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Abstract— We conduct an information theoretic analysis for
the adaptive-network-coded-cooperation (ANCC) protocol over
large wireless relay networks. The ANCC protocol adaptively
encodes the data from different terminals using a single network
code by matching the instantaneous network topology with the
code graph of a low-density-parity-check (LDPC) code. The
ergodic capacity and the outage probability of this protocol are
analyzed for both finite and infinite network sizes, and closed-
form expressions are derived for the infinite case. Comparison
with the existing protocols including repetition and space-time-
coded-cooperation confirm that ANCC is both low-complexity
and high-performance.

I. INTRODUCTION

User cooperation is an effective technique to combat (slow)

channel fading in single-antenna multi-user wireless systems,

where the transmit terminals are allowed to share antennas to

form a virtual antenna array. Early researches focus on the

protocols for the 3-terminal basic scenario, such as repetition,

coded-cooperation and space-time-coded-cooperation (STCC)

[1]. Motivated by the potential to achieve a larger diversity

gain, user cooperation in the context of large wireless net-

works is gaining increasing interests [2][3]. However, existing

schemes do not scale well, and are therefore inefficient, expen-

sive or wasteful to operate in a large network. For example,

the repetition protocol discussed in [2] becomes intolerably

bandwidth inefficient as the network size increases. Space-

time-coded-cooperation requires inter-user synchronization at

the symbol level [2], which is technically challenging espe-

cially among a large number of distributed terminals.

With the recent advances in cross-layer designs, network

coding [7][8], an extension and generalization of routing,

begins to find it way to user cooperation, an area predominated

by physical layer technologies. A number of papers emerged

recently, proposing network-coding-assisted cooperation pro-

tocols [3]-[6]. Most of them, however, use predefined, fixed
network codes [3]-[5], with the ideal assumption that the

transmission link between any two cooperating users is free

from outage. Since practical networks consisting of wireless

fading channels are subject to random link failure and topology

change, fixed network codes will therefore break. For example,

when a relay fails to retrieve a packet needed for its designated

coding operation, the entire network code will have to abort.

A natural remedy to this critical issue is adaptation. Having

a set of network codes, each mapped to a possible network

topology, is a possibility, but works only for small networks. A

more practical and efficient solution is to allow network codes
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to be generated distributedly, adaptively and on-the-fly, as is

proposed by the adaptive-network-coded-cooperation (ANCC)

protocol in [6]. The key idea here is to couple networks-
on-graphs, i.e. instantaneous network topologies described in

graphs, with the well-known class of codes-on-graphs, i.e.

low-density-parity-check (LDPC) codes and LDPC-like codes

[6].
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Fig. 1. (A) A network graph describing network topology. (B) The
corresponding bipartite code graph. (C) A thinned code graph.

To explain how ANCC works, let us take a simple but

generalizable example where 5 users A,B, C, E, F commu-

nicate to a common destination D. For convenience, we use

“packet” and “symbol” interchangeably. In the first phase, each

user broadcasts its wireless data. Assume that for the time

being, the inter-user connectivity is shown in Figure 1(A),

where a directed edge indicates a successful transmission

(destination D not shown). Without much manipulation, we

can transform this 5-node network graph to a bipartite code

graph that specifies a (10, 5) LDPC-like code, as illustrated in

Figure 1(B). In the code graph, the 5 black circles, 5 boxes and

5 white circles represent the source symbols originated from

the 5 users, the network coding operations to be performed

by these users, and the relay symbols to be forwarded by

these users, respectively. Hence, in the second phase, each

user can compute and forward the check-sum of its correctly-

decoded symbols, in a de-centralized and adaptive manner. A

small bit-map field will be included in each relay packet, so

that the destination knows how the checks are formed and

can correspondingly replicate the code graph and perform

message-passing decoding.

To make the message-passing algorithm effective, instead of

performing the check sum on all the decoded symbols, each

node can (randomly) pick only a few symbols, thus “thinning”

the code graph and eliminating the chances for short cycles.

For example, in Figure 1(A), user A and user E may ignore the

source symbol from user E and user C when performing their

respective coding operation. The new code graph, which now

happens to be free of length-4 cycles, is shown in Figure 1(C).

The efficiency and practicality of ANCC is initially demon-

strated in [6] by simulations. This paper performs information-

theoretic analysis in terms of both capacity and outage. For

comparison purpose, we also analyze repetition-cooperation
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and STCC. We test the impact of the number of users, and

evaluate the scalability of these protocols with network size.

In the boundary case where the network size goes to infinity,

closed-form capacity and outage expressions are derived for

all the three protocols. Our results provide a strong theoretic

support for the excellent performance of ANCC.
The remainder of the paper is organized as follows. Sec-

tion II presents the system model. The capacity and outage

for ANCC, STCC and repetition are analyzed in Section III,

IV and V, respectively. Numerical evaluation is discussed in

Section VI. Finally, Section VII concludes the paper.

II. SYSTEM MODEL

We consider m terminals transmitting data to a common

destination. The transmission can be divided into two phases.
In the first phase (broadcasting phase), the terminals broad-

cast their data in a round Robin fashion. In the second phase

(relaying phase), the terminals help forward each other’s data

using either repetition-cooperation, STCC or ANCC.
We assume that all the transmission channels follow block

fading model with channel fading coefficient α and additive

complex Gaussian noise Z with zero mean and variance N0.

We model α as zero-mean, independent, circularly symmetric

complex Gaussian random variables with unit variance, so the

magnitudes |α| is Rayleigh distributed, and the channel power

u = |α|2 is exponentially distributed with probability density

function (pdf)
pu(y) = e−y. (y > 0) (1)

The sum of n independent channel powers satisfies χ−square
distribution with pdf

pχ(y) =
yn−1

(n − 1)!
e−y. (y > 0) (2)

The transmit SNR γ is defined as γ = P/N0, where P is the

average power constraint of each terminal.
We assume that the fading coefficient α is known to the

receivers but not the transmitters. This implies that instanta-

neous power adaptation among different users or over different

time slots is not possible. Let decode-set, D(i), denote the

set of terminals that can successfully detect terminal i’s data,

and subscript (i, d) denote the channel from terminal i to the

destination.

III. ADAPTIVE-NETWORK-CODED-COOPERATION (ANCC)

In the ANCC protocol, in the second phase, each terminal

(randomly) selects a small number of others’ data that have

been correctly decoded, adds them together in the binary do-

main, and transmits them to the destination. At the destination,

the data from all the terminals in both transmission phases

form a systematic codeword, where the data transmitted in

the broadcasting phase are taken as the systematic bits, and

the data transmitted in the relaying phase are considered as

the parity bits. Thus, all the terminals’ data are encoded into a

single codeword of some network code in a distributed manner.

Unlike STCC, in ANCC, the synchronization among different

terminals is only needed at the packet level but not the symbol

level, which makes ANCC practical in implementation.

A. Mutual Information

In the ANCC protocol, each packet occupies 2 time slots;

hence, to normalize, both the mutual information and transmit

SNR need to be scaled down by a factor of 2. On the other

hand, each terminal transmits a different part of the network

codeword, which amounts to utilizing independent channels.

The total mutual information obtained in the second phase

equals the sum of m Shannon formulas with m terminals’

instantaneous SNR. Furthermore, since the network code pro-

vides equal protection (on average) to all the terminals, the

mutual information carried across in the second phase will

contributed evenly to each terminal. Consequently, we arrive

at the following result for the mutual information of ANCC

per terminal 1

Iancc =
1
2
log

(
1+

γ

2
|αi,d|2

)
+

1
2m

m∑
r=1

log
(
1 +

γ

2
|αr,d|2

)
. (3)

B. Ergodic Capacity

Following the definition in [9], the ergodic capacity of a

cooperation protocol is given by the expectation carried out

with mutual information of random channels. Since the mutual

information of ANCC is not related to a certain decode-set (see

(3)), we can write the ergodic capacity of ANCC directly as

the expectation of the mutual information on random channels

as follows:

Cancc = E[Iancc]. (4)

From (3), and since the expectation of a sum of random

variables is equal to the sum of the expectations of these

random variables, (4) becomes

Cancc

=
1
2

∫ ∞

0

log
(
1+

γ

2
y
)

e−ydy+
1

2m

m∑
r=1

∫ ∞

0

log
(
1 +

γ

2
y
)

e−ydy,

=
∫ ∞

0

log
(
1 +

γ

2
y
)

e−ydy = exp
(

2
γ

)
Ei

(
2
γ

)
/ ln(2), (5)

where Ei(.) is the exponential-integral function defined as

Ei(x) �
∫ ∞

x

e−t

t
dt. (x > 0) (6)

It is worth noting that the capacity (per terminal) of ANCC

is not a function of the network size m. This is because the

underlying assumption here (as well as in other papers in this

area) is that all the terminals transmit over their designated

time slots just as much information as promised by their

instantaneous single-channel capacities.

1Note that the network code in use is not necessarily optimal, but
each packet is assumed to be optimally channel coded. If the network
code is also optimal (which will hold for large m), then Iancc =
1
m

�m
r=1 log

�
1 +γ|αr,d|2

�
.
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C. Outage Probability

Outage probability, Γ(R), is defined as the probability

that a system fails to instantaneously support a predefined

information rate of R. Because the mutual information of

ANCC is unrelated to the decode-set, we can write the outage

probability from the definition directly as

Γancc(R) = Pr[Istcc < R],

=Pr

[
1
2
log

(
1+

γ

2
|αi,d|2

)
+

1
2m

m∑
r=1

log
(
1 +

γ

2
|αr,d|2

)
<R

]
.

(7)

To evaluate (7), we define

f1 � 1
2

log
(
1+

γ

2
ur

)
, (8)

where ur is an exponential random variable with unit variance.

From the Jacobi law, the pdf of f1 can be written as

pf1(y) =pu

(
f−1
1 (y)

) ∂f−1
1 (y)
∂y

=
4 ln(2)

γ
22ye−2(4y−1)/γ .

(9)

In addition, we define f2 � 1
2m

log
(
1+

γ

2
ur

)
, (10)

whose pdf can be written as

pf2(y) =pu

(
f−1
2 (y)

) ∂f−1
2 (y)
∂y

,

=
4m ln(2)

γ
22mye−2(4my−1)/γ . (11)

Since the pdf of a sum of independent random variables is

equal to the convolution of the individual pdf, we have (‘*’

denotes convolution)

Γancc(R) =
∫ R

0

pf1(y) ∗
m︷ ︸︸ ︷

pf2(y) ∗ ... ∗ pf2(y) dy. (12)

This expression is hard to simplify, so we resort to numerical

integral techniques to evaluate the outage for different m. The

results are presented in Section VI.

Next, we consider the outage probability when m tends to

infinity. From the law of large numbers, we have

lim
m→∞

1
m

m∑
r=1

log
(
1 +

γ

2
|αr,d|2

)
= E

[
log

(
1 +

γ

2
|αr,d|2

)]
,

=
∫ ∞

0

log
(
1 +

γ

2
y
)

exp(−y) dy =
exp

(
2
γ

)
Ei

(
2
γ

)
ln(2)

. (13)

Therefore, we can write

lim
m→∞Γancc(R)

=Pr

⎡
⎣1

2
log

(
1 +

γ

2
|αi,d|2

)
+

exp
(

2
γ

)
Ei

(
2
γ

)
2 ln(2)

< R

⎤
⎦ ,

=1 − exp
[
− 2

γ

(
22R−exp(2/γ)Ei(2/γ)/ ln(2) − 1

)]
. (14)

IV. SPACE-TIME-CODED-COOPERATION (STCC)

The STCC protocol works like a genie-aided multi-input

multi-output (MIMO) system, where in the relaying phase, all

the terminals that have received a clean copy of terminal i’s
data utilize a suitable (optimal) space-time code to transmit

this information simultaneously.

A. Mutual Information

Similar to ANCC, each packet in STCC takes up 2 time

slots, so the mutual information needs to be divided by

2. Furthermore, assuming the space-time codes in use are

optimal, the mutual information obtained in the relaying phase

needs to be evaluated using the Shannon capacity formula

with the energy gathered from all the terminals in terminal

i’th decode-set D(i) [2]. To normalize the average transmit

power, each terminal in D(i) is allowed to use only 1/|D(i)|
of the energy to transmit the space-time code as compared

to ANCC, where | · | denotes the cardinality of the set. The

mutual information for each terminal in the STCC protocol is:

Istcc =
1
2

log
(
1+

γ

2
|αi,d|2

)
+

1
2
log

⎛
⎝1+

γ

2

∑
r∈D(i)

|αr,d|2
|D(i)|

⎞
⎠ .

(15)

B. Ergodic Capacity

Unlike the case of ANCC, the mutual information of STCC

is related to the decode-set, so the ergodic capacity is given

by the expectation over the mutual information with random

channels as follows:

Cstcc =E [Istcc]

=
m−1∑
n=0

E
[
Istcc

∣∣|D(i)| = n
]
Pr

[|D(i)| = n
∣∣R]

, (16)

where Istcc

∣∣|D(i)| = n is the mutual information conditioned

on the decode-set size n, and Pr
[|D(i)| = n

∣∣R]
is the

decode-set size probability given by

Pr
[|D(i)| = n

∣∣R]
=

(
m−1

n

)
Pr[r ∈ D(i)]nPr[r /∈ D(i)]m−1−n,

=
(
m−1

n

)
e−

2n
γ (22R−1)

[
1 − e−

2
γ (22R−1)

]m−n−1

. (17)

Since the channel powers in the first term and the second

term of (15) follow the exponential and χ − square dis-

tributions respectively, the expectation of conditional mutual

information can be derived as

E
[
Istcc

∣∣|D(i)| = n
]

=
1
2

∫ ∞

0

log
(
1+

γ

2
y
)
exp(−y)dy

+
1
2

∫ ∞

0

log
(
1+

γ

2n
y
) yn−1

(n − 1)!
e−ydy. (18)

Equating the transmission rate to the ergodic capacity, we

obtain the ergodic capacity of STCC Cstcc as the solution to
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the following equation with parameter R:

m−1∑
n=0

E
[
Istcc

∣∣|D(i)| = n
]
Pr

[|D(i)| = n
∣∣R]

= R, (19)

which can be computed numerically.

Specifically, when m tends to infinity, use the law of large

numbers, we have∑
r∈D(i)

|αr,d|2
|D(i)| = E

[|αr,d|2
]

= 1. (20)

Thus, we can write

lim
m→∞Cstcc = lim

m→∞E [Istcc] ,

=
∫ ∞

0

1
2

log(1 +
γ

2
y)e−ydy +

1
2

log(1 +
γ

2
),

=
1
2

exp
(

2
γ

)
Ei

(
2
γ

)
/ ln(2) +

1
2

log
(
1 +

γ

2

)
. (21)

C. Outage Probability
From the total probability law, the outage probability of

STCC Γstcc(R) can be computed using

Γstcc(R)=
m−1∑
n=0

Pr
[|D(i)|=n

∣∣R]
Pr

[
Istcc <R

∣∣|D(i)|=n
]
,

(22)

where Pr [|D(i)|=n|R] is given in (17). To calculate the

conditional outage probability Pr
[
Istcc < R

∣∣|D(i)| = n
]

in

(22), we take a similar approach as in the case of ANCC and

define

f3 � 1
2
log

(
1+

γ

2n

n∑
r=1

ur

)
, (23)

whose pdf is given by

pf3(y) =pχ

(
f−1
3 (y)

) ∂f−1
3 (y)
∂y

,

=
ln(2)2n+1nn4y(4y − 1)n−1e−2n(4y−1)/γ

(n − 1)!γn
. (24)

Since the pdf of a sum of independent random variables

equals the convolution of their independent pdfs, we get

Pr
[
Istcc < R

∣∣|D(i)| = n
]

=
∫ R

0

pf1(y) ∗ pf3(y) dy,

=
8 ln(2)2(2n)n

(n − 1)!γn+1

∫ R

0

y16y(4y − 1)n−1e−2(n+1)(4y−1)/r dy.

(25)

When the number of terminals m tends to infinity, gathering

(15), (20) and (22), we obtain

lim
m→∞Γancc(R),

=Pr

[
1
2

log
(
1+

γ

2
|αi,d|2

)
+

1
2
log

(
1+

γ

2

)
< R

]
,

=1 − exp
[
− 2

γ

(
22R−log(1+γ/2) − 1

)]
. (26)

V. REPETITION-COOPERATION

In repetition-cooperation, each user’s data is expected to

be repeated by all the other terminals, and m time slots are

therefore assigned to each packet [2]. Due to the possible inter-

user outage, only the terminals in the decode-set D(i) are able

to relay for i, so there are idle and wasted time slots. The

mutual information in this case can be written as

Irep =
1
m

log

⎛
⎝1 +

γ

m
|αi,d|2 +

γ

m

∑
r∈D(i)

|αr,d|2
⎞
⎠ . (27)

A. Ergodic Capacity

Similar to the analysis of STCC, we equate the ergodic

capacity to the transmission rate and get the capacity Crep as

the solution to the following equation:

m−1∑
n=0

E
[
Irep

∣∣|D(i)|= n
]
Pr

[|D(i)|=n
∣∣Crep

]
= Crep, (28)

where the decode-set size probability is

Pr
[|D(i)| = n

∣∣R]
=

(
m−1

n

)
e−

mn
γ (2mR−1)

[
1 − e−

m
γ (2mR−1)

]m−n−1

. (29)

Since the fading coefficients for different user channels are

i.i.d. distributed, the sum of different channel powers satisfies

the χ-square distribution. The expectation of the conditional

mutual information can be written as

E
[
Irep

∣∣|D(i)|=n
]
=

1
m

∫ ∞

0

log
(
1 +

γ

m
y
) yn

n!
exp(−y)dy.

(30)

Specifically, when m tends to infinity, the mutual informa-

tion of repetition-cooperation tends to zero. Thus, we can write

lim
m→∞Crep = 0. (31)

B. Outage Probability

For repetition-cooperation, since D(i) is a random set, from

the total probability law we get

Γrep(R) =
m−1∑
n=0

Pr
[|D(i)|=n

]
Pr

[
Irep <R

∣∣|D(i)|=n
]
, (32)

where Pr [|D(i)|=n] is the decode-set size probability and

Pr
[
Irep < R

∣∣|D(i)|=n
]

is the conditional outage probabil-

ity.

From (27), the conditional outage probability satisfies

Pr
[
Irep < R

∣∣|D(i)|=n
]

=
∫ m

γ (2mR−1)

0

yn exp(−y)
n!

dy,

(33)

and in the limit of infinite m,

lim
m→∞Pr[Irep < R] = Pr [0 < R] = 1. (34)
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VI. NUMERICAL RESULTS

Following the analytical expressions in the previous section,

we provide in this section a numerical evaluation of and

comparison between different cooperation protocols.

The ergodic capacities are illustrated in Figure 2. From

this figure, we observe that repetition-cooperation performs

the worst. Its ergodic capacity decreases with the increase of

number of terminals m, and eventually drops to zero as m
tends to infinity. For STCC, when the number of terminals is

small, e.g., m = 5, it performs very close to ANCC. Since

its capacity increases with m whereas Cancc is not a function

of m, STCC slightly outperforms ANCC in large networks

(at the cost of significantly increased complexity). We also

observe that the capacity of STCC for a moderate network

size, say m = 10, already gets quite close to the asymptotic

limit achieved when m = ∞. This suggests that the closed-

form expression in (21) can serve as a good prediction for

the ergodic capacity of STCC when m is large. For ANCC,

we see that it provides a constant capacity regardless of the

number of terminals m. Its performance is consistently close

to STCC even if STCC has infinite number of terminals.

The outage probabilities are demonstrated in Figure 3 with

transmission rate threshold R = 1/2. It is not surprising that

repetition-cooperation exhibits the worst outage performance.

The slope of the outage curves improves with m, indicating

an increased diversity gain, but the curves are shifted further

and further to the right, indicating a loss in coding gain which

outweighs the diversity gain. Both STCC and ANCC achieve

much better outage performance than repetition or direct trans-

mission (no cooperation), and their outage probabilities drop

quickly with the increase of SNR, showing a good diversity

order. It is interesting to note that ANCC slightly outperforms

STCC at small m, say m=5, and STCC slightly outperforms

ANCC at large m, say m=100. From the numerical results,

it appears that m=20 is a threshold, where ANCC and STCC

exhibit about the same outage probabilities. That the outage of

STCC improves faster with m than ANCC is in part attributed

to the fact that the mutual information per terminal of STCC

increases with m whereas the mutual information per terminal

of ANCC is constant with respect to m.

VII. CONCLUSIONS

The simplicity, practicality and efficiency of adaptive-

network-coded-cooperation were demonstrated by simulations

in [6]. This paper provides a theoretical support for its

excellent performance by analyzing its ergodic capacity and

outage probability. Closed-form expressions are derived for the

limiting case where the network size increases without bound.

For any finite network size where analysis is not tractable,

we performed numerical evaluations. We have also compared

ANCC with repetition and space-time-coded-cooperation. We

demonstrate that ANCC is superb to repetition and on par

with STCC in both capacity and outage. Considering that

ANCC obviates the need for stringent inter-user synchroniza-

tion (which is extremely costly in large wireless networks), it

is therefore a very attractive protocol in practice.
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