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Abstract—Product accumulate (PA) codes were proposed as a
class of high-rate low-complexity, capacity-approaching codes on
additive white Gaussian noise (AWGN) channels. In this paper, we
investigate the performance of the PA codes on intensity modu-
lated optical fiber channels where the amplified spontaneous emis-
sion (ASE) noise dominates all other noise sources. We consider bi-
nary ON-OFF keying (OOK) modulation and iterative soft-decision
message-passing decoding for the PA codes. Three channel models
for the ASE noise dominated channel are investigated: asymmetric
chi-square, asymmetric Gaussian, and symmetric Gaussian chan-
nels (i.e., AWGN). At low signal-to-noise ratios (SNRs), due to the
lack of tight bounds, code performance is evaluated using simula-
tions of typical PA coding schemes. For high SNRs that are beyond
simulation capabilities, we derive the pairwise error probability
of the three channels and explore an average upper bound on the
bit-error rate over the ensemble of PA codes. We show that AWGN
channels, although fundamentally different from chi-square chan-
nels, can serve as a reference to approximate the performance of
high-rate PA codes.

Index Terms—Amplified spontaneous emission (ASE) noise, for-
ward-error correction (FEC), iterative decoding, message passing
decoding, optical fiber communication, serially concatenated
codes, union bounds.

1. INTRODUCTION

ANDWIDTH- and power-efficient forward-error cor-
rection (FEC) codes are desirable for optical fiber
communications. FEC codes have been applied to or pro-
posed for optical fiber communication systems, including the
hard-decision decoding Reed-Solomon (RS) codes [1]-[3],
concatenated RS/convolutional codes [4], concatenated RS/RS
codes [5]-[7], low-density parity check (LDPC) codes [8], [9],
and soft-decision iterative decoding block turbo codes [5]. The
trend of improving code performance is actualized by code
concatenation, soft-decision decoding, and iterative decoding
techniques.
Product accumulate (PA) codes (Fig. 1) were proposed as a
class of high-rate low-complexity capacity-approaching codes
on additive white Gaussian noise (AWGN) channels [10], [11].
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Fig. 1. Code structure of PA codes.

In this paper, we investigate the performance of iterative soft-
decision of PA codes based on different fiber optical channel
models.

We consider optically amplified fiber communication sys-
tems using ON—OFF keying (OOK) modulation where the signal
is modulated to be either zero intensity or an optical pulse of du-
ration 7. Under low-power operations, amplified spontaneous
emission (ASE) noise from optical amplifiers is the dominant
source of noise in the system (especially undersea long-haul
systems). An analytically tractable theoretical model for ASE
noise (after photodetector) is the asymmetric chi-square model
[12], [13] as defined later in Section II. In this paper, we con-
sider three memoryless channel models:

1) asymmetric channel with uncorrelated chi-square dis-

tributed ASE noise;

2) asymmetric channel with Gaussian noise (an approxima-

tion to the chi-square model);

3) symmetric channel with Gaussian noise (i.e., AWGN),

which is widely employed in coding research.

We would like to mention [8] and [9], where LDPC codes
from combinatorial designs are investigated for fiber optical
channels. It is interesting to point out that PA codes are es-
sentially a special class of LDPC codes, namely, a class of dif-
ferentially coded, structured, high-rate LDPC codes [11]. Like
random LDPC codes, PA codes have also demonstrated per-
formance close to the capacity on a variety of channels [11].
Unlike random LDPC codes, PA codes are linear-time encod-
able (as well as linear-time decodable), making them suitable
for high-speed applications.

At low signal-to-noise ratios (SNRs), due to the lack of tight
bounds, performance evaluation is based on simulations of typ-
ical PA coding schemes. For high SNRs that are beyond simula-
tion capabilities, we derive the pairwise error probability (PEP)
of the aforementioned channels and explore an average upper
bound on the bit-error rate (BER) over the ensemble of PA
codes. We show that symmetric Gaussian noise channel (i.e.,
AWGN), although fundamentally different from the chi-square
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model, can serve as a convenient reference to approximate the
performance of high-rate PA codes.

The rest of this paper is organized as follows. Section II
presents the three channel models under investigation. Sec-
tion IIl discusses the iterative soft decoding of PA codes.
Section IV derives and computes the average union bounds of
PA codes on the different channel models. Section V presents
the analytical and simulation results. Section VI concludes this

paper.

II. CHANNEL MODELS
A. Asymmetric Channels With Chi-Square Noise

Consider M = B,/B. > 1 as the number of modes per
polarization state in the received optical spectrum, B, as the
optical bandwidth, and B, as the electrical bandwidth of the
system at the detector. As discussed in [13], prior to square-law
detection, the noise n; can be mathematically represented as a
Fourier series expansion with Fourier coefficients that are as-
sumed to be independent Gaussian random variables with zero
mean and variance Ny /2. After passing through an optical am-
plifier, the received signal (the integral of the output of the pho-
todetector) is given by

2M

z= (si+m) (D

i=1

where s; and n; denote the signal and the ASE noise projected
to 2M orthonormal basis. Signal energy is ZZ 11 s? = 2K, for
transmitting “1” and ZLZMI 52 = 0 for transmitting “0”, where
E is the average energy of the transmitted signals (assuming
equal symbol probability).

Completing the square in the integral, the first-order statistics
of the optical channel can be modeled as the chi-square distri-
bution with 2M degrees of freedom [13], [12]. The closed-form
probability density function (pdf) of received signal symbols
“1” and “0” after square-law detection (z > 0) is given by [13]

1 xz \(M-1)/2 22zl
_ - —(z+2E,)/No ZVaerTs
fl("”)_No(zEs) ¢ I"H( No )
)
x \M-1 —x
fole) = L )R @)

No (M -1)

where Ip;_1(-) denotes the (M —1),;, modified Bessel function
of the first kind. The means and variances of signal “1” and “0”
can thus be derived as

= MN, + 2E,, 01 MNZ + 4E,Ny )
:MN07 :MNO (5)

B. Asymmetric Channels With Gaussian Approximation

Observe that x in (1) is the sum of 2M independent random
variables, and the application of the central limit theorem (for
large M) yields a Gaussian approximation for both symbols.
Therefore, it is convenient to approximate the signals as
Gaussian distributed with the same mean and variance of the
chi-square densities.

Defining @ factor as @ = (|u1 — pol)/(01 + 0¢) and nor-
malizing Ny to 1, the noise parameters can be rewritten as func-
tions of the system parameters B,, B, and () as

B, B,
m:MNO+2ES:—+2Q,/—+2Q2 (6)

\/MN0+4E No_,/ " 420 @)

[L()—MN()— B (8)

B,
00:,/MN3:,/B—. )

Thus, for a given () factor and system parameters B,, B, the
Gaussian approximation of ASE noise distribution is given by

fiw) = ( +2Q\/7+2Q2 \/7+2Q)>
(10)

(11)
C. Symmetric Channels With Gaussian Approximation

By assuming o1 = 0y, the asymmetric channel is reduced to
the well-known AWGN channel in conventional communica-
tions. Since ON—OFF signaling is used in fiber communications
rather than antipodal signaling, there is a 3.010-dB difference
compared to conventional results using BPSK modulation on
AWGN channels.

The pdfs of the received signals for the chi-square channels
and the asymmetric and symmetric Gaussian approximations
can be found in [17, Fig. 1], which gives a feel of how the orig-
inal chi-square channel looks like and how well the Gaussian
channels approximate the original channel. It can also be seen
from the plot that, for the same () factor, the pdf curves of the
different channel models will have different optimal hard-deci-
sion thresholds as well as the resulting error probabilities.

III. ITERATIVE SOFT DECODING OF PA CODES

Product accumulate codes proposed in [10] and [11] are a
class of interleaved serial concatenated codes where the inner
code is a rate-1 recursive convolutional code 1/(14+D) (also
known as the accumulator) and the outer code is a parallel con-
catenation of two single-parity check (SPC) codes (Fig. 1).

The decoding of product accumulate codes is via an itera-
tive procedure employing the turbo principle. Soft information
in log-likelihood ratio (LLR) form iterates among different com-
ponent codes. An efficient sum-product algorithm (also known
as the message-passing algorithm) and its reduced-complexity
approximation, the min-sum algorithm, are described in [11].
Since the sum-product and min-sum algorithms are a class of
generic algorithm that is independent from the channel model,
they allow the same decoder to be “self-adaptive” to different
channel models provided that proper input log-likelihood ratios
(obtained from the channels) are fed into the decoder. This de-
coupling of the decoder from the transmission channel is con-
venient and useful in real systems where an “optimal” decoder
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is easily retained while the modeling of transmission channel is
modified.

For simple hard decoding, the optimal threshold « can be
found numerically by letting fo(y) = f1(7). However, to maxi-
mize the error correction power of the codes, we employ soft de-
coding. For the aforementioned three channels, the input LLRs
of received signal = defined as L., (z) = Pr(0|z)/Pr(1|z) are
given by (assuming equally probable occurrence of “1”s and
“07s)

A /2xE8>A'[—1
Ny

exp(55-)

Chi-square : L.y (z) = (

. —_— (12)
(M — D)o ( ?{TEOES)
Asym. Gauss : L.p(z) = log%
— (a=B)((a+B)z—2a%)z  (13)
Sym. Gauss : L.j(z) = 28, = 20V/E, (14)

o2

where 3 = \/Bo/B. and a = 3+ 2Q. Note that the symmetric
Gaussian channel uses ON—OFF signaling instead of the conven-
tional antipodal signaling. As alluded earlier, an equivalent and
more convenient calculation method is to assume antipodal sig-
naling with L., (7) = (2v/Es/0?)x and then shift the perfor-
mance curve by 3.010 dB.

IV. ANALYTICAL BOUNDS

A. Average Maximum Likelihood Bounds

Union bounds, although loose at low SNRs, have been shown
to be useful at high SNRs that are beyond simulation capabili-
ties. They are particularly helpful in determining error floors as
well as illustrating the effect of interleaver sizes. Here, we apply
the union bounding technique to the ensemble of (N, K) PA
codes by averaging over all possible interleavers. Denote Amin
as the minimum Hamming distance of the PA code ensemble,
Py (h) as the pairwise error probability for codewords of Ham-
ming distance h apart, and A, , and A, as the input output
weight enumerator (IOWE) and the output weight enumerator
(OWE) averaged over the ensemble of PA codes, respectively.
It is well known that the average upper bounds of word error
rate (WER) and BER can be computed using (see, for example,
[15D)

N
Pw S Z A}LPQ(}L)
h=hmin
N K
= > > A,uPy(h) (15)
h=hmin w=1
N
w -
PE < ?Aw,hPQ(h) (16)
h=hpnin w=1

!min

where K and N are the user data block size and the codeword
length, respectively.

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 22, NO. 2, FEBRUARY 2004

B. Average Input Output Weight Enumerator /inL

Viewing product accumulate codes as a hybrid concatenation,
the average input output weight enumerator A,, 5, can be com-
puted using [15]

E SPC1
w h = Z Aw Jho

h1  ha

ASPC2 1/(1+D)

w,h1—ho hi,h
7 ¥
& @)
where ASPhCl, ASPC2 and A1/<1+D) are IOWEs of the parallel
branch SPCI, SPC2 and the inner code 1 /(14-D), respectively
(Fig. 1).
For each parallel branch where ¢ (t+1, ¢) SPC codewords are

combined, the IOWE function is given by (assuming even parity
check) [11], [15]

a7

q

ASPC(w, ) = (18)

e
) ( ) wih20/2]
J

J=0

where the coefficient of the term w"h" denotes the number of
codewords with input weight » and output weight v in an SPC
branch. It should be noted that the first branch includes the sys-
tematic bits while the second contains only the parity bits. In
SPC1 _ 4SPC SPC2 SPC
other words, we have Ay~ = A5~ and A7 7% = A7° 5.

The IOWE of the inner 1/(1 + D) code (or the accumulator) is
given by [15]

4= (Ng") (o)

The computation of the average IOWE A,, j, is generally te-
dious work with concatenated coding schemes. For PA codes,
although we do not have a closed-form expression for (17), each
component code is so simple that a numerical approach can be
used to approximate the weight distribution quite well [15]. For
short block sizes, it is convenient to examine the entire weight
distribution, although the performance bound is dominated by
the first few terms (i.e., low weight codewords). For fairly large
block sizes, due to the computational complexity and the poten-
tial numerical issue, we focus on the low weight terms. Hence,
the bounds we computed here are truncated union bounds.

19)

C. Pair-Wise Error Probability Py(h)

Pair-wise error probability P> (h) is a function of the channel
characteristics, the modulation scheme, and the decoding
strategy. Below we derive the average PEP of the aforemen-
tioned channels. By average, we assume “1”’s and “0”s are
transmitted with equal probability and that there is an equal
probability that the “1”’s and “0”s are in error. Throughout the
discussion, unless otherwise stated, we assume OOK modula-
tion (signal energy either zero or 2 F) and soft decoding.

1) Symmetric Gaussian: For OOK signaling on symmetric
Gaussian channels with noise variance o2, the average Eu-
clidean distance of two codewords of Hamming distance h
apart is given by v/2h E;. It thus follows that the pairwise error
probability of soft decoding is

hE,
202

Py(h) =Q ( (20)
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where Q(z) = (1/V2r) [° e=*"/2(dy is the complementary
distribution function of a zero-mean unit variance Gaussian
random variable.

2) Asymmetric Gaussian: With asymmetric Gaussian
channels, the optimal decision threshold  for a transmitted bit
should satisfy fo(v) = fi(v) in (11) and (10) [17]. Although
a numerical approach is possible, the solution of the optimal
threshold has a quite complex form. It is convenient to set
the threshold such that probabilities of space error (bit “0”
in error) and mark error (bit “1” in error) are the same (i.c.,
P(1]0) = P(0]1)). Under the assumption of equally likely
space and mark errors, the convenient choice of the threshold
allows a simple derivation of PEP where the typical all-zeros
codeword can be approximately as a reference. We note that
this approximation may cause overestimation of the error rate
[18], but we have traded the accuracy of the resulting PEP with
the simplicity of the PEP evaluation.

Since each length-N codeword can be viewed as a point in
an N-dimensional code space, to evaluate the distance between
two codewords that differ in A bit positions, we can conveniently
ignore the IV — h irrelevant dimensions and consider only the
reduced h-dimensional subspace. Since each noisy bit follows
Gaussian distribution and all bits are orthogonal to each other,
it then follows that the joint pdfs of these two (noise-corrupted)
codewords can be approximated as

f(co)=N(MNoVh, MN3) 1)
flen)=N(MNoVh+2VhE,, MNZ+4E,Ny). (22)

The customary threshold v* for estimating codewords can be
obtained by letting

Y i MNoVh\ _ Q MNoVh + 2VhE, — v*
VMNZ VMNZ +4E.N, '

We then derive the threshold as

2VhE,/MN?

v = MNoVh + (24)
VMNZ +/MN} + 4E,Ny
and the corresponding pairwise error probability P»(h) as
2VhE,
Py(h) = Q No (25)

/ B,
VM + M+4NT

It should be noted that we have simplified the computation
of PEP by evaluating only the typical all-zeros codeword and a
weight h codeword. Although this is not exact for asymmetric
channels, it is a reasonable approximation due to the linear code-
word space and the assumption that equal probability of marks
and spaces will occur and that the customary decision threshold
will be used. Further, since we considered sequence/codeword
detection rather than bit detection, the optimal (customary) de-
cision threshold in (24) is thus dependent on A, the distance be-
tween the two codewords.

3) Chi-Square: Unlike the Gaussian distribution, which is
symmetric and which has characteristic bell-shaped probability
density curve, chi-square distribution does not possess such
properties to be exploited for the evaluation of a soft-decoding
PEP. In this paper, we use a hard-decision PEP as an upper
bound for a soft-decision PEP.

For each noise-corrupted bit of energy zero or 2F, the re-
ceiver makes a decision by comparing it with a threshold . The
probabilities that a “1” is decided when a “0” is sent, and a “0”
is decided when a “1” is sent, are given by [14], [13], [16]

oo M-l k
PO = [ folade = =% 3 F(%) 6)
: |

k=0

P(O|1) = /(:Jfl(:c)clggzl—gﬂ,,(1 / ‘EJVEOS . /]2;]—1) 27)

where Qj(a, b) is the generalized Marcum Q function of order
M defined as

oo .M 2 2

Qnr(a,b) :/ #exp <_a: —;—a ) Iy (az)dx.

b (28)
There is no simple, closed-form expression for calculating the
generalized Marcum Q function, but highly reliable and effi-
cient numerical methods can be found in [16] and the references
therein. The optimum threshold ~ can also be solved numeri-

cally (in an iterative fashion) by letting fo(z) = f1(z) or

(\/2E5’Y)M_1 — ¢=2B:/No (M — 1)y <2v 2E87> .
No No
(29)
Using the asymptotic expansion of I, reveals that the optimal
normalized threshold (y — M Ny)/2F; approaches 1/4 for
large E,/(NoM?) [12], [13].
The average probability of a bit in error is given by

P(0]1) + P(1|0
p= PO TP 0
It then follows that the PEP of two codewords of length N and
Hamming distance h apart is (with hard decoding)
Py(h) = p"(1 = p)" "~ p" (31)
where the approximation can be made for small p (or large
SNRs).

V. RESULTS

In all the simulations provided, we assume perfect channel
knowledge on the receiver side. Thus, the performance of the
PA decoder is optimized according to different channel models.

Figs. 2—4 plot the simulations of a rate 0.8, block size 16-K
PA code on the AWGN, the asymmetric Gaussian, and the chi-
square noise channels, respectively. We use M = 4 and OOK
signaling. BER performance after 5, 10, 15, 20, and 25 iterations
is shown. Channel conditions are measured using gross Q2 (in
dB) as defined before. For AWGN channels, the conventional
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Symmetric Gaussian, K=16K, R=0.8 PA code
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Fig. 2. Performance and bounds of PA codes on AWGN channels: code rate
0.8, data block size 16 K.

Asymmetric Gaussian, K=16K, R=0.8 PA code
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Fig.3. Performance and bonds of PA codes on asymmetric Gaussian channels:

code rate 0.8, data block size 16 K.

E, /Ny of BPSK signaling and the gross Q? in our simulations
are approximately offset by 3 dB. The observations are made
over 10! bits for high SNRs. In each simulation point, more
than 50 codeword error events are collected, so the results are
fairly reliable. As can be seen, PA codes yield impressive perfor-
mance for all three channels, with error floors as low as BER of
102 to 10~ 1%, Comparing to the uncoded OOK systems, which
require 15 dB to achieve BER of 10~® on AWGN channels, the
rate 0.8 PA code can achieve as many as 9-dB gains (after the
code rate penalty). It should be noted that for fiber optical sys-
tems where the target BER is as low as 10~ an error floor at
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Chi-square, K=16K, R=0.8 PA code
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Fig. 4. Performance and bounds of PA codes on asymmetric chi-square
channels: code rate 0.8, data block size 16 K.

Chi-square, K=16K, R=0.8 PA code
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Fig. 5. BER and frame error rate of PA codes on asymmetric chi-square
channels: code rate 0.8, data block size 16 K.

10~? is far from satisfactory. A possible solution is to use code
concatenation, that is, wrapping another (high-rate) RS code on
top of the PA code to (hopefully) clear up the residue errors.!
This requires an evaluation of the error bursts after PA decoder.
As an example, we plot in Fig. 5 both the bit error rate and the
frame error rate (FER or codeword error rate) of the aforemen-
tioned rate 0.8, data block size 16-K PA code on Chi-square
channels. That the FER curve is significantly higher than the

IThis is the same strategy that is being seriously tested and evaluated for fu-
ture high-density digital data recording systems, where the required the BER is
no higher than 1012,
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K=16K, R=0.8, 0.9 PA code
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Fig. 6. Performance of high-rate PA codes on different channels: code rate 0.8
and 0.9, data block size 16 K, 20 iterations.

BER curve indicates the error events are actually very short (at
high SNRs), although the codeword is quite long. Further exam-
inations of the error pattern we collected in the simulation reveal
that the majority of the erroneous frames/codewords contain less
than five bit errors (in the data block). What exactly caused these
error events is not entirely clear. A tentative explanation is that
the specific interleavers we used in this PA code resulted in a
few very short loops in the code graph, causing the iterative de-
coder to trap in these “local minimums” once in a while. On
one side, this suggests that there is room for us to improve the
PA code by optimizing the interleavers. On the other, it suggests
that such a PA code may work harmoniously with an outer RS
wrap, opening the possibility of achieving really low BER.

To facilitate the evaluation, analytical bounds are computed
and presented along with the simulations. Since the bounds as-
sume ML decoders (rather than the practical iterative decoders),
and since they are averaged over all possible interleavers (thus
may well be dominated by the worse case interleaver), the ac-
curacy of the bound for a PA code with a specific interleaving
scheme is questionable. In fact, the performances are seen to be
slightly better than the average bounds. Nevertheless, they shed
useful insights into what to expect of PA codes in general for
regions beyond simulation capabilities.

Since Q? represents different channel conditions for dif-
ferent channels, we plot the performances on different channels
in terms of BER-in versus BER-out for a fair comparison.
As shown in Fig. 6, the performances of PA codes on the
asymmetric Gaussian channels appear worse. It is interesting
to observe that the performances on the chi-square and AWGN
channels match quite well for rate 0.9 PA codes and show
a slight difference for rate 0.8 PA codes. This shows that a
conventional AWGN channel can be used as a convenient
reference to approximate the performance of PA codes on a
chi-square channel, which agrees with the results in [19].

VI. CONCLUSION

Product accumulate codes have been investigated with three
different channel models for optical fiber communications.
Extensive simulations down to quite low BERs provided bench-
marks of the performance of high-rate PA codes. Theoretical
analysis provided insight into the regions that are beyond
simulation capabilities. We also showed that the conventional
AWGN channel can be used as a convenient reference to
determine the code performance on chi-square channels at high
code rates.

As a concluding remark, we mention that although PA
codes have several advantages like relatively simple decoding
complexity (compared to turbo codes), easy construction
(compared to random LDPC codes), and flexibility in changing
code rates/lengths (compared to LDPC codes), it is nevertheless
imprudent and unconvincing to conclude at this point that PA
codes are a better candidate than turbo codes or LDPC codes.
The simulations and analysis provided in this paper are intended
to inform readers of this class of high-rate high-performance
codes that might find promising application in optical fiber
communications. More in-depth and thorough evaluation (like
how exactly PA codes perform when concatenated with an
outer RS wrap, how much performance degradation will incur
if 2-b/3-b quantization is used in the PA decoder) is needed
before conclusive remarks can be made.
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