y )

∂uj

= 0 (17)

2) Practical SWC:R = log2(N) − I(B; Y ).

∂J

∂uj
= (1 − λ)

∂D

∂uj
− λ

∂I(B; Y )

∂uj

= 0 (18)

Note that the simultaneous equations obtained from
(14) are complicated nonlinear equations. There seems
to be no easy way to solve them analytically in closed-
form. Therefore we propose a modified Lloyd iterative
algorithm [2] to solve those equations numerically.

B. Sufficient Conditions for Optimality

In the previous section, we have given, in general,
only necessary conditions in (14) for minimumJ . They
may not be sufficient conditions. For example, when
entropy coding is allowed, the conditions in (14) may
lead to maximumJ instead of minimumJ . In such
cases, we found that minimizingJ sometimes leads to
convergence of neighboring end points, resulting in a
degenerate quantizer design withN−1 partitions instead
of N partitions. One way to address the problem, besides
varyingN , is to varyλ. For example, decreasingλ in (4)
can be helpful. In general, as discussed in [1], (14) yields
sufficient conditions for a local minimum if the matrix

1Here ∂F
∂t

|(uj−1,uj) means to set the variables(s, t) = (uj−1, uj)
after the derivative wheres, t are as used in (11)

whose(i, j)th entry is ∂2J
∂ui∂uj

is positive definite at the
solution point. Such a check can be easily implemented
numerically.

C. Modified Lloyd Type I Algorithm

In this section, we propose a modified Lloyd type I
algorithm to solve the equations in (14) numerically. The
idea is to adjust partition end points sequentially. We
start with an initial partition(u1, · · · , uN+1). Then we
assume thatuj−1 and uj+1 are fixed, and updateuj to
satisfy (17) and (18) respectively forj = 2 to N . These
updates are repeated until convergence ofJ is observed.
Further, due to the fact thatpX(x) is symmetric, we
focus on symmetric partitions to reduce the number of
variables fromN − 1 to N/2− 1 for evenN , and(N −
1)/2 for oddN . Note that our algorithm does not require
symmetry of the partitions.

Now we analyze this algorithm. First, we consider the
update ofuj via (18). Recall thatg(s, t) is the conditional
differential entropy as defined in (11). Increasing the
width of the interval(s, t) yields higher uncertainty of
Y , thus yielding higher entropy. Hence we have∂g

∂s < 0

and ∂g
∂t > 0.

Combining these results with (15) and using the fact
that the function erf is monotonically increasing, we find
that limuj→uj−1

∂I(B;Y )
∂uj

> 0 and limuj→uj+1

∂I(B;Y )
∂uj

<

0. Also note thatF (s, t) is the conditional expected
distortion as defined in (8). Decreasing the width of
the interval (s, t) yields smaller distortion. Hence we
have ∂F

∂s < 0 and ∂F
∂t > 0. Following the same

argument above, we havelimuj→uj−1

∂D
∂uj

< 0 and

limuj→uj+1

∂D
∂uj

> 0. Combining these results with (18),

we find thatlimuj→uj−1

∂J
∂uj

< 0 and limuj→uj+1

∂J
∂uj

>
0. Hence we can guarantee that a solution foruj in
the interval (uj−1, uj+1) can be found. We call this
bracketinguj . If there is only one solution foruj in
(uj−1, uj+1), it must be a local minimum forJ due
to the fact that ∂J

∂uj
is negative atuj−1 and positive

at uj+1. In many of the cases we considered, our
numerical study seemed to suggest that (18) had only
one solution in(uj−1, uj+1). Since we have bracketed
uj in (uj−1, uj+1), we can apply the bisection search to
solve (18) numerically.

Next, we consider the update ofuj via (17). Note that
limuj→uj−1

∂H(B)
∂uj

→ ∞ and limuj→uj+1

∂H(B)
∂uj

→ −∞.

With this dominant term, we havelimuj→uj−1

∂J
∂uj

> 0

andlimuj→uj+1

∂J
∂uj

< 0. Due to this, the solution to (17)
could lead to a local maximum ofJ rather than a local
minimum, and in this case the local minimum ofJ is



∂I(B; Y )

∂uj
= pX(uj)(g(uj , uj+1) − g(uj−1, uj)) −

∂g

∂t

∣

∣

∣

∣

(uj−1,uj)

erf(uj/
√

2) − erf(uj−1/
√

2)

2

− ∂g

∂s

∣

∣

∣

∣

(uj ,uj+1)

erf(uj+1/
√

2) − erf(uj/
√

2)

2
(15)

∂D

∂uj
= pX(uj)(F (uj−1, uj) − F (uj , uj+1)) +

erf(uj/
√

2) − erf(uj−1/
√

2)

2

∂F

∂t

∣

∣

∣

∣

(uj−1,uj)

+
erf(uj+1/

√
2) − erf(uj/

√
2)

2

∂F

∂s

∣

∣

∣

∣

(uj ,uj+1)

(16)

achieved at one end point. This is not surprising con-
sidering the fact that reducing the number of partitions
leads to a smaller entropy.

As we just showed, finding minimumJ by solving
(14) could be problematic. To avoid such difficulty,
we apply tuning to adjust the iterative algorithm when
necessary. We take discrete samples betweenuj−1 and
uj+1 and try to bracketuj in an interval where∂J

∂uj
is

negative at the left end point and positive at the right
end point. If it succeeds, the bisection search is applied
to solve foruj . Otherwise, we keepuj unchanged and
move to updateuj+1.

We apply another level of control to help guide the
algorithm. Beforeuj is updated, we compute the current
J and theJ after the update. IfJ decreases, then we
finish the update. Otherwise, we abandon the update.
ThusJ cannot increase after any update. If the algorithm
fails to update anyuj , we decreaseλ and try the updates
again.

Since J is lower bounded by 0, the iterative algo-
rithm will terminate with a solution which may not be
optimum. Then we check if all the equations in (14) are
balanced. If there are unbalanced equations, we decrease
λ, which reduces the impact of rate. Otherwise, we check
if the matrix with(i, j)th entry ∂2J

∂ui∂uj
is positive definite.

If it is, we have found a local optimum. If it is not, we
decreaseλ.

D. High Rate Approximation

By high rate, we mean that we assume largeN . In
such cases, the interval(uj , uj+1) (here we exclude
consideration of the two intervals at the boundaries) be-
comes so small that we can apply certain approximations
to simplify the task of quantizer design. WithN being
large, we ignore the effect of the two boundary partitions
hereafter.

We apply two approximations for largeN . Firstly, note
that the performance gain of knowingyn in the optimum
estimator (see Figure 1) diminishes asN increases.
Hence we can use a fixed set of reproductions and
simplify the computation of (3) to

D =
N

∑

i=1

∫ ui+1

ui

(x − vi)
2pX(x)dx. (19)

Secondly, we apply the following approximation for
the error function when△x is small

erf(x + △x) − erf(x) ≈ 2√
π

e−(x+△x/2)2△x. (20)

Assumings and t are close enough, we rewrite (10) as

pX(x|X ∈ (s, t)) ∗ pZ(x) ≈ 1√
2πσZ

e
− 1

2σ2
Z

(x− s+t

2
)2

(21)
With the approximation in (21), we can compute the

conditional differential entropy as

g(s, t) =
1

2
log2(2πeσ2

Z). (22)

Note that with (22), we haveI(B; Y ) = 1
2 log2(1 +

σ2
X

σ2
Z

)
which is a constant for given correlation SNR. With
I(B; Y ) being constant, we find that minimizingJ in
(4) is equivalent to minimizing(1 − λ)D + λH(B)
when ideal SWC is assumed, or equivalent to minimizing
D when SWC based on a linear code is assumed.
The former corresponds to the conventional entropy-
constrained quantizer design and the latter corresponds
to the fixed-rate quantizer design. In other words, for
largeN , the optimal entropy-constrained and fixed-rate
quantizers remain optimal for the problem considered
here.



E. Numerical results

Note that the conventional fixed-rate and entropy-
constrained scalar quantizer designs are special cases of
the problem described in the previous section for the
case where the correlation SNR goes to−∞. Numerical
results indicate that the proposed modified Lloyd type
I algorithm, which aims to obtain the optimal partition
directly, yields the same fixed-rate quantizers reported in
[1]. We have verified this when starting from a uniform
initial partition.

Next, we consider the case where the decoder has
access to a noisy version of the source. We report
some design examples for cases where practical SWC is
assumed in Table I-A2. Design examples for cases where
ideal SWC is assumed are provided in Table I-B. The
correlation SNR is set to be 10 db. All the quantizers
reported in this work satisfy the necessary conditions
in (14) and sufficient condition for locally optimality
discussed in Section III-B.

IV. SUMMARY

In this paper, we studied optimum scalar quantizer
design for the Wyner-Ziv problem. Based on necessary
conditions for optimality of an objective function which
combines distortion and rate, we developed an iterative
algorithm to find the optimum partitions numerically. It
can be viewed as a generalization of the well-known
Lloyd algorithm and can be used to design optimal
scalar quantizers when the decoder does or does not
have access to a noisy version of the source. When
decoder side information is available, the complexity of
the computation needed to solve the necessary conditions
increases over that needed when the decoder side infor-
mation is not available. Such difficulty is more evident
when the number of partitions is large. For those cases,
we developed high rate approximations based on the
characteristics of the error function and prove that for a
large number of partitions the traditional (single-source)
optimal fixed-rate quantizers and entropy-constrained
quantizers remain (near) optimal when decoder side
information is available.
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