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Abstract— We investigate the self error resilience of practi-
cal distributed source coding (DSC) approaches at the pres-
ence of residual transmission errors. It is firstly shown that
the existing asymmetric syndrome-former inverse-syndrome-former
framework (ASIF), although simple, general and optimal for
the noiseless-channel case, is not sustainable to transmission
errors. The vulnerability stems from the underlying binning
approach. Using ideas from channel coding, we illuminate a subtle
relation between the binning approach and the parity approach,
and demonstrate, through the examples of convolutional codes,
how the former can be transformed to the latter for stronger self
error resilience. Simulation results confirm that the new scheme
is much more robust and less error-sensitive than the existing
ASIF scheme.

I. INTRODUCTION

Consider multiple physically-separated non-communicating
sources sending statistically-correlated data to a common
destination. Using the binning argument, Slepian and Wolf
established the achievable rate region for distributed com-
pression (but joint de-compression) [1]. Succeeding research
reveals that practical solutions to distributed source coding
(DSC) lie in channel codes. Excellent formulations using
powerful linear channel codes, and particularly low density
parity check (LDPC) codes (e.g. [2]- [4]) and turbo codes
(e.g. [5]- [9]), have been developed, some of which are shown
to be (asymptotically) optimal.

A majority body of the work considers noiseless channels.
Implicit in this model is the assumption that perfect channel
coding is performed at the edge of the transmission chan-
nel/network. However, practical channel codes are imperfect.
The existence of residual errors could therefore compromise
the efficiency of the source coding mechanism.

This paper concerns the error resilient capability of a
general and efficient Slepian-Wolf coding approach, formerly
known as the asymmetric SF-ISF framework (ASIF) [9]. By
exploiting the syndrome former (SF) and inverse syndrome
former (ISF) of a linear channel code, the ASIF approach is
shown to be capable of converting any linear channel code
to an asymmetric Slepian-Wolf code (i.e. general), and, if the
channel code is capacity-approaching on the virtual channel
characterized by the source correlation, then the resulting
Slepian-Wolf code can get arbitrarily close to the corner
points of the Slepian-Wolf boundary (i.e. optimal) [9]. Unlike
the existing joint source-channel coding strategies [10]- [12]
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which considers the joint design of Slepian-Wolf compression
and error protection and which explicitly allocate rate for the
purpose of error protection, here we are primarily interested in
the “intrinsic” error resilient capability, or the robustness, of
the approach. Specifically, we wish to investigate the sensitiv-
ity of ASIF to the (residual) transmission errors and, without
explicitly allocating rate to error protection nor sacrificing the
simplicity and optimality of the scheme, to improve its self
error resilience.

As will be discussed in detail later on, ASIF is based
on the idea of code binning where compression is achieved
by mapping long sequences in the bin/coset to short bin-
indexes/syndromes. The binning practice is intrinsically vul-
nerable to transmission errors, since any residual error in the
bin-index results in a shift of the search space to a wrong
bin, making the decoding errors uncontrollable. By treating
syndromes as a special type of parity bits and introducing
simple modifications to the source decoder, we show how the
binning approach can be transformed to the parity approach
for improved self error resilience. For readability, we discuss
ASIF using simplest generalizable examples of convolutional
codes, but our results generalize to all the convolutional and
convolutional based codes such as turbo codes.

The remainder of the paper is organized as follows. Sec-
tion II reviews the background of DSC and presents the
system model of ASIF. Section III evaluates the robustness of
ASIF and proposes improved decoding strategies along with
simulation examples. Section IV concludes the paper.

II. BACKGROUND
A. System Model

We consider asymmetric DSC, where two memoryless bi-
nary symmetric sources X and Y are correlated by a virtual
binary symmetric channel (BSC) with a cross-over probability
py = P(Y # X). In a noiseless-channel DSC setup, Y is
assumed to be compressed at full rate and losslessly available
at the joint decoder, and X is compressed as much as possible:
R, — H(X]Y); see Figure 1. In the context of imperfect
transmission, without loss of generality, let us assume that
Y is also losslessly available at the decoder. This is because
the residual transmission errors in Y can be factored into the
correlation model. For example, a system with an error rate
of p. for Y is equivalent to one that has a zero transmission
error for Y but an inter-source correlation of P(Y # X )= p;/’
where p; = py + DPe — Pype. For the other source X, we
assume that its compressed version, .S, experiences a residual
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error probability of p,. Hence, the system model of interest
comprises a source X, which will be compressed using ASIF,
transmitted over a BSC(p;), and decoded with side information
Y, whose correlation with X is characterized by BSC(p,).

B. The Binning Approach and the Parity Approach

The fundamental idea of code binning [1] is to uniformly
group the 2" sequences from source X", each of length n,
into 2(®*) bins each indexed with a length (n — k) bin-
index sequence. Thus a compression ratio of n: (n—k) is
achieved by transmitting the bin-index instead of the original
sequence. At the decoder, the bin-index will be used to locate
the bin and the side information Y™ will be used to identify
the specific sequence in the bin. In practice, bins are often
constructed using an (n, k) linear channel code, where source
sequences X" are taken as virtual codewords, cosets as bins
and syndromes as bin-indexes [9]. For this reason, the binning
approach is also referred to as the syndrome approach. For
lossless transmission, the binning approach can achieve the
Slepian-Wolf limit (R, > H(X|Y'), R, > H(Y')) with zero-
distortion, provided that the (n,k) channel code in use is
capacity-achieving on the virtual channel [1].

Aside from the binning approach, the parity approach
has also been widely used in the practice of asymmetric
DSC. Consider an (n,k) systematic linear channel code. A
compression ratio of k : (n—k) can be achieved by encoding
source X * using the channel code, and sending the parity bits
instead of the systematic bits. The decoder will take Y* as
noisy systematic bits and perform channel decoding to recover
X*. The parity approach is conceptually simpler than the
binning approach; but the candidate code that will guarantee
a limit-approaching compression performance is less obvious.
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Fig. 1. Asymmetric distributed source coding
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Fig. 2. System model for the ASIF scheme.
C. ASIF

The asymmetric SF-ISF framework proposed in [9] presents
an explicit implementation of the binning approach, and is
therefore optimal. The syndrome former and inverse syndrome
former are modules that map the codeword space {X"} to
the syndrome space {S (n=F)1 and vice versa. Specifically,
the syndrome former finds the bin-index or syndrome for the
source sequence or a codeword; and the inverse syndrome
former assigns an arbitrary source sequence within that bin to
a given syndrome sequence or bin-index. As shown in Figure
2, the source encoder is simply the SF module, and the source
decoder consists of the matching ISF and the original channel

decoder. In the plot, S denotes the syndrome sequence (output
of SF) and ¢2(s) denotes an arbitrary codeword c associated
with syndrome sequence s (output of ISF).

A detailed discussion on constructing SF-ISF pairs for dif-
ferent codes can be found in [9]. For convolutional code with
rate k/n and generator matrix G, the SF can be implemented
via an n/(n —k) linear sequential circuit specified by an
n x (n—k) transfer matrix H? with rank (n—k) subject
to GHT =0, where 0, is the k-by-k all-zero matrix. The
matching ISF, (H *1)T, can be obtained by taking the left
inverse of the syndrome former, H”, i.e. (Hil)THT =1, &
where I, is an identity matrix with rank (n—k).

For a given code, there are more than one valid pair of
SF and ISF. The exact formulations of these SF-ISFs usually
depend on the code and therefore lack a common form. One
exception to the latter is what we referred to as the universal
SF-ISF pair. For a rate k/n convolutional code with generator
matrix G(D) consisting of kxn generator polynomials, divide
the generator matrix into into a k x k square part P(D) in
the left and a k x (n—Fk) part QD) in the right: G(D) =
[P(D),Q(D)]. The universal SF-ISF pair takes the form of

-1
nXx(n—k)
ISF:  (H HT =]o, I](nfk)xn’ )

where 0 and I denote the all-zero matrix and the identity
matrix, respectively. One interesting property of this universal
SF-ISF pair is that, for a given length n—k syndrome, the ISF
always finds, in the respective bin, a sequence whose first k
bits are zeros and the latter n—k bits are the syndrome itself.

IIT. ROBUSTNESS OF ASIF IN NOISY ENVIRONMENTS

The binning approach is inherently vulnerable to errors,
since any error in the syndrome will result in a shift of the
bin in which the decoder searches for the correct sequence
z". Hence, although the side information y” may help locate
the correct relative position within a bin, there is no way to
recover the correct sequence in a wrong bin.

To examine the impact of syndrome errors (and bin shifts)
on the performance of ASIF, we conduct a test on a rate 1/2
recursive systematic convolutional (RSC) code with generator
matrix G = [, w]. We start with the simple

. . 1®D®D4 . .
universal “systematic” SF-ISF construction in (1) and (2):

16D*¢D3@D*
SF : HT = [ 1®D1€9D4 } , 3)
ISF:  (H )" =70, 1]. 4)

A. ASIF Using Systematic SF-ISF Pair

The first question we ask is, when residual transmission
errors exist in the syndrome but the source decoder has no
knowledge of it or no means of exploiting this knowledge,
how severely will the performance be impaired? The situation
corresponds to “blind” source decoding where the input to
the ISF module (see Figure 2) is considered noiseless and
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the input to the Channel Decoder module is treated as a
BSC(py) corrupted codeword. We tested two strong correlation
cases with p, = 0.005 and 0.01. The normalized distortions
of the recovered sequences, =™, obtained using computer
simulation, are listed in Table I. For convenience, we refer to
this scheme as “ASIF-S”, where “S” stands for “systematic”
SF. We observe that with error-free syndrome transmission
(i.e ps = 0), the source decoder is capable of near-lossless
recovery of z™ with a normalized distortion of 107> or less.
However, the distortion rises rapidly as soon as errors appear
in the syndromes: at a small percentage of syndrome error
ps = 0.5%, the distortion has already increased by more than
2 magnitudes.

TABLE I
RESULTS FOR ASIF-S, BLIND DECODING
Distortion ps=0 .005 .010 .015 .020
py =.005 4.006e-6 | 2.455e-3 5.07e-3 7.31e-3 1.05e-2
py=.010 1.628e-5 2.66e-3 5.135e-3 | 7.57e-3 | 1.0135e-2
TABLE 11
RESULTS FOR ASIF-S, ps KNOWN TO THE DECODER
Distortion ps=0 .005 .010 015 .020
py =.005 3.5679¢e-6 | 2.525e-3 | 5.527e-3 7.62e-3 1.054e-2
py =.010 1.4787e-5 | 2.485e-3 | 5.065e-3 | 7.905e-3 | 1.023e-2
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Fig. 3.
We suspect that the (virtual) channel mismatch contributes
in part to the large distortion. To rectify this, in our second
test, we equip the source decoder with p;, the residual error
rate of the syndromes.Using a simple analysis on ASIF-S,
it is easy to show that the input to the Channel Decoder
module remains to be a BSC corrupted codeword, but now
the crossover probability becomes (%pS +py— %pspy) instead
of p,. We expect the source decoder to benefit from the
correctly-adjusted crossover probability; but the simulation
results demonstrate no observable improvement; see Table II.
Comparing the results in Tables I and II, we see that
the distortion levels in both cases are to the same order as
ps for ps > 0 (more precisely, when a rate k/n code is
used, the distortions are approximately (n—k)/n of p,). This
phenomenon becomes easy to explain when we redraw ASIF
in Figure 2 using the actual channel code and the SF-ISF
pair. As shown in the equivalent system diagram in Figure 3,
although the knowledge of p, contributes to better decoding
results from the convolutional channel decoder, the final result
from the source decoder is the sum of the convolutional
decoder output and the ISF output, [0, §]. The involvement of
the syndrome, S, brings back the error rate. A more rigorous
analysis of the distortion level can be obtained by working
through the validity proof of ASIF:
When syndrome transmission is noiseless (ps =0), the side
information y is viewed as a noisy version of source x: y =
x®n,, where n, follows Bernoulli distribution with P(n, =

ASIF using a systematic syndrome former (ASIF-S).

1) = p,. Assume z is associated with the syndrome sequence

s: xécl (s). The SF module in the source encoder (see Figure
2) will thus map (compress) z to s, and the ISF in the source
decoder will map s back to a sequence in that bin, ca(s). The
input to the Channel Decoder module in Figure 2 [9]:

Yy D ca(s) (x @ ny) ® ca(s)
e1(5) @ ea(s) ®ny, 5)
—————

c3(0)

where ¢3(0) denotes a valid codeword of the channel code
(since it has the all-zeros syndrome). Hence, if the channel
code is powerful enough to combat the noise n,, it will recover
¢3(0) with a vanishing error probability. Since ¢3(0) = ¢1(s)®
c2(8) = = @ c2(s), adding the ISF output c3(s) back to c3(0)
at the end of the source decoder yields the original sequence:
Z=1c3(0) + ca(s) = . B ca(s) D ca(s) = a.

However, at the presence of the syndrome noise (ps > 0),
the output from the ISF becomes c4(s & ns), where P(n, =
1) = ps. Thus, Equation (5) becomes:

T D ny ®ch(s®ns)
c1(s) @ ca(s) ®ny ® ), (6)
—_——

c3(0)

y D ca(s®ng)

where n/, is the output from the ISF with input ns. When
the universal ISF, (H~1)” = [0,1], is used, we have n/, =
[0,n4] (for convenience, we assume they are represented in
row vectors). The final decoder result is affected in two ways.
First, the channel decoder needs to combat a combination of
two types of noise, n,, and n/, to recover c3(0). Second, the
output of the source decoder, £=c3(0)® c5(s®ns)=c1(s)®
n, = x® [0,n4], now yields a noisy version of the original
source sequence, and the distortion is dominated by ns which
has non-zero probability p;.

B. New Scheme

The experiments in the previous subsection indicate that
ASIF is sensitive to syndrome errors, largely due to the
module-2 addition after the channel decoder. Below we pro-
pose an improved decoding strategy that can considerably
improve the robustness of the system. The idea is motivated
by the distributed source coding procedure for LDPC codes.

Let us provide a quick overview of the LDPC Slepian-Wolf
formulation. An (n, k) LDPC code is described by an m x n
parity-check matrix H, where m = n — k, and decoded using
the well-known message-passing decoding algorithm. In the
context of DSC, source encoding is performed by multiplying
the source sequence x™ with H, ie. H assumes the role
of the syndrome former in Figure 2. Although it is also
possible to explicitly construct a matching ISF and perform
source decoding as depicted in Figure 2, a popular approach
is to first construct an extended parity check matrix, H.,,
by concatenating an m x m identity matrix to the original
parity check matrix H: Heyzt = [Hpxn, Im), and subsequently
apply the message-passing algorithm on H.,; to recover a
valid codeword [z™, s™] from the noisy version [y™, s™]. By
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incorporating the syndrome sequence in channel decoding, this
latter decoding strategy can efficiently combat the errors in the
syndrome.
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Fig. 4. New scheme using a systematic syndrome former (NEW-S).
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Fig. 5. Comparison of the channel decoders in ASIF-S and NEW-S.

At first sight, it appears that the above LDPC-DSC for-
mulation relies on the unique features of an LDPC code
(random parity check matrix and message-passing decoding),
and is therefore hard to generalize. For example, how does the
Berlekamp-Massey decoding algorithm of the RS code make
use of the syndrome information? A closer look reveals that the
fundamental idea behind it is in fact general. From the coding
theory, one realizes that syndromes can also be viewed as a
special type of parity bits. Hence, the LDPC-DSC formulation
can be interpreted in two ways: the binning approach using an
(n, k) LDPC code, and the parity approach using an (2n—k, n)
low-density generator-matrix (LDGM) code. (An LDGM code
is a special type of linear-time encodable LDPC codes whose
parity check matrix comprises an random sparse matrix on the
left and an identity matrix on the right.) This suggests that the
binning approach can be naturally transformed to the parity
approach (and vice versa), and the latter may be more robust
to residual transmission errors.

Now consider our previous example of convolutional codes.
The syndrome former can be taken as a special class of
convolutional codes with input z", output s"~*, generator
matrix H7 and rate n/(n—k) > 1. That is, s"~% can be
viewed as convolutionally coded bits, or simply, parity bits,
for x™. The decoder can then treat [y™, 3" %] as a noisy
copy of the codeword [z, s"~¥] from an extended systematic
convolutional code with input 2", generator matrix [I, H7]
and rate n/(2n — k) < 1.

Using the same example in Figure 3, we plot in Figure 4
the corresponding new scheme. Since a “systematic” syndrome
former is used, we refer to it as “NEW-S”.

We see that the original ASIF scheme in Figure 3 is a
typical binning approach based on a rate 1/2 (or k/n in
general) convolutional code, whereas the modified scheme
in Figure 4 can be viewed as a parity approach using a
rate 2/3 (or n/(2n — k) in general) convolutional code. The
differences of the channel decoders in the two schemes are
illustrated in Figure 5. Like the LDPC-DSC formulation, the
new scheme efficiently incorporates the syndrome in channel

decoding, making the errors in the syndrome as correctable as
the difference between sources X and Y.

The simulation results of the modified scheme in Figure
4 is presented in Table III. It appears somewhat surprising
that the gains are quite marginal. This however is due to the
artifact of the choice of the syndrome former. As we will show
later, when a more appropriate SF is used (which leads to a
better rate 2/3 (or n/(2n—k) in general) convolutional code,
the modified scheme will exhibit considerable gains over the
existing scheme.

TABLE III
RESULTS FOR NEW-S
Distortion ps=0 0.005 0.01 0.015 0.02
py =.005 3.1808e-6 | 2.365e-3 2.58e-3 2.54e-3 2.54e-3
py=.010 1.507e-5 2.49e-3 5.135e-3 | 5.335e-3 | 4.905e-3

C. Choice of the Syndrome Former

To see why the “systematic” syndrome former in (1) is not a
good choice for the new scheme, consider the generator matrix
of the resulting rate n/(2n — k) code:

Ika 07
Oa In—kv

P1Q
In—k

Gnew:[-[7 HT]: (7)

nx(2n—k)
Notice that the data corresponding to the last n—k rows in
the generator matrix, i.e. z}, 1 participate in only one check
each. This weak protection makes bit flips in those positions
hard to correct. We expect a stronger code would result by
eliminating the identity part in the syndrome former. This
can be done by multiplying the universal SF in (1) with a
non-trivial polynomial W (D). For the example we discussed
previously, it is convenient to multiply the SF in (3) with
W(D) = 1@ D@ D*, which yields a non-systematic SF (and
its matching ISF):

1¢D?*e D3 D*
- : T =
N-SF: H [ leDa D! , (8)
Matching ISF: (H-1)T = [1@1), D}. ©)
SF
i [ 1S s
H 1+ D?+ D® + D* i BSC(p) 27 31—,
hn | 0
BSC( Py) ™ 0 1 =

Fig. 6. New scheme using a non-systematic syndrome former (NEW-N).

The system diagram of the new scheme using the non-
systematic SF, referred to as “NEW-N”, is illustrated in Figure
6). As expected, the simulation results (Table IV) demonstrate
strong sustainability to transmission errors. For example, for
a syndrome error rate of 1072, the normalized distortion of
the new system stays at a low level of 10~#, which is about
2 magnitude lower than the previous cases.

The encouraging results of the new scheme also motivates
us to investigate whether the choice of the SF-ISF pair would
also affect the decoder robustness in the original ASIF scheme.
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These results, referred to as NEW-S, are listed in Table IV.
We observe that different SF-ISF choices affect but slightly
the decoder performance in the presence of syndrome errors.
Unlike the modified scheme, the non-systematic SF-ISF pair
here appears to be (slightly) more sensitive to errors than the
systematic SF-ISF.

D. Summary of the Simulation Results

We plot the simulation results discussed previously (Table
I-IV) in Figures 7 and 8 for the case of p, =0.005 and 0.010,
respectively. The base channel code we use has a generator
matrix [1, (1&D?@ D3*@ D*) /(1@ D® D*)], which provides
a compression ratio of 2: 1. The x-axis denotes the level of
the residual errors in syndrome transmission and the y-axis
denotes the normalized distortion of the recovered data X.
The curves demonstrate that (1) the choice of the SF-ISF pair
affects the sensitivity of the decoder to the transmission errors,
and is more so with the new scheme than with the existing
ASIF scheme, and (2) while the existing ASIF approach is not
particularly resistant to the residual errors in the syndromes,
the new scheme, which is now based on the parity approach,
can be quite robust when used with an appropriate SF (i.e.
non-systematic SF).

IV. CONCLUSION

We have investigated the self error-resilience of the practical
binning-based DSC approach at the presence of transmission
errors. Using convolutional codes as an illustrating example,
we show that the existing ASIF scheme is not sustainable
to residual syndrome errors and the vulnerability stems from
the underlying binning approach. Motivated by the ideas from
channel coding and particularly the LDPC-DSC formulation,
a modified source decoding strategy is proposed, which can
efficiently combat the residual transmission errors when used
with an appropriate syndrome former.

Through absorbing the syndrome sequences in channel
decoding, the modified scheme has essentially transformed the
binning approach, or the syndrome approach, to the parity
approach. From the source coding point of view (i.e. lossless
transmission), the binning approach is provenly optimal: it
achieves the Slepian-Wolf limit when used with a capacity-
approaching channel code. It is also possible to achieve the
Slepian-Wolf limit using the parity approach, but what channel
code to use is less obvious. On the other hand, when there are
residual transmission errors, the parity approach appears to
have some advantage over the binning approach. The work
in this paper helps illuminate the subtle relation between the
binning approach and the parity approach.
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