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-Abstract — A new class of codes, named product
accumulate codes, which are the concatenation of
an outer product code and an inner rate-1 differ-
ential encoder (or accumulator) is proposed. We
show that these codes can perform within a few
tenths of a dB from the Shannon limit for rates >
1/2. For practical block lengths, these codes pro-
vide similar performance to turbo codes but with
significantly lower decoding complexity.

I. INTRODUCTION

We propose a novel class of provably “good” codes !
which are referred to as product accumulate (PA) codes.
The proposed codes are shown to possess many desir-
able properties, including close-to-capacity performance,
low decoding complexity, regular structure and easy rate
adaptivity uniformly for all rates R > 1/2.

II. ENCODER AND DECODER STRUCTURE

The proposed structure is shown in Fig. 1. An input
block of K = Pt data bits is encoded using a parallel
concatenated code whose component codes are (t + 1,t)
single parity check (SPC) codes. The data bits and the
parity bits from the parity check codes are further inter-
leaved and encoded by a rate-1 inner code resulting in

" the overall rate being t/t + 2. Since the outer code can
be considered as a turbo product code with single parity
check component codes (TPC/SPC) with a random in-
terleaver instead of the conventional block interleaver, we
call these codes as product accumulate codes.
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Figure 1: System model of PA codes

The turbo principle is used to iteratively decode the se-
rially concatenated system, where soft extrinsic informa-
tion in log-likelihood ratio (log-LLR) form is exchanged

1A “good” code is defined as a code for which there exists a

threshold above which an arbitrarily low error rate can be achieved -

as block size goes to infinity [1].
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between the inner and outer decoders. The decoding of
the outer TPC/SPC code is done using a message-passing
algorithm similar to that of LDPC codes. The inner rate-
1 convolutional code is typically decoded using a 2-state
Bahl, Cocke, Jelinek, Raviv (BCJR) algorithm. How-
ever, a more computationally efficient approach is to use
message-passing decoding directly on the Tanner graph
of the entire product accumulate code including the in-
ner code [2]. '

III. PROPERTIES OF PA CODES

It is straightforward to see that PA codes are linear time
encodable and they have a simple encoding algorithm.
In this section, we also analyze the performance of PA
codes with maximum likelihood (ML) decoding and under
iterative decoding. ]

Performance under ML Decoding: We first show that
under maximum likelihood decoding, the probability of
word error is proportional to P ! for large Ej/Ng, where
P is the number of TPC/SPC codewords concatenated
before interleaving.

(A) Interleaving Gain

From the results of Benedetto et al[3] and Divsalar, Jin
and McEliece [4], we know that for a general serial con-
catenated system with recursive inner code, there exists a
threshold +y such that for any E;/Ny > vy, the asymptotic
word error rate is upper bounded by:

a9, 1

PgB=O(NL —"—”2—])’ (1)
where d?, is the minimum distance of the outer code and
N is the interleaver size. The result in (1) indicates that
if the minimum distance of the outer code is at least 3,
then an interleaving gain can be obtained. However, the
outer codewords of PA codes (with random interleavers)
have minimum distance of only 2. Below we show that
although the minimum distance of the outer codewords is
only 2 over the ensemble of interleavers, an interleaving
gain still exists for PA codes with random interleavers.
Since from (1) outer codewords of weight 3 or more will
lead to an interleaver gain, we focus the investigation on
weight-2 outer codewords only and show that the number
of such codeword vanishes as P increases. The all-zero
sequence is used as the reference since the code is linear.

It is convenient to employ the uniform interleaver
which represents the average behavior of the ensemble
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of codes. Let Afﬁ)h, j = 1,2, denote the input output
weight enumerator (IOWE) of the ji, SPC branch code
(parallelly concatenated in the outer code). The IOWE
of the outer code, A7, ,, averaged over the code ensemble

is given as:
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where K = Pt is the input sequence length.
Define the input output wez’ght tmnsfer probability
(IOWTP) of the jip, branch code, P h’ as the probability

that a particular input sequence of welght w is mapped
G)

2

to an output sequence of weight A P(J ) = ?’”g)i, j=12.
Substituting this in (2), we get: N
Q) p®
ZAJM o b (3)

For each branch where P (t+1,t) SPC codewords
are combined, the IOWE function is given as (assuming
even parity check):A5FC (w, h) = (2§=0 j)'wJ h213/ 21)1'2
where the coefficient of the term w*“h? denotes the num-
ber of codewords with input weight v and output weight
v. Using the above equation, we can compute the IOWEs
of the first SPC branch code, denoted as AS% (= ASFO).
For the second branch of the SPC code, since only parity
bits are transmitted, A£? = ASL 1o With a little com-
putation, it is easy to see that the number of weight-2
outer codewords is given by:
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where the last equation assumes a large P (i.e. large block

size). Equation (4) shows that the number of weight-

2 outer codewords is a function of a single parameter, ¢,

which is related only to the rate of SPC codes and not the

block length. Now considering the serial concatenation of

the outer codewords with the inner 1/(1 + D) code, the
overall output weight enumerator (OWE), AF4, is:
1 /(1+D)

- A'w R TNy
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where A?, is the OWE of the outer code, and the IOWE
of the 1/(1 + D) code is given by [4]:
qva+p) _ (N h h 1y
ot lw/2]/ \[w/2] 1
In particular, the number of weight-s PA codewords

produced by weight-2 outer codewords (for small-s), de-
noted as AF42 is:
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where N = P(t + 2) is the PA codeword length. This
indicates that an interleaving gain results for PA codes.
(B) Upper bounds

To further shed insight into the asymptotic perfor-
mance (N — oo) of PA codes under ML decoding, we
compute thresholds for this class of codes based on the
bounding technique recently proposed by Divsalar (5],
which is tighter than the union bound for small E,/N,.

We first quote and summarize the main results of [5].
Define the ensemble spectral shape of a code, (), as
the normalized weight distribution averaged over the code
ensemble Cp:

A, 1

7(0) = lim = In(An=sny), 0<<1,  (8)
where N is the code length, A; is the (average) output
weight enumerator of the code. It can be shown that
the probability of word error can be upper bounded by
P,(e) < 3, e NEWBs/Noh) [5] The threshold C},; is
defined as the minimum E},/Np such that E(Ey/Ny,h)
is positive for all A and, hence, for all Ey/Ny > Ci/p,
P,(e) — 0 as N — oco. The threshold can be computed

as [3]:
1 4
% (!
where R is the code rate.

There is no simple closed form expression for the en-
semble spectral shape of PA codes. However, the spectral
shape can be computed to a good accuracy numerically
since the component codes of the concatenation are single
parity check codes. Specifically, using (3), (5) and (8) we
can compute the spectral shape of PA codes, which is a
function of N, P,t. We approximate the ensemble spec-
tral shape by choosing a large N. Whenever possible,
input output weight transfer probability, Py, should be
used instead of input output weight enumerator, A,, 5, to
eliminate numerical overflow. The bounds for PA codes
are computed and plotted in Fig. 2 (the simple bound and
the union bound are shown). Also shown are the bounds
for random codes and the Shannon limit. It can be seen
that (1) the simple bounds of PA codes are very close .
to bounds computed for random codes, indicating that
PA codes have good distance spectrum (2) the higher the
rate, the closer the bound to that of random codes, indi-
cating that GPA codes are likely more advantageous at
high rates than low rates (as opposed to repeat accumu-
late codes).

Performance under Iterative Decoding: In this section,
we compute thresholds for PA codes using density evo-
lution (DE) [6]. Assuming the all-zeros transmitted se-
quence, the pdfs of the messages being passed within
the inner code, outer code and between the two can be
evolved since all the component codes are simple parity
checks in this case. The pdfs are computed numerically
‘and, hence, no assumptions are made on the pdfs of the
extrinsic information. The outer code (alone) can also be

1
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ML bounds of PA codes
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Figure 2: The union bound and the simple bound of prod-
uct accumulate codes

considered as a special case of LDPC codes whose par-
ity check matrix has 2P rows with uniform row weight
of (t+1), and p(t + 2) columns with :}5 percent of the
columns having weight 2 and the rest weight 1. How-
ever, for more efficient convergence, we could make use
of the fact that the checks in the outer code can be di-
vided into two groups (corresponding to the upper and
lower branch, respectively) such that the corresponding
sub-graph (Tanner graph) of each group is cycle-free. It
thus leads to a serial message-passing mode where each
group of checks take turns to update (as opposed to the
parallel update of all checks in LDPC codes). Similarly,
a serial update is used for the inner code rather than a
parallel update. The thresholds are computed using

ot [ o)

is the pdf of the messages (extrinsic in-
formation) evaluated at the output of the outer decoder,
during the kth iteration between the inner and outer de-
coders.

To conserve space the results are not plotted in a fig-
ure. The difference between thresholds and the Shan-
non limit for binary input AWGN channel was seen to
be 0.4931, 0.4370, 0.449, 0.4551, 0.4405, 0.4389, 0.4328,
0.4047, 0.3866 for rates R=0.5, 0.6, 0.667, 0.7143, 0.75,
0.8, 0.8333, 0.8889, 0.9231, respectively. Simulation re-
sults for long block lengths (64 Kbits for rate-1/2 and
16K for others) show that BER of 10 5 can be obtained
at E,/N, within 0.2 dB from the computed thresholds.

* .
: ive = Inf ¢ SNR:
iterative SNR {

where f 15 (g

IV. SIMULATION RESULTS

Fig. 3 shows the performance of a rate-1/2 PA code of
data block sizes 64K, 4K and 1K. It can be seen that the
larger the block size the better the performance which
clearly depicts the interleaving gain. For comparison pur-
pose, the performance of a (2K,1K) turbo code with 16-
state component codes and that of the recently reported

irregular repeat accumulate (IRA) codes of the same pa-
rameters are also shown. As can be seen, (2K, 1K) PA
codes perform as well as the turbo codes at BER of 10 °
with no error floors. From [2], we can see that the decod-
ing complexity of rate-1/2 PA codes with 30 iterations
is approximately 1/16 that of a 16-state turbo code with
8 iterations. It is also important to note that the com-
plexity savings are higher as the rate increases, since the
decoding complexity of punctured turbo codes does not
reduce with increasing rate, whereas the decoding com-
plexity of PA codes is inversely proportional to the rate.
It should also be noted that the curve of PA codes is
somewhat steeper than that of turbo codes or irregular
repeat accumulate codes, and therefore may outperform
them at lower BERs.
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Figure 3: Performance of PA codes ate rate-1/2
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