
An Efficient SF-ISF Approach for the Slepian-Wolf
Source Coding Problem
Zhenyu Tu, Jing Li (Tiffany), and Rick S. Blum

Department of Electrical and Computer Engineering
Lehigh University, Bethlehem, PA 18105

Abstract— A simple but powerful scheme exploiting the bin-
ning concept for asymmetric lossless distributed source coding is
proposed. The novelty in the proposed scheme is the introduction
of a syndrome former (SF) in the source encoder and an inverse
syndrome former (ISF) in the source decoder to efficiently exploit
an existing linear channel code without the need to modify the
code structure or the decoding strategy. For most channel codes,
the construction of SF-ISF pairs is a light task. For parallelly
and serially concatenated codes and particularly parallel and
serial turbo codes where this appear less obvious, an efficient way
for constructing linear-complexity SF-ISF pairs is demonstrated.
It is shown that the proposed SF-ISF approach is simple,
provenly optimal, and generally applicable to any linear channel
code. Simulation using conventional and asymmetric turbo codes
demonstrates a compression rate that is only 0.06 bit/symbol from
the theoretical limit, which is among the best results reported so
far.

Index Terms— distributed source coding, compression with side
information at the decoder, Slepian-Wolf problem, code binning,
turbo codes, serial concatenated convolutional codes, parallel
concatenated convolutional codes

I. INTRODUCTION

The challenging nature of multi-user communication prob-
lems [1] has been recognized for decades and many of these
problems still remain unsolved. Among them is the distributed
source coding (DSC) problem, also known as distributed
compression or Slepian-Wolf source coding, where two or
more statistically-correlated information sources are separately
encoded/compressed and jointly decoded/decompressed. Hav-
ing its root in network information theory, distributed source
coding is tightly related to a wealth of information and com-
munication problems and applications including, for example,
the dirty paper problem, watermarking and data mining, multi-
element broadcasting problem and multiple description coding.
The recent heat in sensor networks has further aroused a
renewed interest in DSC, since it allows the inter-sensor
correlation to be exploited in compression without expensive
inter-sensor communication.

The theory and conceptual underpinnings of the noiseless
DSC problem started to appear back in the seventies [2], [3],

This material is based on research supported by the Air Force Research
Laboratory under agreement No. F49620-03-1-0214, by the National Science
Foundation under Grant No. CCR-0112501 and Grant No. CCF-0430634,
and by the Commonwealth of Pennsylvania, Department of Community and
Economic Development, through the Pennsylvania Infrastructure Technology
Alliance (PITA).
The authors are with the Department of Electrical and Computer
Engineering, Lehigh University, Bethlehem, PA 18105. Emails:
{zht3,jingli,rblum}@ece.lehigh.edu

[4], [5]. Specifically, the seminal paper by Slepian and Wolf [2]
stated that (i) separate encoding (but joint decoding) need not
incur a loss in capacity compared to joint encoding and (ii) the
key to DSC lies in channel coding. These refreshing findings,
as well as the underlying concept of code binning (will be
discussed in Section II), lay the foundation for practical code
design for DSC using linear channel codes.

The random binning concept used in the proof of the
Slepian-Wolf theorem requires structured binning implementa-
tions in practice. The first practical algebraic binning scheme
was proposed by Wyner in 1976 [1], where the achievabil-
ity of the Slepian-Wolf boundary was demonstrated using
coset codes and a generic syndrome decoder. The approach
was further extended to non-syndrome decoders by Pradham
and Ramchandram many years later [6]. Since then, various
practical coding schemes have been proposed for lossless
DSC with binary memoryless sources, including coset codes
[6], lattice codes [7], [8], low density parity check (LDPC)
codes (e.g.[9], [10], [11], [12], [13], [14]) and (convolutional)
turbo codes (e.g.[15], [16], [17], [18], [19], [20]). Most of
these formulations are rooted back to the binning idea, except
for turbo codes where code binning has not been explicitly
exploited.

While LDPC codes are also capacity-approaching channel
codes, turbo codes have certain advantages. First, a turbo
encoder is cheap to implement, thus appealing to applications
like sensor networks where the computation on the transmitter
side (i.e. sensor nodes) needs to be minimized. Second, turbo
codes perform remarkably on a variety of channel models.
Since the key to efficient DSC is to find a powerful channel
code for the virtual transmission channel, where the virtual
channel is specified by the source correlation (will be dis-
cussed in more detail in Section II), turbo codes are therefore
a good choice for a number of sources with different source
correlations. An LDPC code, on the other side, would require
specific design or optimization of the degree profile in order
for it to match to the channel. Third, the code rate and
length of a turbo code can be easily changed (e.g. through
puncturing), making it possible for adaptive DSC using rate-
compatible turbo codes. Such flexibility is not readily available
with random LDPC codes or other linear block codes.

Among the existing turbo-DSC formulations, Garcia-Frias
and Zhao were the first to propose an interesting turbo
scheme where two sources were separately encoded and jointly
decoded in an interwoven way akin to a four-branch turbo code

[15]. A similar scheme that works for asymmetric compression
was independently devised by Aaron and Girod [16]. In
[17], Bajcsy and Mitran proposed yet another parallel turbo
structure based on finite-state machine codes. The scheme was
later extended to a serial turbo structure in [19]. Perhaps the
only scheme that has implicitly explored the binning concept
is that proposed by Liveris, Xiong and Georghiades [18]. This
also appears to be the only provenly optimal DSC scheme
based on turbo codes.

One major reason why the binning approach has not been
popular with turbo codes lies in the difficulty of constructing
bins for turbo codes. While codewords are easily “binned”
for coset codes and block codes (e.g. via the parity check
matrix), the random interleaver in the turbo code makes the
code space intractable, precluding the possibility to spell out
its parity check matrix. Another reason that has possibly
prevented the full exploitation of the binning idea is the lack
of a general source decoding approach. In theory, only a
codebook that specifies the mapping (e.g. the bins) is needed;
in practice, a practically implementable source encoder and
particularly a practically implementable source decoder are
also needed. The latter, however, has not been well studied
except for LDPC codes. We note that for LDPC codes, due
to the unique characteristics in the code structure and the
decoding algorithm, a syndrome sequence (i.e. the compressed
sequence, see Section II) can be easily incorporated in the
message-passing decoding, making source decoding a natural
extension of channel decoding [9], [10], [11], [12], [13].
However, for many other codes including turbo codes, it has
not been entirely clear how to optimally exploit a syndrome
sequence in the decoding approach.

The purpose of this paper is to investigate asymmetric
DSC using the binning idea for binary linear channel codes
in general, and parallel and serial turbo codes in particular.
The focus is on the code design for practical DSC solutions
that are efficient, optimal and general. Our contributions are
summarized as follows:

1) We present the structure of a pair of universal source
encoder and source decoder that are generally applicable to
any linear channel code. While the idea is implicit in the
binning concept [2] [8], we give an explicit presentation
with a rigorous proof of its validity for binary memoryless
sources. As will be discussed in Section III, the proposed
source encoder and source decoder explore the concept of
syndrome former (SF) and inverse syndrome former (ISF), and
are efficient as well as provenly optimal for binary memoryless
sources. This thus represents a simple and universal framework
that allows an existing powerful linear channel code to be
readily exploited in DSC without the burden of re-designing
the code or finding a matching encoding/decoding strategy.
With this framework, the only task that is left to implement
the DSC solution is to construct a valid SF-ISF pair, which,
for many channel codes, are a pretty light and straight-forward
task.

2) For parallelly and serially concatenated codes
(PCC/SCC) where the SF-ISF construction appears tricky

due to the random interleaver, we demonstrate an efficient
and systematic way to handle it. Instead of deriving the
SF-ISF pair in an overall closed form (which seems to pose
unsolvable complexity problems), the proposed construction
cleverly exploits the sub SFs and sub ISFs of the component
codes in a way similar to the way concatenated code is built
from its component codes [20]. The SF-ISF pairs for both
parallelly and serially concatenated codes have a complexity
of the order of that of the component codes, and can be
conveniently implemented using linear sequential circuits. For
illustrative purpose, the discussion will proceed with parallelly
and serially concatenated convolutional codes (PCCC/SCCC),
or parallel and serial turbo codes, as the illustrating example.
However, the applicability of the proposed method goes
beyond the context of concatenated convolutional codes.
As addressed in Section V, other concatenated structures,
including block turbo codes (BTC) [21], can readily adopt
the same SF-ISF formulation.

3) Through the proposition of the SF-ISF formulation
and the general source encoder/decoder structure, we have
demonstrated the first provenly optimal turbo-DSC formula-
tion that explicitly exploits the binning scheme. Compared
to the approach in [22], which is also provenly optimal but
which requires constructing a source encoding trellis with
parallel branches, a source decoding trellis with time-varying
stages, and a matching (time-varying) decoding algorithm, the
proposed one is simpler and more general.

4) One goal of our work is to come close to the theoretical
limit. We show, through simulations on conventional turbo
codes and asymmetric turbo codes [23], that the proposed
SF-ISF based scheme yields a compression rate as close as
0.06 bit/symbol from the theoretical limit for binary symmetric
sources (BSS), which is among the best results reported so far.

The remainder of the paper is organized as follows. Section
II formulates the DSC problem and introduces the binning
concept. Section III presents the structure of a universal source
encoder and a source decoder with a rigorous proof of its
validity. Section IV discusses in detail the construction for SF-
ISF pairs for parallelly and serially concatenated codes and in
particular parallel and serial turbo codes. Section V and VI
discuss the optimality and performance of the proposed SF-
ISF approach for binary symmetric sources. Finally, Section
VII provides the concluding remarks.

II. BACKGROUND

A. Achievable Rate Region for DSC

Let us first formulate the setting for discussion. Consider
two correlated binary memoryless sources X and Y encoded
by separate encoders and decoded by a joint decoder. The
achievable rate region is given by the Slepian-Wolf boundary
[2]:

Rx ≥ H(X |Y) (1)

Ry ≥ H(Y |X) (2)

Rx + Ry ≥ H(X, Y) (3)

where Rx and Ry are the compression rates for sources X
and Y , respectively. A typical illustration is given in Fig. 1.

R1

B

A rate region

R2

H(X)H(X|Y)

H(Y |X)

H(Y)
Achievable

@
@

@
@

-

6

.

Fig. 1. Rate region for noiseless DSC.

For most cases of practical interest, zero-error DSC is
possible only asymptotically [24]. For discrete memoryless
sources of uniform distribution, corner points on the Slepian-
Wolf boundary can be achieved by considering one source (e.g.
Y) as the side information (SI) to the decoder (e.g. available to
the decoder via a conventional entropy compression method)
and compressing the other (i.e. X) to its conditional entropy
(H(X |Y)). This is known as asymmetric compression (see
Fig. 2). The line connecting the corner points can be achieved
through time-sharing or code partitioning [12], [13]. (Unless
otherwise stated, the discussion in the sequel focuses on binary
sources and all the arithmetics are taken in GF (2).)

z

y

x̂x
decoderencoder

source source

6
h-

6

Fig. 2. Asymmetric DSC can be equivalently viewed as a channel coding
problem with with side information at decoder.

B. The Binning Concept

First introduced in [2], code binning is one of the most
important ideas in distributed source coding. A thorough
discussion on the binning concept and related issues can be
found in [8]. Below we provide a concise summary of this
useful concept.

As the name suggests, the fundamental idea about code bin-
ning is to group sequences into bins subject to certain require-
ments or constraints. The information-theoretical justification
for the idea is to use 2nH(X, Y) jointly typical sequences to
describe sources (Xn, Y n), where the sequences are placed in

2nH(X |Y) disjoint bins each containing 2nH(Y) sequences.
Clearly, nH(X |Y) bits are needed to specify a bin and nH(Y)
bits to specify a particular sequence in the bin. From the
practical point of view regarding algorithmic design, code
binning consists essentially of dividing the entire codeword
space of a linear channel code into disjoint subspaces (i.e.
bins) such that the same distance property is preserved in
each bin. For an (n, k) binary linear channel code, source
sequences of length n are viewed as the virtual codewords
(not necessarily the valid codewords of the channel code).
The entire codeword space, Xn = {0, 1}n, can be evenly
divided into 2n−k bins/cosets with codewords having the same
syndrome grouped in the same bin. It can be easily verified
that the distance requirement is satisfied due to the geometric
uniformity of a linear channel code. Naturally, the 2n−k

syndrome sequences can be used to index the bins. Hence,
by transmitting the length n− k syndrome sequence Sn−k

instead of the length n source sequence Xn, a compression
rate of n : (n−k) is achieved. At the decoder, the syndrome
sequence Sn−k and the decoder side information Y n (i.e., the
other source Y n which is viewed as a noisy version of Xn

due to its correlation with Xn) will be used combinedly to
identify the original data sequence. The binning concept as
well as the practical binning approach using linear channel
codes are illustrated in Fig. 3.

It should be noted that, in order for (near) lossless recovery
of the original source Xn, the compression rate needs to
satisfy: k/(n − k) ≥ H(X |Y). Further, to get close to
the theoretical limit, the (n, k) channel code needs to be a
capacity approaching one for the virtual transmission channel,
where the virtual channel is specified by the source correlation
P (X, Y).

III. A UNIVERSAL SOURCE ENCODER AND SOURCE

DECODER

The above binning concept has specified the codebook, i.e.
the mapping between the source sequences to the compressed
sequences, but sheds little insight on the implementation of a
source encoder and particularly a source decoder. Below we
present the structure of a universal source encoder and source
decoder that practically and optimally implements the binning
concept for memoryless binary symmetric sources [25].

Before we proceed, let us first introduce the concept of
syndrome former and inverse syndrome former, which are
essentially functions that map the codeword space {Xn} to the
syndrome space {Sn−k} and vice versa. Specifically, the role
of the syndrome former is, for a given source sequence or a
codeword in a bin, to find its associated syndrome sequence or
bin-index, and the role of the inverse syndrome former is, for
a given syndrome sequence or a bin-index, to find an arbitrary
source sequence that belongs to that particular coset or bin (let
us term the output of the ISF as the “auxiliary sequence”).
It should be noted that the SF-ISF pair is not unique for a
given (n, k) linear channel code. For a valid SF, i.e. valid bin-
index assignment, as long as the all-zero syndrome sequence
is assigned to the bin that contains all the valid codewords, the

nH(Y)
2 codewords/bin

nH
(X

|Y
) bits

nH(X|Y)

...
..

...

nH(Y) bits

2

 b

in
s

(A)

k
2 codewords/bin

n−
k

2

 b
in

s

side information Y

...
..

...

 s
yn

dr
om

e

(B)

Fig. 3. (A) Illustration of the binning concept; (B) Illustration of the algebraic
binning approach using linear channel codes.

rest of the assignment can be arbitrary. Hence, there can be
as many as (2n−k − 1)! valid syndrome formers. For each
syndrome former, there can be up to 2k matching inverse
syndrome formers, each producing a different set of auxiliary
sequences. We note that any valid pair of SF and ISF can be
used in the source encoder and the source decoder that we
present below, but the complexity for constructing different
SF-ISF pairs may vary.

• Source Encoder: As illustrated in Fig. 4, the source
encoder is simply a syndrome former that maps a source
sequence Xn to a syndrome sequence Sn−k.

• Source Decoder: The source decoder in Fig. 4 consists
of a matching inverse syndrome former and the original
channel decoder. The auxiliary sequence at the output
of the ISF is first subtracted from the side information
Y n, whose result is then fed into the channel decoder
to perform the conventional channel decoding. If the
channel code is sufficiently powerful, then the output of
the channel decoder, when added back to the auxiliary
sequence, will almost surely recover the original source
sequence Xn.

Proof of the Validity: The validity of the above source
encoder follows directly from the definition of the syndrome
former. The validity of the above source decoder is warranted
by the fact that the same distance property is preserved in
all bins. Let Xn and Y n denote two binary, memoryless

sources with correlation P (Y n|Xn) = (P (Y |X))n. The
virtual transmission channel as specified by P (Y n|Xn) can be
viewed as a discrete memoryless channel: Y = X ⊕Z, where
Z is the additive binary memoryless noise P (Z) = P (Y |X).

Let c(s) denote a codeword c with syndrome sequence
s. Assume that x = c1(s1) is the source sequence to be
compressed. The encoder will find s1 and sends it to the
decoder.

The decoder has side information y where y = x ⊕ z.
Upon receiving s1, the ISF will find an arbitrary sequence,
say c2(s1) from the coset of s1. Notice that the subtraction
of the auxiliary sequence c2 from the side information y, i.e.
y ⊕ c2, forms a noisy codeword (with respect to the virtual
transmission channel), since

y ⊕ c2(s1) = x ⊕ z ⊕ c2(s1)

= c1(s1) ⊕ c2(s1)
︸ ︷︷ ︸

some valid codeword c3(0)

⊕ z. (4)

Hence, if the channel code is sufficiently powerful, i.e.
capacity-approaching on the virtual channel, it can recover
the valid codeword c3(0) with a vanishing error probability
ε. Since c3(0) = y ⊕ c2(s1) ⊕ z = x + c2, adding back the
auxiliary sequence c2 yields the original sequence x. Clearly,
the probability that the data sequence x is not losslessly
recovered is the probability that the channel decoder fails to
correctly decode c3(0), which equals ε → 0. It then follows
that data sequences can be decoded with a vanishing distortion
using the above source decoder (and source encoder). 2

turbo

ISFSF

...
...
...
............

....
....
....

. .

. .

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

. .

. .

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

......
.......
......
......................

........
........

........
....

decoder

Decoder

Encoder

Channel

y

x s c2(s)

x̂

..

-

-

?hh

-

- ? - -

Fig. 4. The structure of the universal source encoder and source decoder for
asymmetric DSC.

IV. CONSTRUCTION OF THE SYNDROME FORMER AND

THE INVERSE SYNDROME FORMER

With the above universal source encoder and source de-
coder, asymmetric DSC becomes a straight-forward two-step
process: (i) to choose a good channel code with the appropriate
code rate and sufficient error correction capability for the
virtual channel, and (ii) to construct a pair of valid SF and
ISF for this code. The former could certainly make use of
the rich results and findings developed in the channel coding
research. Here we focus on the latter issue.

For linear block codes where the code structure is well
defined by the parity check matrices, SF-ISF construction is

a straight-forward task. For example, the parity check matrix
and its left inverse can be used as a valid pair of syndrome
former and inverse syndrome former. For convolutional codes,
this is as convenient, although the process is less well-known
[26]. The real difficulty lies in the class of concatenated codes
which are formed from component block/convolutional codes
and random interleavers and which happen to include many
powerful channel codes such as convolutional turbo codes and
block turbo codes. In theory, a concatenated code can still be
treated, in a loose sense, as a linear block code and, hence, a
closed-form parity check matrix still exists and can be used
as a syndrome former. In practice, however, to derive such a
parity check matrix is prohibitively complex, if not impossible.

In searching for practical SF-ISF solutions for concatenated
codes, we have found a clever way to get around the random
interleaver problem. The key idea is to adopt the same/similar
parallel or serial structure as a concatenated code built from its
component codes, and to construct the SF-ISF pair from the
sub SF-ISF pairs accordingly. In addition, we have found that
by exploiting a specific type of sub SF-ISF pair (with certain
properties), the construction can be further simplified.

Below we take (convolutional) turbo codes as an illustrat-
ing example and discuss in detail the proposed construction
method. To start, we first introduce the SF-ISF construction for
(component) convolutional codes, and then proceed to parallel
turbo codes [20] and lastly serial turbo codes.

A. SF-ISF Construction for Convolutional Codes

In his 1992 paper on trellis shaping [26], Forney described
a simple way to construct syndrome formers and inverse
syndrome formers for convolutional codes. For a rate k/n
binary linear convolutional code with k×n generator matrix G,
it is shown that the SF can be implemented using an n/(n−k)
linear sequential circuit specified by an n × (n − k) transfer
matrix HT with rank (n − k) such that

GHT = 0k, (5)

where 0k is the k-square all-zero matrix. Clearly, the constraint
in (5) makes sure that all valid codewords are associated
with the all-zero syndrome 0n−k and that length-n code-
words/sequences have the same syndrome if and only if they
belong to the same coset. (It should be noted that the generator
matrix of a binary convolutional code considered here is
formed of generator polynomials in the

�
domain and, hence,

is different from the {0, 1} generator matrix of a linear block
code.)

Similar to the case of linear block codes, the inverse
syndrome former, (H−1)T , can be obtained by taking the left
inverse of the syndrome former, i.e.

(H−1)T HT = In−k (6)

where In−k is an identity matrix with rank n − k.
As mentioned before, the SF-ISF pair is not unique for

a given code. In fact, any linear sequential circuit having
the required number of inputs and outputs and meeting the

constraints of (5) and (6) represents a valid construction for
SF and ISF, but the complexity varies.

As an example, consider a rate 1/2 recursive system-
atic convolutional (RSC) code with generator matrix G =
[1, 1+D2

1+D+D2]. A simple SF-ISF construction can take the form
of:

SF: HT =

[
1 + D2

1 + D + D2

]

, (7)

ISF: (H−1)T =
[

1 + D, D
]

. (8)

Another equally simple construction is given by:

SF: HT =

[
1+D2

1+D+D2

1

]

, (9)

ISF: (H−1)T =
[

0, 1
]

. (10)

While there are many other valid constructions and while
they all fulfill the roles of SF and ISF, we would like to bring
special attention to the one given in (9) and (10). As illustrated
in Fig. 5, an interesting property about this specific ISF is that,
for any given syndrome sequence, it always finds the codeword
whose systematic bits are all zeros. For ease of proposition,
let us define this feature “zero-forcing”. We note that for any
systematic linear channel code, there exists a zero-forcing ISF
(and its matching SF). This is easily verifiable since linearity
in the code space ensures that every coset/bin contains one
(and only one) sequence with the all-zero systematic part.
As we will show later, exploiting the zero-forcing feature can
significantly simplify the SF-ISF construction for concatenated
codes.

B. SF-ISF Construction for Parallel Turbo Codes

Consider a typical parallel turbo code formed from two
component RSC codes connected by a random interleaver. Let
R1 = k/n1, R2 = k/n2, G1 = [Ik, P1] and G2 = [Ik , P2]
denote the code rates and the generator matrices of the first
and the second component RSC code, respectively, where Ik

is the k × k identity matrix for generating k systematic bits,
and P1 and P2 are k× (n1 −k) and k× (n2 −k) matrices for
generating (n1 − k) and (n2 − k) parity check bits of the first
branch and second branch. Since the systematic bits from the
second branch are a scrambled version of those from the first
branch, they are not transmitted. Hence, the overall code rate
is given by R = k/(n1+n2−k) = R1R2/(R1+R2−R1R2).

Let x denote a source sequence to be compressed. Since it
is viewed as a virtual codeword of this parallel turbo code, it
consists of three parts: the systematic bits from the first branch,
xs, the parity bits from the first branch, x1, and the parity
bits from the second branch, x2. Clearly, these three segments
can form two virtual sub codewords, [xs, x1] for the first
component code and [π(xs), x2] for the second component
code, where π(·) denotes the interleaving operation. On the
other hand, the length (n1 + n2 − 2k) syndrome sequence of
the turbo code can also be decomposed into two sub syndrome
sequences: s1 (of length (n1−k)) for the first component code,
and s2 (of length (n2 − k)) for the second component code.

-

-

-

@@I
B

BBM

D D

-

- - -
JĴ

?

u

x1

x2s

(a)

(b)

(c)

0

x1

x2

D D
x1

x2 s

- -

@@I
-h h

h �
�

�
�

h

-

C
CO

-

JĴ -

-

Fig. 5. A rate 1/2 RSC code with generator matrix G = [1, 1+D2

1+D+D2
]

and its SF and ISF. (A) The encoder. (B) The linear sequential circuit
implementation of a valid syndrome former HT = [1+D2

1+D+D2
, 1]T . (C)

The matching inverse syndrome former (H−1)T = [0, 1].

This observation leads to the natural idea of constructing the
SF and the ISF of the turbo code by concatenating those of
the component codes.

Following the discussion in the previous subsection, it is
easy to obtain a valid pair of SF and ISF for each of the
component RSC codes. Specifically, we limit the choice to
the zero-forcing SF-ISF pair for both component codes:

SF1 : HT
1 =

[
P1

I

]

n1×(n1−k)

, (11)

ISF1 : (H−1
1)T =

[

0, I
]

(n1−k)×n1

(12)

SF2 : HT
2 =

[
P2

I

]

n2×(n2−k)

, (13)

ISF2 : (H−1
2)T =

[

0, I
]

(n2−k)×n2

(14)

These sub SFs and ISFs are then used to form the overall SF
and ISF for the parallel turbo code, whose structures is shown
in Fig. 6.

It is easy to show that this construction is both valid and
efficient. For the syndrome former, with every (n1 + n2 − k)
data bits (a virtual turbo codeword) at the input, HT

1 produces
(n1 − k) sub syndrome bits and HT

2 produces (n2 − k) sub
syndrome bits, which combined form a length (n1 +n2 − 2k)
syndrome sequence at the output. Further, codewords in the
same coset are mapped to the same syndrome sequence
and a valid turbo codeword is always mapped to the all-
zero syndrome sequence. Hence, this represents a valid SF
formulation which can be efficiently implemented using linear

xs

x1

π

HT
2

s = [s1, s2]

s1

s2

HT
1

x2

x1

x2

(H−1
1)T

(H−1
2)T

[0, x1, x2]

s1

s2

0

0

(B)

-
-

-

-
-

?

-

-

(A)

-

-

-

Fig. 6. (A) The proposed SF for a general parallel turbo code. (B) The
matching ISF. Note that both of the sub ISFs, (H−1

1
)T and (H−1

2
)T , need

to be zero-forcing, and the interleaver between the two sub SFs is the same
interleaver that is used in the turbo code.

sequential circuits.
For the inverse syndrome former, we wish to emphasize

that the simple formulation in Fig. 6 is made possible by
the zero-forcing sub ISFs. Recall that the role of the (sub)
ISF is to find an arbitrary codeword associated to the given
syndrome sequence. However, in order for the two sub ISFs to
jointly form an ISF for the turbo code, they need to match each
other. By match, we mean that the systematic bits produced
by the second sub ISF need to be a scrambled version of
those produced by the first sub ISF. This seems to suggest
the following two sub-tasks. First, one needs to have control
over the exact codeword that each sub ISF produces; in other
words, an arbitrary mapping or an arbitrary ISF does not
work. Second (and the more difficult one), since a matching
pair of sub ISFs will be interleaver dependent, one needs
to find a general rule to guide a possible “match”. At first
sight, these sub-tasks appear difficult to solve. However, a
deeper investigation reveals that the zero-forcing sub ISFs
can fulfill both requirements simultaneously. Since the all-zero
systematic bits are invariant regardless of what interleaver is
used, zero-forcing sub ISFs thus offers a simple solution to
solve the potential “mismatching” problem for all interleavers!

C. SF-ISF Construction for Serial Turbo Codes

Serial turbo codes, as an extension to parallel turbo codes,
have exhibited equally remarkable error correcting perfor-
mance. Before proceeding to discuss their SF-ISF construc-
tion, we note that a serial turbo code, or more generally a
serially concatenated code, needs to have a recursive inner

code in order to achieve interleaving gain1 [27]. Here we focus
on serial turbo codes whose inner codes are both recursive and
systematic. Again, the key is to exploit the sub SF-ISF pairs
of the component codes.

While the general idea is the same, the case of serial turbo
codes is slightly more difficult, especially the construction of
the inverse syndrome former. Let us consider a serial turbo
code formed of an outer convolutional code (not necessarily
recursive nor systematic) with rate Ro = k/no and generator
matrix Go, a random interleaver (denoted as π), and an inner
RSC code with rate Ri = no/n and generator matrix Gi =
[I, P], where I is an identity matrix. The overall code rate is
R = k/n = RoRi. For a block of k data bits, this serial turbo
code produces a codeword of n bits. Hence, the corresponding
syndrome sequence needs to contain n − k = (n − no) +
(no − k) bits. This suggests that a syndrome sequence s may
be formed from two disjoint parts: a sub syndrome sequence
of length (n−no) from the inner code, denoted as si, and a
complementary part of length (no−k) from the outer code,
denoted as so.

Consider a source sequence x of length n to be compressed
to its syndrome sequence s = [so, si]. For the (n, no) inner
recursive systematic convolutional code, the entire sequence
x can be viewed as a codeword that is formed from a length
no “systematic” part, xs, and a length (n−no) “parity” part,
xp. According to what we have discussed about convolutional
codes, the entire sequence x can thus be fed into the sub SF of
the inner code to generate si. For the outer code, note that only
the systematic part xs is relevant, i.e. xs is the codeword of
the outer code. Hence, xs, after deinterleaving, can be fed into
the sub SF of the outer code to generate so. The combination
of si and so thus completes the entire syndrome sequence.
The overall structure of the SF for the serial turbo code is
illustrated in Fig 7(A).

The construction of a matching ISF is less obvious. Let us
first present the structure before explaining why it works. As
illustrated in Fig 7(B), a valid ISF that matches to the above
SF consists of four parts: the sub ISFs of the outer and the
inner component code, (Ho

−1)T and (Hi
−1)T , the random

interleaver, π, and the (sub) encoder of the inner code, Gi.
Similar to the case of parallel turbo codes, the interleaver is
the same interleaver that is used in the serial turbo code, and
the sub ISF of the inner RSC code is a zero-forcing one: i.e.,
(Hi

−1)T = [0, J], where J is a square matrix.
Below we prove its validity by showing that the output

of this ISF (i.e. the virtual codeword), when fed into the
SF in Fig. 7(A), will yield the original syndrome sequence.
Mathematically, this is to show that, for a given sequence x

in the codeword space, where x = [xs, xp] = ����� ([so, si]),
we have

��� ([xs, xp]) =⇒ [so si], (15)

1To be precise, a serially concatenated code needs to have an inner code
which is recursive, an outer code (not necessarily recursive) which has a
minimum distance of at least three, and a random interleaver between them
in order to achieve interleaving gain on codeword error rate [27].

where the notation ��� (a) =⇒ b denotes that the SF will
produce b at the output for a at the input. Similar notations
will also be used for ����� (·), � −1

i (·) and the like.
Notice that [xs, xp] = [x̂s, x̂p]⊕ [x̄s, x̄p] (see Fig. 7(B)).

By the linearity of the syndrome former, we have

��� ([xs, xp]) = ��� ([x̂s, x̂p]) ⊕ ��� ([x̄s, x̄p]). (16)

Since [x̂s x̂p] is a valid codeword of the inner code Gi, the sub
syndrome former (Hi)

T will map it to the all-zero syndrome
sequence, i.e.

� T
i ([x̂s, x̂p]) =⇒ 0. (17)

Since HT
i and (H−1

i)T are a valid SF-ISF pair, we have

� T
i ([x̄s, x̄p]) = � T

i

(

(� −1
i)T (si)

)

=⇒ si. (18)

Gathering (16), (17) and (18), we have

� T
i ([xs, xp]) =⇒ si. (19)

On the other side, since x̄s is an all-zero vector, xs is
identical to x̂s. Since Gi is a systematic encoder, we can see
from Fig. 7(B) that

xs = x̂s = w̃ = π(w) = π
(

(� −1
o)T (so)

)

, (20)

that is, xs is precisely the interleaved version of the output
from the sub ISF (H−1

o)T for which the input is so. Hence,
passing xs into the deinterleaver and subsequently the sub SF
HT

o will reproduce so. This is exactly what the upper branch
of the SF in Fig. 7(A) performs:

� T
o

(

π−1
(
xs

))

= � T
o

(

π−1
(

π
(

(� −1
o)T (so)

)))

=⇒ so.

(21)
Comparing (19) and (21) with the SF structure in Fig. 7(A),

it becomes clear that (16) is satisfied. Hence, the proposed SF-
ISF construction still holds for serial turbo codes.

V. COMMENTS ON THE PROPOSED SF-ISF APPROACH

The proposed SF-ISF approach provides a method for the
direct exploitation of the binning idea discussed in Section
II. For memoryless binary symmetric sources, the approach is
clearly optimal, as is guaranteed by the intrinsic optimality of
the binning concept [2]. It is worth noting that this optimality
holds for infinite block sizes as well as finite block sizes.
(A constructive example demonstrating the optimality of the
binning approach for finite block sizes can be found in [6].)

The construction of the syndrome former and the inverse
syndrome former we demonstrated is simple and general. All
operations involved are linear and reside in the binary domain,
thus allowing cheap and efficient implementation using linear
sequential circuits.

Besides simplicity and optimality, a particularly nice feature
about the proposed SF-ISF scheme is its direct use of an
existing (powerful) channel code. This allows the rich results
available in the literature on channel codes to serve immedi-
ately and directly the DSC problem at hand. For example, a
turbo code that is known to perform close to the capacity on
BSC channels will also perform close to the theoretical limit

π−1 HT
o

HT
i

xs

xp

so

si-
-

-

-

- -

(A)

π

w

0
si

so w̃

(H−1

i)T

x̄p

(H−1
o)T

x̂p
[xs xp]

x̂s

Gi

-

--

�
�

�
�

?

-

-
-

6

(B)

Fig. 7. (A). The proposed SF for a general serial turbo codes with a RSC
inner code. (B). The matching ISF. Note that the inner sub ISF, (H−1

i
)T ,

needs to be zero-forcing.

for the DSC problem with binary “BSC-correlated” sources
(i.e. P (X 6= Y) = p). Using a stronger component code (one
that has a longer memory size and/or a better generator matrix)
or simply increasing the codeword length (i.e. exploiting the
interleaving gain of the turbo code) will achieve a better
compression rate. In addition to conventional binary turbo
codes, asymmetric turbo codes (which employ a different
component code at each branch) (e.g. [23]) and nonbinary
turbo codes, which are shown to yield better performances,
can also be exploited for capacity-approaching DSC.

The last comment is on the generality of the proposed
approach. Clearly, the proposed source encoder and source
decoder are applicable to any binary linear channel code. The
proposed SF-ISF formulation has further paved the way for
concatenated codes, breaking the tricky task of constructing
the overall SF and ISF to a much simpler one of finding only
the relevant sub SFs and sub ISFs of the component codes.
This allows many powerful serially and parallelly concatenated
codes to be readily exploited in DSC. In addition to the afore-
discussed case of parallel and serial turbo codes, block turbo
codes, also known as turbo product codes or, simply, product
codes, are another good example. Product codes are formed of
arrays of codewords from linear block codes (i.e. component
codes) in a multi-dimensional fashion [21]. Depending on
whether there are “parity-on-parity” bits, a 2-dimensional
product code can be equivalently viewed as a serial (i.e.
with “parity-on-parity”) or a parallel (i.e. without “parity-on-
parity”) concatenation of the row code and the column code.
Since the component codes of a product code are typically
(simple) systematic linear block codes such as Reed-Solomon
codes, BCH codes, Hamming codes and single-parity check
codes, sub SFs and sub ISFs are easy to construct. Further,
since many product codes can be efficiently decoded on binary

TABLE I

PERFORMANCE OF THE PROPOSED SF-ISF SCHEME USING PARALLEL

TURBO CODES

Crossover Prob. Distortion
p nπ = 103 nπ = 104

0.10 0 0
0.11 1.5 × 10−6 0
0.14 8.0 × 10−4 0

0.145 4.0 × 10−3 6.7 × 10−7

0.155 3.5 × 10−2 4.2 × 10−3

symmetric channels (BSC), for example, using the majority
logic algorithm or the binary bit-flipping algorithm, they can
potentially find great application in distributed compression
where sources are binary and BSC-correlated. To the best of
the authors’ knowledge, this is the only work thus far that has
provided a DSC formulation for product codes.

VI. SIMULATIONS

Despite the theoretical optimality of the proposed SF-ISF
approach, computer simulations are needed to provide a true
evaluation of its performance. In this section, we present the
results of the proposed approach using rate-1/3 parallel turbo
codes and rate-1/4 serial turbo codes. Appropriate clip-values
are also used in the simulation to avoid numerical overflows
and/or downflows in decoding.

The 8-state parallel turbo code considered has the same
component codes as those in [15], [18]: G1 = G2 =
[1, 1+D+D2+D3

1+D2+D3]. A length 104 S-random interleaver with a
spreading factor 17 and a length 103 S-random interleaver with
a spreading factor 11 are used in the code, and 10 decoding
iterations are performed before the turbo decoder outputs its
estimates.

Table I lists the simulation results where nπ denotes the
interleaver length. The interleaving gain can be easily seen
from the table. If a normalized distortion of 10−6 is con-
sidered near-lossless, then this parallel turbo coding scheme
with an interleaver length 104 can work for BSC-correlated
sources with a correlation of P (X 6= Y) = p = 0.145.
Since the compression rate is 2/3, there is a gap of only
2/3−H(0.145) = 0.07 bit/symbol from the theoretical limit.
This gap is comparable to, in fact slightly better than, those
reported in [18] and [15], which are about 0.09 and 0.15
bit/symbol, respectively. It should be noted that in [18] and
[15], the same turbo code with the same interleaver size is
used, but the code rate is different.

In addition to conventional binary turbo codes, asymmetric
turbo codes which employ a different component code at
each branch are also tested for capacity-approaching DSC.
Asymmetric turbo codes bear certain advantages in joint
optimizing the performance at both the water-fall region and
the error floor region [23]. We simulated the NP16-P16 (non-
primitive 16-state and primitive 16-state) turbo code in [23]
where G1 = [1, 1+D4

1+D+D2+D3+D4] and G2 = [1, 1+D+D2+D4

1+D3+D4].
A length 104 S-random interleaver with a spreading factor
17 is applied and 15 turbo decoding iterations are performed.

TABLE II

PERFORMANCE OF THE PROPOSED SF-ISF SCHEME USING SERIAL

TURBO CODES

p Distortion
0.13 1.6 × 10−5

nπ = 2 × 103 0.15 3.3 × 10−5

0.16 9.0 × 10−5

0.165 5.0 × 10−4

p Distortion
0.17 7.6 × 10−7

nπ = 2 × 104 0.174 8.6 × 10−7

0.176 1.6 × 10−5

0.178 3.5 × 10−4

Simulation results show that the proposed scheme provides a
distortion of 3.4 × 10−7 when p = 0.15. This translates to a
gap of only about 0.06 bit/symbol from the theoretical limit.

For the proposed SF-ISF scheme with serial turbo codes,
we simulated a rate 1/4 serial turbo code whose outer
code and inner code are given by generator matrices Go =
[1, 1+D+D2+D3

1+D2+D3] and Gi = [1, 1
1+D

], respectively. A length
2 × 103 S-random interleaver with a spreading factor 15 and
a length 2× 104 S-random interleaver with a spreading factor
40 are used, and 10 decoding iterations are performed. The
results are shown in Table II. At a normalized distortion of
10−6, we see that this serial turbo coding scheme with an
interleaver size 2× 104 can work for BSC-correlated sources
of p = 0.174. The gap from the theoretical limit is only
1−R−H(p) = 1−3/4−H(0.174) = 0.08 bit/symbol, which
is again among the best results reported so far. For example,
the DSC scheme using a rate 1/3 serial turbo code proposed
in [19] has a gap of around 0.12 bit/symbol to the theoretical
limit. The serial turbo code therein used specifically designed
component codes, a length 105 S-random interleaver with a
spreading factor of 35, and 20 decoding iterations [19].

VII. CONCLUSION

This paper considers asymmetric compression for noiseless
distributed source coding. An efficient SF-ISF approach is
proposed to exploit the binning idea for linear channel codes
in general and concatenated codes in particular. For binary
symmetric sources, the proposed approach is shown to be
simple and optimal. Simulation using serial and parallel turbo
codes demonstrates compression rates that are very close to
the theoretical limit. In light of the large amount of literature
that exists on powerful linear channel codes and particularly
capacity-approaching concatenated codes, the proposed ap-
proach has provided a useful and general framework that
enables these channel codes to be optimally and efficiently
exploited in distributed source coding.

While the discussion in the paper has demonstrated the
efficiency of the proposed scheme, many interesting problems
remain to be solved. For example, instead of revoking to time-
sharing, is there an optimal way to perform symmetric DSC to
achieve a rate-vs-load balance? The works of [15], [12], [13]
have certainly shed useful insight, but how about a general
linear channel code? Notice that most of the works thus far

have focused on uniform sources, but nonuniform sources
are not uncommon in reality. For example, many binary
images (e.g.. facsimile images) may have a source distribution
as biased as p0 = 0.96 and p1 = 0.04 [28]. For most
communication and signal processing problems, nonuniform
sources are not a concern since entropy compression can
be performed to balance the source distribution prior to the
intended task. For distributed source coding, however, such a
pre-process will either ruin the inter-source correlation or make
the correlation analytically intractable and, hence, is not possi-
ble. It has been shown in [28] that for nonuniform sources, the
conventional algebraic binning approach that uses the fixed-
length syndrome sequences as the bin-indexes is no longer
optimal, and that a better approach should use variable-length
bin-indexes. Are their other and hopefully better approaches?
Nonbinary sources are also interesting [29]. Shall we employ
nonbinary codes like turbo codes over GF (q) or over rings,
or are binary codes sufficient? How about adaptive DSC? Can
we make use of punctured turbo codes and/or rate-compatible
turbo codes with the proposed approach? How to construct
IS-ISF pairs for punctured codes? These are only a few of the
many interesting issues that need attention.

REFERENCES

[1] A. D. Wyner. Recent results in the shannon theory. IEEE Trans. Inform.
Theory, pages 2–10, Jan. 1974.

[2] D. Slepian and J. K. Wolf. Noiseless coding of correlated information
sources. IEEE Trans. Inform. Theory, pages 471–480, July 1973.

[3] Y. Oohama and T. S. Han. Universal coding for the slepian-wolf data
compression system and the strong converse. IEEE Trans. Inform.
Theory, 40:1908–1919, Nov. 1994.

[4] A. Wyner. On source coding with side information at the decoder. IEEE
Trans. Inform. Theory, 21:294–300, May 1975.

[5] S. Shamai and S. Verdu. Capacity of channels with side information.
European Trans. Telecommun, 6:587–600, Sep.-Oct. 1995.

[6] S. S. Pradhan and K. Ramchandram. Distributed source coding using
syndromes (DISCUS): Design and construction. IEEE Tran. Inform.
Theory, pages 626–643, Mar. 2003.

[7] S. Servetto. Quantization with side information: lattice codes, asymp-
totics, and applications in wireless networks. IEEE Trans. Inform.
Theory, submitted to, 2002.

[8] R. Zamir, S. Shamai, and U. Erez. Nested linear/lattice codes for
structured multiterminal binning. IEEE Trans. Inform. Theory, pages
1250–1276, June 2002.

[9] A. Liveris, Z. Xiong, and C. N. Georghiades. Compression of binary
sources with side information at the decoder using LDPC codes. IEEE
Communications Letters, 6:440–442, Oct. 2002.

[10] G. Caire, S. Shamai, and S. Verdu. A new data compression algorithm
for algorithm for sources with memory based on error correcting codes.
Proc. IEEE Inform. Theory Workshop, pages 291–295, June 2003.

[11] J. Muramatsu, T. Uyematsu, and T. Wadayama. Low density parity
check matrices for coding of correlated sources. Proc. IEEE Inform.
Theory Workshop, pages 173–176, June 2003.

[12] D. Schonberg, K. Ramchandran, and S. S. Pradhan. Distributed
code constructions for the entire Slepian-Wolf rate region for arbitrary
correlated sources. Proc. IEEE Data Compression Conference, pages
292–301, March 2004.

[13] V. Stankovic, A. D. Liveris, Z. Xiong, and C. N. Georghiades. Design
of Slepian-Wolf codes by channel code partitioning. Proc. IEEE Data
Compression Conference, pages 302–311, March 2004.

[14] R. Hu, R. Viswanathan, and J. Li. A new coding scheme for the noisy-
channel Slepian-Wolf problem: Separate design and joint decoding.
Proc. IEEE GLOBECOM, Nov. 2004.

[15] J. Garcia-Frias and Y. Zhao. Compression of correlated binary sources
using turbo codes. IEEE Communications Letters, pages 417–419, Oct.
2001.

[16] A. Aaron and B. Girod. Compression with side information using turbo
codes. Proc. of IEEE Data Compression Conference (DCC), April 2002.

[17] J. Bajcsy and P. Mitran. Coding for the slepian-wolf problem with turbo
codes. Proc. of IEEE Globecom, Nov 2001.

[18] A. D. Liveris, Z. Xiong, and C. N. Georghiades. Distributed compression
of binary sources using conventional parallel and serial concatenated
convolutional codes. Proc. of IEEE Data Compression Conference
(DCC), Mar. 2003.

[19] I. Deslauriers and J. Bajcsy. Serial turbo coding for data compression
and the Slepian-Wolf problem. Proc. IEEE Inform. Theory Workshop,
June 2003.

[20] Z. Tu, J. Li, and R. Blum. Compression of a binary source with side
information using parallel concatenated convolutional codes. Proc. IEEE
GLOBECOM, Nov 2004.

[21] R. M. Pyndiah. Near-optimum decoding of product codes: block turbo
codes. IEEE Trans. Commun., 46, No. 8:1003–1010, Aug. 1998.

[22] A. Liveris, Z. Xiong, and C. N. Georghiades. Compression of binary
sources with side information using low-density parity-check codes.
Proc. GLOBECOM, pages 1300–1304, Nov. 2002.

[23] O. Y. Takeshita, O. M. Collins, P. C. Massey, and D. J. Costello Jr. A
note on asymmetric turbo codes. IEEE Comm. Letters, 3:69–71, March
1999.

[24] I. Csiszar. Linear codes for sources and source networks: error
exponents, universal coding. IEEE Trans. Inform. Theory, 28:585–592,
July 1982.

[25] J. Li, Z. Tu, and R. S. Blum. How optimal is algebraic binning approach:
a case study of the turbo-binning scheme. Proc. 38th Annual Conf. on
Inform. Sciences and Systems, March 2004.

[26] JR G. D. Forney. Trellis shaping. IEEE Trans. Inform. Theory, pages
281–300, Mar. 1992.

[27] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara. Serial concate-
nation of interleaved codes: performance analysis, design and iterative
decoding. IEEE Trans. Inform. Theory, pages 909–926, May 1998.

[28] J. Li, Z. Tu, and R. Blum. Slepian-Wolf coding for nonuniform sources
using turbo codes. Proc. IEEE Data Compression Conf., pages 312–321,
March 2004.

[29] Y. Zhao and J. Garcia-Frias. Joint estimation and data compression of
correlated non-binary source using punctured turbo codes. Proc. Conf.
on Inform. Sciences and Systems, March 2002.

