
Quantization and Quantization Sensitivity of Soft-Output
Product Codes for Fast-Speed Applications

Ruiyuan Hu Jing Li (Tiffany) Erozan Kurtas
Electrical & Computer Engineering Dept Electrical & Computer Engineering Dept Seagate Research Laboratory

Lehigh University Lehigh University 1251 Waterfront Place
Bethlehem, PA 18015 Bethlehem, PA 18015 Pittsburgh, PA 15222
ruh2@ece.lehigh.edu jingli@ece.lehigh.edu erozan.m.kurtas@seagate.com

Abstract— This paper investigates two quantization schemes
on three soft-output message-passing decoding algorithms for 2-
dimensional product codes.Quantization sensitivity on code rates
and channel conditions is also investigated. The surprising yet
encouraging result is that a simple (3,1) uniform quantization
scheme on the min-sum algorithm results in the best overall
quality in terms of space, performance and complexity.

Index Terms— product codes, quantization, sum-product algo-
rithm, min-sum algorithm, message-passing, soft decoding

I. INTRODUCTION

The phenomenal performance of turbo codes, low-density
parity-check (LDPC) codes and product codes has revolu-
tionized the coding research with new concepts like code
concatenation and iterative decoding. It has now been widely
accepted that short and simple (almost useless) codes like
single-parity check (SPC) codes can be combined to form
a long and powerful code. In particular, multi-dimensional
product codes based on single-parity check codes, also termed
single-parity check turbo product codes or TPC/SPC codes
[1][2], array codes [3] or hyper codes [4], have received
considerable interests lately due to the intrinsic high rate,
regular code structure, linear-time encodability, linear-time soft
decodability, and a highly parallelizable encoding/decoding
procedure [2]. Studies reveal that these codes perform on
par with turbo or LDPC codes in a number of applications
including the high-density digital recording systems [2].

This work is motivated by the need to understand how
quantization, a necessary step toward fast VLSI hardware
implementation, affects the performance of the soft-output
decoder. For ease of VLSI implementation, we consider
fixed-point arithmetics only. We investigate two quantization
schemes, the uniform quantization and the hybrid quantization,
on three soft-output decoding algorithms, the sum-product
algorithm, the min-sum algorithm and the modified min-sum
algorithm. The goal is to shed light on the optimal strategy
that balances space, complexity and performance.

We start with a brief analysis on the structure of TPC/SPC
codes and the three decoding algorithms in Section II. Section
III discusses in detail different quantization strategies along
with simulation results. Quantization sensitivity is also studied.
Section IV summarizes the paper.
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II. BACKGROUND

A. TPC/SPC Codes

A multiple dimensional product code can be constructed in
the following way [1]. The data to be transmitted are arranged
in a hypercube of dimension d with the length in each dimen-
sion defined by k1, k2, ..., kd. The ith dimension is encoded
with a (ni, ki, dmini

) systematic linear block code, and this
is repeated for all i = 1, ..., d dimensions. The resulting
code has parameters (

∏d

i=1 ni,
∏d

i=1 ki,
∏d

i=1 dmini
) (hence

the name product code). Since a product code is typically
decoded using an iterative decoder (which is composed of
sub-decoders for each component code), it is also known as
turbo product code (TPC). This paper investigates product
codes that are formed from single-parity check codes, namely,
TPC/SPC codes. Since high rates are desirable in a number of
applications (e.g. the data storage system), and since a high
dimensionality in product codes reduces the code rate as well
as detriments the efficiency of iterative decoding1, we focus
on 2-dimensional TPC/SPC codes in this paper.

B. Decoder Analysis

Although a product code is generally decoded via an itera-
tive constraint search algorithm known as the Chase algorithm,
TPC/SPC codes can be efficiently decoded by an iterative
message-passing (MP) algorithm. Assuming even-parity check
codes in all dimensions, antipodal signaling (0 → +1, 1 →
−1) and additive white Gaussian noise (AWGN) channels, a
2-D TPC/SPC code formed from row code

�
1] ∼ (N1, N1−1)

and column code
�

2 ∼ (N2, N2−1) has the following soft-
input soft-output (SISO) decoding algorithm (see Tab. I) [2].
We use L to denote the log-likelihood ration (LLR) informa-
tion. Subscript ch, o, e, and c refer to the LLR information
obtained from the channel observation, the a priori LLR, the
extrinsic LLR, and the overall LLR of the code, respectively.
Superscript (1, τ) and (2, τ) refer to the quantities associated
with row code and column code in the τ th decoding iteration.

The core operation in the decoding algorithm is the so-called
check operation, L(u1)]L(u2)=L(u1⊕u2)

∆
=ln P (u1⊕u2=0)

P (u1⊕u2=1) ,
which is also where the majority of the complexity stems.

1Our experience with concatenated/compound codes reveals that an iterative
decoder can approximate the optimal decoder quite well when there are only
a few component codes, but the performance soon deteriorates as the number
of component codes increases [7].



TABLE I

2-D TPC/SPC CODES DECODING ALGORITHM

Definitions:

L(u1) ] L(u2) = L(u1 ⊕ u2)
4
= ln P (u1⊕u2=0)

P (u1⊕u2=1)

Initialization:
for i = 1 to N2, for j = 1 to N1,

Lchi,j = 2
σ2

ri,j , Le
(1,0)
i,j = Le

(2,0)
i,j = 0,

The τ th Iteration:
Decoding � 1 : for i = 1 to N2, for j = 1 to N1,

Lo
(1,τ)
i,j = Lchi,j + Le

(2,τ−1)
i,j ,

Le
(1,τ)
i,j = � ]

1≤t≤N1,t6=j Lo
(1,τ)
i,t ),

Decoding � 2 : for j = 1 to N1, for i = 1 to N2,

Lo
(2,τ)
i,j = Lchi,j + Le

(1,τ)
i,j ,

Le
(2,τ)
i,j = � ]

1≤t≤N2,t6=j Le
(2,τ)
t,j ),

Soft Output and Decisions after M iterations:
for i = 1 to N2, for j = 1 to N1,

Lci,j = Loi,j + Le
(1,M)
i,j + Le

(2,M)
i,j ,

ûi,j = Lci,j > 0 ? 0 : 1;

Depending on how the check operation is implemented,
several different forms of message-passing decoding result.

The Sum-Product Algorithm: The sum-product algorithm is
the best MP algorithm where the check operation is optimally
implemented using either the f -function or the tanh-rule [2]:

L(u1) ] L(u2)
∆
= 2tanh−1

(

tanh
L(u1)

2
tanh

L(u2)

2

)

(1)

=
2∏

i=1

sgn(L(ui)) · f

(
2∑

i=1

f
(
|L(ui)|

)

)

(2)

= sgn(L(u1)) sgn(L(u2)) min(|L(u1)|, |L(u2)| )

+ log
1 + e−|L(u1)+L(u2)|

1 + e−|L(u1)−L(u2)|
︸ ︷︷ ︸

correction factor

, (3)

where f(z) = ln
ez + 1

ez − 1
, z > 0,

and the sign operation is defined as sgn(u) = +1 if u > 0,
sgn(u) = 0 if u = 0, and sgn(u) = −1 if u < 0.

The Min-Sum Algorithm: The min-sum algorithm approxi-
mates the sum-product algorithm by ignoring the non-linear
correction factor in (3), i.e.

L(u1)]L(u2)≈

2∏

i=1

sgn(L(ui)) ·min(|L(u1)|, |L(u2)| ). (4)

The Modified Min-Sum Algorithm: The min-sum algorithm is
extremely simple, but may result in a noticeable performance
degradation. An easy enhancement is, instead of completely
ignoring the correction factor, to compensate the signed-min
operation with a simple, fixed-value correction term. Let x1 =
L(u1)+L(u2), x2 = L(u1)−L(u2) and g(x) = log(1+e−|x|),
then the original correction factor can be approximated as [6]:

g(x1)−g(x2) =







c : if |x1| < 2 and |x2| > 2|x1|,
−c : if |x2| < 2 and |x1| > 2|x2|,
0 : otherwise.

(5)

Simulation experiments show that the optimal value of c
varies slightly with different SNR values, but the range of

c ∈ [0.4, 0.6] tends to yield good performance. For ease of
implementation, we fix c = 0.5. This translates to a 1-bit cost
of the correction term in hardware implementation.

To give an idea of how the different decoding algorithms
perform with TPC/SPC codes, we show in Fig. 1 the simula-
tion results of a non-quantized (16, 15)2 TPC/SPC code (this
code will also be used throughout the paper unless otherwise
stated). BER performances after 1, 2, 3 and 4 iterations are
examined. Two things are immediately observable. First, sum-
product and min-sum algorithms, also differ in complexity,
appear to yield similar BER performance. Second, 3 decoding
iterations seem to be sufficient to exploit most of the coding
gain. Hence, only 3 decoding iterations will be considered
hereafter.
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Fig. 1. Non-quantized Sum-Product & Min-Sum TPC/SPC Decoder (“S-P”
stands for sum-product decoding and “M-S” stands for min-sum decoding)

III. QUANTIZATION OF TPC/SPC DECODER

Toward practical fast-speed hardware implementation, quan-
tization and quantization sensitivity are indispensable issues
that need to be resolved. Among the various consideration,
the word length M , i.e. the number of bits or the number
of quantization levels needed to represent an internal/external
data, is of particular importance. Clearly, an excessively large
M incurs unnecessary hardware cost for the buffer as well
as the decoding computation, whereas an overly small M
may significantly degrade the performance, since quantization
and fixed point arithmetics inevitably introduce noise to the
decoder (termed self-noise). In this section, we investigate
both the uniform and the non-uniform (hybrid) quantization
schemes (with various word lengths) on the three message-
passing algorithms discussed before. The goal is to find
the best trade-off between the hardware complexity and the
performance.

A. Sum-Product TPC/SPC Decoder

We start with the uniform quantization scheme. A uniform
quantizer is simple and fast. It makes linear operations like
additions easy to implement, but may not be able to make op-
timal use of the available bits. Let (p, q) represent a fixed-point
number with p integer bits and q fractional bits. An additional



sign bit is also allocated for each data. This corresponds to
limiting the range of an LLR value (i.e. internal/external data)
to [−2p+1+2−q, 2p+1−2−q ] with precision of 2−q. When p
is small, chopping off the absolute LLR values to no more than
2p+1 tends to impair the performance. Hence, a scaling factor
is used. The value of the scaling factor is tuned with respect to
the specific quantization scheme and the specific SNR value
under investigation. This will be discussed in more detail later.

Among the various ways of implementing the check opera-
tion (Eqn. (1)-(3)), we opt for the f -function implementation
in (2). The key advantage is that the function f(z) rapidly
approaches zero as z increases as shown in Fig. 2.

Suppose we could quantize this term and store the value of
z say for 2p+q levels, and assume it is zero for z > zthresh,
then we get an approximation for the nonlinear function f(z).
The number of quantization levels shall be determined through
evaluating the values of LLR information and the values of
the f(z) operation. Observing that the inverse of f(z) is
exactly itself, and that f(1/25) ≈ 4.16, f(1/24) ≈ 3.47 and
f(1/23) ≈ 2.78, we decide that quantization schemes (3,5),
(3,4) and (2,3) are reasonable choices. Our experiments show
that the (3,5) scheme yields the best performance, and the
(2, 3) scheme incurs a significant performance loss compared
to the other two. Hence, for the sake of clarity, we present in
Fig. 3 the performances of the (3,5) and (3,4) schemes only.
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Fig. 2. Plot of f(z) = ln ez+1
ez−1

, z > 0

While the (3, 5) scheme sees hardly any performance loss in
comparison with the non-quantized decoder (Fig. 3), the need
for 9 bits (1 sign bit) to represent a data imposes a high cost
in the fast VLSI implementation. Is it possible to use fewer
bits to achieve approximately the same performance?

Before we answer this, let us revisit the nonlinear function
f(z) in the sum-product decoder (Fig. 2). Intuitively, the
optimal quantizer needs to have varying quantization steps that
are matched to the slope of the curve. This suggests the use
of a non-uniform quantizer. On the other side, concerns for
high complexity hold us back from non-uniform quantizers,
since they make (linear) operations tricky. In this work, we
circumvent the issue by introducing a hybrid quantizer, which
is formed from a combination of two uniform quantizers. This

is motivated by the observation that the f(z) curve experiences
roughly two slope regions: the water-fall region and the floor
region (Fig. 2). At the water-fall region, the steep slope calls on
a quantizer with a small quantization step, i.e. a large q, since
the quantization step is ∝ 1/q). At the floor region, the shallow
slop but the long span of the curve calls on a quantizer with a
large quantization region, i.e. a large p, since the quantization
region is ∝ 2p+1. Specifically, the following quantizing rule
is used in the hybrid quantizer that we investigate, and similar
techniques have also been used in [8]:

• If the magnitude of f(z) is smaller than 1, then the output
is represented by a (1, q1) uniform quantization scheme,
where the integer part is always set to 0;

• Otherwise a different quantization scheme (p2, q2) will
be adopted, where the most significant bit (MSB) of the
integer part is always set to 1.

We experimented on different combinations of (p2, q2)/
(1, p1) hybrid schemes. Among them, the (4, 2)/(1, 5) scheme
stands out by exhibiting essentially the same performance as
the (3, 5) uniform quantization scheme (but using fewer bits).
The (4, 1)/(1, 4) scheme can save an additional bit with a
slightly performance compromise. The performances of all
these schemes (after three decoding iterations) are shown and
compared in Fig. 3.
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Fig. 3. Uniform & Hybrid Quantization Schemes on the Sum-Product
Decoder (3 decoding iterations; “Sca” means that an optimal scaling factor is
applied; the performance of non-quantized decoders is provided as a reference)

B. Min-Sum TPC/SPC Decoder

Although the (4, 2)/(1, 5) and (4, 1)/(1, 4) hybrid quan-
tizers on the sum-product decoder use fewer bits than the
(3, 5) scheme, the nonuniformity in the structure nevertheless
incurs computational inconvenience. In seeking (possibly)
better solutions, we turn to the min-sum and the modified
min-sum decoders. Since these two algorithms involve linear
operations only, it is sufficient to look at the uniform quantizer
only. Various schemes are examined, are the best results are
summarized in Fig. 4. We observe that the (3,1) uniform quan-
tizer on the min-sum decoder performs slightly worse than
the (3,5) quantizer on the sum-product decoder, but requires



significantly less hardware. The introduction of the one-bit
correction term in the modified min-sum algorithm yields very
little performance improvement, which seems unworthy of the
extra bit that is used.
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Fig. 4. Uniform Quantization on the Min-Sum Decoder and the Modified
Min-Sum Decoder (“Mod. M-S” stands for modified min-sum decoder)
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Fig. 5. Optimal Gain/Scaling Factor for (3,1) Quantized Min-Sum Decoder

C. Optimal Gain and Quantization Sensitivity

To achieve the best signal-to-distortion ratio at the quantizer,
the amplitude of the signal needs to be adjusted by a gain
control or a scaling factor. There is an optimal value to scale
the received signal (and consequently the LLR values) before
it is fed into the quantizer. When the scaling factor is too
small, quantization noise will distort the signal; when it is too
large, saturation will occur. Both cases result in an undesirable
performance degradation. As we mentioned earlier, the optimal
value is dependent upon the specific quantizer and the specific
SNR value under investigation.

To demonstrate how sensitive the performance of the
quantizer/decoder is to the scaling factor, we take the (3,1)
quantizer on the min-sum decoder as an example. We first
fix an SNR value and examine the impact of the scaling

factor on the BER performance. As shown in the upper sub-
plot of Fig. 5, different values of the scaling factor result in
different BER performances. For the specific case examined,
i.e. SNR= 4dB, a scaling factor of around 0.8 yields the best
BER performance. We note that the optimal scaling factor (or
the optimal gain) is also a function of the SNR value. As
illustrated in the lower sub-plot of Fig. 5, the optimal scaling
factor tends to be large (approaches 1) at low SNR values, but
decreases as SNR increases.

We have also investigated the sensitivity of the quantization
schemes to the code rate. For the codes that are of interest,
that is, having high rates like (16, 15)2 and (32, 31)2 TPC/SPC
codes, we find that the value of the scaling factor (optimized
for a given quantization scheme and a given SNR value) to be
relatively stable for different code rates.

IV. CONCLUSION

We have investigated quantization strategy for fixed-point
arithmetics on three soft-output decoding algorithms for
TPC/SPC codes. The key issue is a balanced trade-off be-
tween complexity and performance (see Tab. II). With the
goal for simplicity and speed in mind, we opt for the (3,1)
uniform quantizer on the min-sum decoder over all other
quantizer/decoder schemes.

Quantization sensitivity is another important issue that we
have investigated. The observation is that the scaling factor,
which is required in order to maximize the performance, is
relatively sensitive to the channel condition or the SNR values,
but much less so to the code rate.

TABLE II

PERFORMANCE & COMPLEXITY COMPARISON

Performance Complexity
High Hybrid, S-P Hybrid, S-P

Uniform, S-P Uniform, S-P
Uniform, Modified M-S Uniform, Modified M-S

Low Uniform, M-S Uniform, M-S
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