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ABSTRACT

Low-Complexity, Capacity-Approaching Coding Schemes:
Design, Analysis and Applications. (December 2002)
Jing Li, B.Sc., Peking University, Beijing, China;
M.Eng., Texas A&M University
Co—Chairs of Advisory Committee: Dr. Krishna R. Narayanan
Dr. Costas N. Georghiades

The discovery (and rediscovery) of turbo codes and low density parity check
(LDPC) codes has revolutionized the coding research with novel ideas and techniques
on code concatenation, iterative decoding and graph-based structure. Although these
remarkable codes have demonstrated performance very close to the Shannon limit on
memoryless channels, it is fair to say that practice still lags behind theory by some
margin due to constructional difficulty, decoding complexity, structural irregularity
and/or other implementation issues. This work endeavors to fill some of these gaps
concerning the design, analysis, application and evaluation of simple but good codes.
The primary interest is to construct a class of bandwidth-efficient and power-efficient
“good” codes that are simple to construct, implement and analyze, and to investigate
related issues concerning their applications.

We direct our research focus on graph-based, soft iteratively decodable codes,
particularly those that are of high performance and low complexity. The work is
composed of various pieces, but the main components are developed within the fol-

lowing two main themes.

1. The first is to design and analyze the proposed codes, namely product accu-



v

mulate codes or PA codes, from the code theoretic perspective, which includes
structural properties, decoding algorithms and efficiency, performance bounds

and asymptotic thresholds.

2. The second is to investigate and evaluate PA codes as well as other state-of-the-
art codes like turbo product codes and LDPC codes in a number of application
scenarios, including wireless communications, optical fiber communications, dig-
ital data storage systems and packet data networks. The features we will address
include performance bounds and thresholds, rate compatibility, joint differential
detection and decoding, joint decoding and equalization, binary precoding, and

thresholds of coded intersymbol interference channels.

The former is more coding theory centric and the latter is more application ori-
ented. Through the study, we hope to shed insight into the understanding and practice
of coding theory and techniques in a unified framework, and to reveal and bench-mark

the potentials of some of the best-known codes in a variety of applications.
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CHAPTER I

INTRODUCTION

A. Introduction

Fifty years after Claude Shannon determined the ultimate capacity limit of memory-
less channels, we have finally constructed practical error correction coding schemes
that yield capacity approaching performance. Although random coding theory im-
plies that arbitrary codes tend to perform close to the capacity as the code length
goes to infinity, it is not until the discovery of turbo codes and the rediscovery of
low density parity check (LDPC) codes in recent years that performance that is very
close to the capacity limit has been achieved. However, for commercial deployment,
it is fair to say that encoding/decoding complexity, structural complexity, and other
issues remain to be solved for efficient and cheap implementation in hardware.

This work is primarily concerned with the construction, analysis and evaluation
of high-performance error correction codes, and particularly those low-complexity
codes based on graphs. The goal is firstly to design a class of low-complexity, high-
performance, high-rate, and easily-implementable codes for use in applications where
powerful error protection is needed but where high cost can not be afforded. Then
we wish to investigate and evaluate some of the state-of-the-art codes and coding
techniques for several applications including wireless communications, optical fiber

communications (OFC), digital data recording systems and packet data networks.

The journal model is IEEE Transactions on Automatic Control.



B. State of the Art

The error correction coding techniques can be roughly divided into three categories.

The first is block codes using algebraic decoding, like Hamming codes [1], BCH
(Bose-Chaudhuri-Hocquenghem) codes [2] [3], and RS (Reed-Solomon) codes [4].
These block codes can be implemented efficiently in hardware, but most of them
lack a convenient soft decoding algorithm. Further it is not always possible to change
code lengths.

The second category is convolutional codes using trellis decoding or list decod-
ing. Unlike block codes, convolutional codes are convenient to change code lengths,
and they have efficient soft decoding algorithms, like soft output Viterbi algorithm
(SOVA) [5] and a posteriori probability (APP) algorithm [6] (whose hard output al-
gorithm is known as maximum a posteriori or MAP), which is of great advantage
on fading channels and/or with high-order modulations. The technique of punctur-
ing further allows convolutional codes to change code rates flexibly without inducing
extra complexity.

The third category, and possibly the most exciting of all, is the recently developed
concatenated and compound codes which are built upon block and/or convolutional
codes and which use (soft) iterative decoding. It was first found by Forney in 1966 [7]
that by concatenating an inner code and an outer code, it is possible to construct codes
whose probability of error decreases exponentially at rates less than capacity, while
decoding complexity increases only algebraically. The discovery of turbo codes by
Berrou et al. [8] and the rediscovery of low density parity check codes [9] by MacKay,
Luby and Richardson et al. [10] [11] [12] are the milestones in the advancement of
this field. Prompted by their impressively near-capacity performance [13] [14], paral-

lel concatenated convolutional codes (PCCC) [15], serial concatenated convolutional



codes (SCCCQC) [16], hybrid concatenated convolutional codes (HCCC) [17] and other
concatenated codes are proposed and shown to provide similar coding gains. Exam-
ples include turbo product codes (TPC) [18] [19] [20] and regular/irregular repeat
accumulate (RA/IRA) codes [21] [22]. Specifically, product accumulate (PA) codes
(23] [24], which is the focus and the primary contribution of this work also belongs
to this category. These codes have two major features in common: (1) A (random)
interleaver is usually incorporated (explicitly or implicitly) in the code structure, (2)
soft-in soft-out (SISO) iterative decoding techniques are exploited to approximate
the performance of an optimal (yet prohibitively complex) decoder. Analysis reveals
that they possess good distance spectrum and that iterative decoding provides a good
approximation to the otherwise unmanageable maximum likelihood (ML) decoding.

As the title indicates, the primary interest of this dissertation is to study the
high-performance coding schemes in this third category, particularly those having
(relatively) low complexity and analyzable using code graphs. Specifically, the propo-
sition and discussion of product accumulate codes will be the focus. We plan to study
their theoretical foundation, the structural properties, iterative decoding algorithms,
and applications. Other graph-based codes like LDPC codes and TPC codes will
also be investigated in the context of wireless communications, digital data storage

systems, and packet data networks.

C. Background

1. Serial and Parallel Turbo Codes

The original turbo codes proposed by Berrou et al. [8] are composed of 2 branches of
parallel concatenated convolutional codes with a random interleaver between them.

In the general sense, turbo codes can be referred to as either parallel or serial concate-



nated convolutional codes with random interleavers between component codes. (see
Figure 1). Puncturing can be used to get high rate turbo codes from a rate-1/3 or
rate-1/2 mother code. Using an iterative soft decoding (see decoder structure in Fig-
ure 2), the above interleaved concatenated codes can yield performance impressively
close to the capacity limit.

The key structural elements in parallel and serial turbo codes include the choice of
the component codes and the use of a (random) interleaver in-between the component
codes. Recursive systematic convolutional (RSC) codes are used in both branches
of a parallel turbo code, as well as the inner code of a serial turbo code [25] [21].
Unlike non-recursive convolutional codes, a single weight input sequence does not
cause an error event (which is defined as a patch in trellis that diverges and remerges
to the reference path) in RSC codes and, hence, the minimum input weight that
will cause error events for RSC codes is 2. If we are able to separate the two input
weights far apart (before sending the sequence to RSC codes), chances are that the
resulting error event will be long enough to be detected and/or corrected. This is made
possible by the random interleaver used between the component codes. In a parallel
concatenation, the random interleaver makes the input sequence that produces low
weight output in the first branch produce (with high probability) high weight output
in the second branch, and vice versa. Similarly, in a serial concatenation, the random
interleaver makes the low weight sequences at the output of the outer code produce
(with high probability) high weight sequences at the output of the inner RSC code.
This is known as the spectrum thinning phenomenon and accounts for the well-known
interleaving gain.

The decoding of turbo codes is an iterative approach based on the subdecoders
of the component codes, see Figure 2). The subdecoders can implement any SISO

algorithm, but most popular ones are the BCJR algorithm or the SOVA. The turbo
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principle is strictly followed to help the iterative process to approximate the optimal
solution; that is, during each iteration of the message exchange, out-bound informa-
tion (known as the extrinsic information) from a local processor (either the inner
decoder or the outer decoder) is constrained to have the least correlation with the
in-bound information (known as the a priori information) to this processor. Although
the turbo decoding algorithm works well, the complexity is quite high. The BCJR
algorithm is about 4 times as complex as the Viterbi algorithm [26]. Since a turbo
decoder takes several iterations to converge where each iteration involves two rounds
of BCJR decoding (corresponding to 2 subdecoders), it is usually expensive to imple-
ment. To reduce the complexity, SOVA can be used in replace of BCJR at the cost
of performance degradation of about 0.3-0.5 dB.

Turbo codes, particularly their concatenated code structure and the iterative
decoding principle, serve as the foundation of many of the newly-discovered good
codes, including the ones investigated in this research. Further, the structural model
of serial turbo codes can be extended for applications in a variety of systems such
as coding over inter-symbol interference (ISI) channels [27] [28] [29], which will be
investigated in Chapter V.

We mention that in the analysis of interleaved concatenated codes, the concept
of uniform interleaver is typically used. Since obtaining the performance of a specific
interleaver in use is practically intractable, a uniform interleaver serves as a math-
ematical convenience to investigate the average performance of the code ensemble

where all possible interleavers are taken into account with equal weight.

2. Low Density Parity Check Codes

An (N, K) low density parity check code [9] [10] is defined by a sparse parity check

matrix H in a non-systematic form (Figure 3). Since each row of the H matrix is
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Fig. 3. Parity check matrix H of an LDPC code.

a single parity check, an LDPC code can be loosely viewed as the concatenation of
(N — K) single parity check codes in parallel.

Another important way to represent LDPC codes is using a Tanner graph [30]
which is a bipartite graph using bit nodes and check nodes to represent the columns
and rows of the H matrix and using inter-connecting edges to represent the relations
between bits and checks (Figure 4). There are regular and irregular LDPC codes,
corresponding to uniform or non-uniform column weights. Major parameters for an
LDPC code include the column weight (or the bit node degree) v, the row weight (or
the check node degree) p and the girth (which is defined as the length of the shortest
cycle in the Tanner graph). An LDPC code is said to be (v, p)-regular if all columns
have weight v and all rows have weight p. For irregular LDPC codes, which are
not constrained to uniform row or column weights, degree profiles, p(i) and (), are
usually used to describe the distributions of row weights and column weights, where
p(7) and (7) represent the percentage of rows and columns with weight 7, respectively.
The decoding of an LDPC code uses an iterative message-passing algorithm which is
essentially an instance of Pearl’s belief propagation algorithm operated on the graph
representation of the code. The message-passing algorithm is also known as the sum-

product algorithm and has a low-complexity approximation known as the min-sum
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algorithm [10] [31], where (soft) messages are passed from bits to checks and checks
to bits. The girth is important to LDPC codes because the efficiency of the message-
passing decoder is adversely affected by the existence of short cycles. In the ideal case
where the graph is tree-like (i.e., cycle-free), the message-passing decoder converges
to the optimal solution.

It has been shown that regular LDPC codes have minimum distance (averaged
over the ensemble of the code) which increases linearly with the block size, provided
the column weight is at least 3 [9]. This implies that they have excellent asymptotic
performance in the code length. Irregular LDPC codes provide unequal error protec-
tion to the code bits and have demonstrated a “wave” effect in the decoding process,
such that highly protected bits tend to be decoded first and then help with the less
protected bits. With carefully designed row and column degree profiles, irregular
LDPC codes can outperform regular LDPC codes [11] [14] [32].

Although in practice short cycles are unavoidable in an LDPC code, the exist-

ing (suboptimal) decoder nevertheless performs quite well. Simulations have shown



LDPC codes perform as well as turbo codes (and may even be better for very large
block sizes), yet with a lower decoding complexity. It is worth mentioning though
that LDPC codes from random constructions (which is typically the case) could have
encoding complexity quadratic with the code length (O(N?)), although careful pre-
processing can be performed to make the encoding complexity (near-)linear [33].
Possibly the biggest concern in implementing an LDPC in hardware is its irreg-
ular structure. Except for a few types that are constructed from finite geometries
[34] and combinatorial designs [35] [36] [37], the majority of LDPC codes have very
random structure which makes designing/wiring of data flow paths very difficult.
Another drawback of LDPC codes is that it is not flexible to change the code rate
and/or code length. Although puncturing and extending are possible for LDPC codes
(which we will address in detail in Chapter VI), change of rate and/or length would
usually require a reconstruction of the parity check matrix H and the corresponding

generator matrix G.

3. Turbo Product Codes

A turbo product code ! [18] [19], also known as a block turbo code (BTC) [38], is
composed of a multi-dimensional array of codewords from linear block codes, such as
parity check codes, Hamming codes and BCH codes. The structure of a 2-dimensional
TPC code is shown in Figure 5. Here, “turbo” refers to the iterative decoding process,
and “product” refers to the fact the parameters of the TPC code are the product of the
parameters of its component codes. Let C; ~ (nq, ki,dy), Co ~ (ng, ko, d3), -+ ,Cs ~
(ns, ks, ds) denote s linear binary block codes, where n;, k;,d;,i = 1,2,--- s, are

IThe code structure was introduced back in 1954, although the term “turbo” and

the current soft iterative decoding strategy was not proposed until after the discovery
of turbo codes in 1993.
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the codeword length, user data sequence length and minimum distance respectively.
An s-dimensional turbo product code, C = C; ® C; ® - - - ® Cs, thus has parameters
(ning - -+ ng, kiks - - - kg, dids - - - dy), and its generator matrix is the Kronecker product
of the generator matrices of its component codes: G = G1 G ®- - -RG,. It is known
that very simple (almost useless) component codes could result in an overall powerful
TPC code.

Particularly of interest to our work is the simplest type of TPC codes whose com-
ponent codes are single parity check codes, namely, single-parity check turbo product
codes (TPC/SPC). We consider a 2-D TPC code as an example whose encoding is
straightforward: The data bits are placed in a K; x K5 block and each row is first
encoded using Cy, (parity P; is added, see Figure 5). Then, each column is encoded
using Cy, (parity P, and P, are added). Due to the linearity of the code, the order of
encoding is unimportant and all rows will be valid codewords of C; (call it row code)
and all columns will be valid codewords of Cy (call it column code). The encoding
algorithm can be easily extended to the multidimensional case. In the general case,

a TPC code may or may not have “parity-on-parity” bits (P, in Figure 5). A TPC
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code without parity-on-parity is essentially a parallel concatenation with a block in-
terleaver in between, and a TPC code with parity-on-parity is a serial concatenation
with a block interleaver in between.

The decoding of TPC codes uses an iterative approach based on soft-in soft-out
(SISO) decoders for each of its component codes. Decoding of TPC codes is generally
via the Chase algorithm [39], a controlled-search procedure. However, with single-
parity check component codes, the decoding can be handled in a simpler and more
efficient manner. Observe that a TPC/SPC code can be interpreted from different
perspectives. One particular view-point is to model it as a serial concatenation of its
component codes with a linear block interleaver in between. From the graph-based
point of view, it can also be viewed as a special type of structured regular LDPC code
where each row in each dimension satisfies a check (see Figure 6). This observation
leads to a convenient adoption of the message-passing algorithm (or the sum-product
algorithm) from LDPC codes [27] [40]. Since each bit is expressed as the modulo-2
sum of the rest of the bits in the check, this message-passing decoding algorithm
is in fact an extension of replication decoding [20]. The exact decoding algorithm
can be found in Appendix A. Since high rates are desirable, we will focus primarily
on 2-dimensional TPC/SPC codes in this work, but the above encoding/decoding
algorithm (as well as properties), are readily extendible to the multi-dimensional

case.

D. Outlines of the Research Work

1. Objective and Scope of the Research

This research work is based on the recent advances in the design, analysis and eval-

uation of iterative decoding systems as exemplified by turbo codes [8], low density
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Fig. 6. Bipartite graph representation of LDPC and 2-dimensional TPC/SPC codes.

parity check codes [9] [10], turbo product codes [18] [19], etc. The primary interest of
this work is to find a class of high-rate and well-performing codes that are simple to
construct, simple to implement in hardware and (hopefully) simple enough to perform
theoretical analysis. We are also interested in the analysis and performance evaluation
of the aforementioned state-of-the-art codes in various application scenarios.

In the design for simple and good codes, we propose the interleaved serial con-
catenation of an outer single-parity check turbo product code and an inner rate-1
recursive convolutional code, and name it product accumulate (PA) codes [23] [24].
We will present and motivate the fundamental ideas and indicate some technical
aspects with proofs and implementation details. The work is composed of various
pieces, but the main components will be developed within the following two main

themes.

1. The first is to investigate, design and analyze the proposed codes, namely, prod-
uct accumulate codes and its extension, generalized product accumulate codes
(GPA), from the code theoretic perspective, which will include code structural

properties, iterative decoding algorithms and their efficiency, interleaving gain,
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as well as asymptotic performance bounds/thresholds from the ML analysis and

the iterative analysis.

2. The second theme is to investigate, extend and evaluate the state-of-the-art
codes in the context of wireless communication, optical fiber communication,
data recording, and packet data transmission networks. Specifically, for land
mobile wireless communication we investigate and analyze the performance
of short and long product accumulate codes on independent/correlated flat
Rayleigh fading channels with LDPC codes as a comparison study. For long-
haul optical fiber communication with amplitude spontaneous emission (ASE)
noise, we investigate and analyze the performance of high-rate, long product
accumulate codes on Chi-square channels with turbo codes and BCH codes as
a comparison study. For high-capacity data recording applications, we investi-
gate single parity check turbo product codes and LDPC codes on several types
of partial response (PR) channels and Lorentzian channels. For packet data
networks where retransmission is allowed, we construct and investigate efficient
rate-compatible LDPC (RC-LDPC) codes for use in hybrid automatic repeat re-
quest (ARQ) systems with code combining and packet combining. The features
we will address include joint (iterative) differential detection and decoding, joint
(iterative) equalization and decoding, rate compatibility, binary precoding for

IST channels, and thresholds of coded IST channels.

The first theme is more coding theory centric and the latter is more application-
oriented, but some of the coding theories, like the turbo principle and the interleaving
gain principle, and some of the analytical tools, like the union bound, Divsalar’s simple
bound, density evolution (DE) and extrinsic information transfer (EXIT) chart will

be used throughout the work. Through the study, we hope to shed insight into the
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understanding and practice of coding theory and techniques, to offer a comparing
and unifying view of some of the best known codes, and to reveal their potential in a

variety of applications.

2. Organization of the Dissertation

The dissertation is organized into six chapters following this introduction.

Chapter II proposes and discusses a novel class of high-rate, high-performance,
low-complexity, well-structured and provably “good” codes which are a serial con-
catenation of a single-parity check turbo product code, an interleaver and a rate-1
recursive convolutional code. (A “good” code is defined as a code for which there
exists a threshold above which an arbitrarily low error rate can be achieved as block
size goes to infinity [10].) The proposed codes, termed product accumulate codes or
PA codes, and their extension, generalized product accumulate codes or GPA codes,
are investigated and analyzed in full. Two slightly different structures, PA-1 and
PA-II, are presented where the latter can be viewed as a special case of the former
with slightly lower complexity?. The motivation, the code structure, the iterative
decoding algorithm, and encoding and decoding complexity are discussed. In partic-
ular, two message-passing decoding algorithms are proposed: sum-product decoding
and min-sum decoding. It is shown that a particular update schedule of the sum-
product decoding algorithm is equivalent to conventional turbo decoding of the serial
concatenated code, but with significantly lower complexity.

In the analysis of the proposed (generalized) product accumulate codes, the focus
is on two principal issues: (1) to investigate the properties of the ensemble of these

codes and (2) to investigate the performance of the associated iterative decoding

2Throughout the work, unless otherwise stated, product accumulate codes or PA
codes refer to PA-T codes.
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algorithms. For the former, the investigation is concentrated on the ensemble average
of distance spectrum and the quantification of the interleaving gain, which will give
us an idea of how the performance of the code improves as the block size increases.
Several performance bounds based on distance spectrum are computed, including
the popular union bound and a tighter simple bound due to Divsalar [41] which can
overcome the cut-off rate limitation. For the latter, we employ density evolution [14]
[12] [32] [11], a useful tool in the analysis and design of iteratively decodable codes,
to compute the thresholds or the asymptotic performance limit of the subject codes
using the existing iterative decoding algorithm. Comparing the bounds calculated
in the ML sense (like the union bound, the simple bound, etc) and the thresholds
calculated in the iterative sense, performance loss due to the suboptimality in the
iterative decoding as well as their implication on the code design can be obtained.

Through analysis, we show that product accumulate codes are linear time en-
codable and linear time decodable, and are “good” both in the maximum likelihood
sense and under iterative decoding. Asymptotic thresholds show that these codes are
capable of performance within a few tenths of a dB away from the Shannon limit on
additive White Gaussian noise (AWGN) channels. Simulation results confirm these
claims and show that these codes provide similar performance to turbo codes but
with significantly less decoding complexity and without an obvious error floor. For
example, for a rate 0.8, data block size 16K PA code with properly designed S-random
interleavers, simulations show that the error floor does not appear until as low as bit
error rate (BER) of 1078 to 107 (Chapter IV).

The chapter then extends PA codes to generalized product accumulate codes or
GPA codes, where the outer code is relaxed from 2 parallel SPC branches to M (> 2)
parallel branches. Through similar approaches, we show that all the nice properties

of PA codes also hold for GPA codes. The nice thing of GPA codes is that they
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are rich in code rate and code construction, and thus allow rate adaptivity. GPA
codes exist for virtually any code rate from 0 to 1, and may have more than one
construction for a given code rate (and length). Through threshold computation and
computer simulations we provide guidelines for choosing the best construction. We
expect GPA codes to be useful for systems where high rate codes are usually required
(for bandwidth efficiency) but low rate codes are occasionally used due to severe
channel noise/distortion (for stronger error protection capability).

Following the proposition and construction of new codes in Chapter II, the next
four chapters direct the focus on the practical issue of applying the state-of-the-art
error correction codes and coding techniques to four applications, wireless communi-
cation, optical fiber communication, magnetic and magneto-optical recording system
and packet data networks.

Chapter III investigates the performance of PA codes on wireless communication
channels which, without line of sight, are modeled as flat Rayleigh fading channels.
We analyze and evaluate the performance of PA codes with both coherent and non-
coherent detection, and extend the discussion to a more general case where the outer
code can be any LDPC code (as will be discussed in Chapter II, the outer code of PA
codes can be viewed as a special type of LDPC code). The motivation is two-fold:
first, previous work on PA codes (Chapter 1I) has established them as a class of low-
complexity, capacity-approaching good codes on AWGN channels. Second, PA codes
are inherently differentially coded which permits noncoherent detection on wireless
fading channels.

The performances of PA codes using coherent binary phase shift keying (BPSK)
signaling on independent Rayleigh fading channels with and without channel state
information (CSI) as well as on correlated land mobile Rayleigh channels with CSI is

first studied. Divsalar’s simple bounds and iterative thresholds using density evolution
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are computed to quantify the performance of PA codes with finite lengths and infinite
lengths, respectively. Both analysis and simulations show that PA codes perform as
well as LDPC codes on fading channels (with coherent detection), and that their
performance is close to the channel capacity on Rayleigh fading channels too.

To exploit the intrinsic differential encoder in PA codes, noncoherent differential
detection/decoding is then investigated for PA codes on fast-fading channels. A
simple, noncoherent iterative differential detection and decoding (IDDD) receiver is
presented and discussed. Simulations show that the IDDD received is robust for
different Doppler rates, and can perform within 1 dB from the coherent case with
very little extra complexity and bandwidth expansion. The impact of pilot spacing
on the overall performance is also investigated.

Extrinsic information transfer charts are used to facilitate the analysis. We first
show that the popular practice of inserting pilot symbols to terminate the trellis of
the differential code will cause an inherent loss in capacity and that a better way is
to separate them from the trellis. Next, we show that although PA codes perform
remarkably, a general differentially coded LDPC code does not, since (conventional)
LDPC codes do not match in convergence behavior with a differential code. However,
without a differential code, more pilot symbols are usually required to track the chan-
nel. Hence, on fast fading channels where noncoherent detection is needed and where
bandwidth expansion is limited, conventional LDPC codes are unable to perform as
efficiently as PA codes.

Following the analysis, a convergence-constraint density evolution is proposed for
designing good LDPC ensembles matched with differential coding. We observe that
the LDPC ensemble optimal for differential coding always contains degree-1 and 2
variable nodes, and that for high code rates, these nodes are dominant. The optimized

LDPC code (with differential coding) shows a 1.04 dB gain over PA codes. We expect
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the method to be useful for designing good LDPC ensembles for a variety of inner
code, modulation and receiver.

Chapter IV investigates forward error correction (FEC) techniques for use in
long-haul optical fiber communication. FEC techniques have become increasingly
important in improving the throughput/capacity of optical fiber communications.
The traditional use of BCH codes, although simple and efficient, seems to be inade-
quate for future needs of high data rate, high throughput optical fiber communication.
In the search for good FEC codes for future optical fiber communication, we inves-
tigate product accumulate codes for the apparent reasons that they are high rate,
low complexity and well performing. For comparison purposes, turbo codes are also
studied.

We consider an optical fiber communication channel where the amplified spon-
taneous emission noise dominates all other noise sources. Three channel models
are investigated, including the asymmetric Chi-square channel (which is by far the
most accurate channel model for long-haul optical fiber communication with ASE),
its asymmetric Gaussian approximation, and the symmetric Gaussian approximated
channel models (where the channel is actually reduced to the conventional AWGN
channels). Binary on-off keying (OOK) modulation and an iterative soft-decision
message-passing decoding are used for PA codes. At low signal-to-noise ratios (SNR),
code performance is evaluated with simulations of typical PA coding schemes. For
high SNRs beyond the simulation capabilities, we derive the pairwise error probabil-
ity based on the three channel models and explore an average upper bound on the
performance of the ensemble of PA codes. Extensive simulations show that PA codes
can yield impressive performance on fiber optic channels also (with 9 dB gain over
uncoded systems at bit error rates of 107%) and that the error floor does not appear

as low as BER of 1078 to 107°. Another interesting finding of the work is that AWGN
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channels, although fundamentally different from Chi-square channels, can serve as a
convenient reference to approximate the code performance at high rates on Chi-square
channels.

Chapter V focuses on coding techniques for digital recording systems. Future
high-density magnetic recording systems require very high rate codes (R > 0.88) and
very low bit error rate (around 107**). Such low error rate is only achieved by the
concatenation of two levels of coding schemes, where a Reed Solomon code is usually
used in the second level to clear up the residual errors. The first-level error correction
codes are the key to assure the overall error control quality. Not only is low bit error
rate required, but burstiness in errors should be avoided. Further, due to the concern
for delay and speed, the complexity of the codes should be kept as low as possible.
Concerning such requirements, we investigate the potential of several high-rate coding
schemes, including serial turbo (punctured convolutional codes), LDPC codes and
TPC/SPC codes [27] [40]. In the first phase, we assume a perfectly equalized partial
response channel model with additive white Gaussian noise. We model the channel as
a rate-1, binary-input and real-valued-output convolutional code and exploit iterative
decoding and equalization (IDE). The effect of binary precoding is studied in detail.
Several channel models in the partial response class IV family, including PR4, EPR4,
E?PR4, and ME?PR4 are evaluated. A comprehensive evaluation is performed which
includes complexity, bit/frame error rate and bit/symbol error statistics. Further, to
facilitate the understanding, density evolution is used to calculate the thresholds of
each coding system, which serves as the practical capacity limit [42]. Some interesting
issues related to the optimization of the decoding strategies will also be discussed [40].

The next step is to use more realistic channel models, namely, the Lorentzian
channels with colored noise. A front-end filter is first used to equalize the channel to

some suitable targets so that the same decoding strategy as in the perfect PR channel
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model can be applied. However, in this case, the final performance is not only related
to the performance of the codes, but also to the effectiveness of the equalization
targets as a function of the normalized recording density and the code rates. Hence,
in addition to the investigation of error rate and error statistics, the effect of different
equalization targets and the impact of the code rate are also evaluated.

In addition to the forward error correction techniques addressed in the previous
chapters, another useful way of error control is automatic repeat request which is
widely used for systems where a feedback channel is available and where transmis-
sion delay is acceptable. In particular, ARQ systems combined with a (good) FEC
coding scheme, known as ARQ/FEC or hybrid ARQ systems, can achieve capacity-
approaching throughput with guaranteed reliable transmission and, hence, are very
popular in practical packet data networks as well as wireless communications. Hy-
brid ARQ systems make use of rate-compatible (RC) error correction codes to achieve
high throughput efficiency through incremental retransmission. The key is to employ
a wise ARQ strategy and, more importantly, to use an efficient rate compatible code.

The focus of Chapter VI is on the construction of good rate-compatible low
density parity check codes. The conventional approach of puncturing is first studied.
Investigation of the code ensemble and the asymptotic performance using density evo-
lution reveals that puncturing produces efficient RC-LDPC codes only at high rates
and only when the amount of puncturing is small. To extend the dynamic rate range,
a special approach of extending is proposed and investigated whose performance is
shown to be very encouraging at low rates. Combining both approaches, efficient RC-
LDPC codes are constructed to offer strong error correction capability over a wide
code rate range. Using the constructed RC-LDPC, an LDPC-coded hybrid ARQ sys-
tem using both code-combining and packet-combining is evaluated. The encouraging

result is that the proposed LDPC-ARQ system can achieve throughput about 1 dB
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away from the theoretical limit, which is comparable to turbo ARQ systems [43, 44],
yet with lower decoding complexity:.

Finally, Chapter VII summarizes the whole work and presents concluding re-
marks.

For readers’ convenience, an overview of the content and the organization of
the dissertation is illustrated in Figure 7. Further, all the abbreviations used in the

dissertation are listed in Appendix C.
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CHAPTER II

PRODUCT ACCUMULATE CODES AND GENERALIZED PRODUCT
ACCUMULATE CODES

A. Motivation and Outline of the Chapter

In this chapter, we propose and discuss a novel class of provably “good” codes which
are termed product accumulate (PA) codes [23] [24]. (A “good” code is defined as a
code for which there exists an SNR threshold such that, when the channel is better
than this threshold, arbitrarily low error rates can be achieved as block size goes
to infinity [10].) The proposed codes are shown to possess many inviting properties
including close-to-capacity performance, low decoding complexity, regular structure
and easy rate adaptivity uniformly for all rates from 1/2 and higher.

The work was initiated by the search for good, high-rate codes which permit
soft decision and soft-output decoding. Several applications require the use of (soft-
decodable) high rate codes. Some widely used high-rate codes are Reed-Solomon
codes, (punctured) convolutional codes, (punctured) turbo codes and low density
parity check codes. Until very recently, soft decision decoding of RS codes has been
a major computational problem, and the recent developments are yet to be bench-
marked to know the exact performance of soft decision decoding of RS codes. In order
to get good performance from high-rate punctured convolutional codes and turbo
codes, the (component) convolutional codes usually have to be of long constraint
length, making the decoding complexity rather high. Low density parity check codes,
on the other hand, provide good performance at possibly lower complexity; however,
except for a few subsets of structured designs (like finite geometry and combinatorial

design), the encoding usually requires explicit storage of a generator matrix and,
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moreover, the random and irregular structure of LDPC codes makes it difficult to
design and wire the layout in hardware. Further, good high-rate LDPC codes are
difficult to construct for short block lengths.

In an effort to construct good, simple, soft-decodable, high-rate codes, we investi-
gated single-parity check turbo product codes which can be soft decoded by a message-
passing algorithm (also referred to as the sum-product algorithm). TPC/SPC codes
have recently been investigated for potential application on high-density magnetic
recording channels and have demonstrated encouraging performance via the turbo
approach [27]. Since the TPC/SPC itself is not a “good” code, we consider the
concatenation of a rate-1 inner code (differential encoder or accumulator) with the
TPC/SPC code through an interleaver. Through analysis and simulations, we find
this class of codes to be remarkably good in bit error rate at high code rates (R > 0.7)
when used with an iterative message-passing decoding algorithm. We show that the
performance of these codes can be further improved by replacing the block interleaver
in the conventional TPC/SPC outer code with a random interleaver. We refer to such
codes as product accumulate (PA-I) codes. Clearly, when the outer code is a conven-
tional TPC/SPC code, it is a special case of the proposed codes and we refer to those
as PA-II codes.

To facilitate understanding the structure and potential of the proposed codes, we
compute tight upper bounds on the performance of these codes using the bounding
technique developed by Divsalar in [41]. We also study the graph structure of these
codes. Thresholds are computed using density evolution [12] and shown to be within
a few tenths of a dB from the Shannon limit for all rates R > 1/2. By studying
the graph structure, a message-passing (sum-product) decoding algorithm and its
low-complexity approximation, a min-sum algorithm, can be developed to iteratively

decode the outer code and the inner code. We show that a particular update schedule
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for this algorithm when applied to the graph of the inner code results in optimal
decoding of the inner code 1/(1 @ D). That is, the sum-product algorithm applied
to the decoding of 1/(1 @ D) is equivalent to the BCJR (or a posteriori probability)
algorithm [6] and the min-sum algorithm is equivalent to the Max-log-MAP algorithm
[26]. However, the message-passing algorithm can be implemented with significantly
lower complexity than the BCJR equivalents. Simulation results with long block
lengths confirm the thresholds, and simulations with short block lengths show that
performance close to turbo codes can be achieved with significantly lower complexity.

We propose the class of product accumulate codes as a prospective class which
not only enjoys good performance, low complexity and soft decodability, but also
maintains a simple and regular structure uniformly for all block sizes and for all rates
above 1/2. The regular structure, as well as the ease in construction, are particularly
appealing properties in practical implementation and in applications that require rate
adaptivity.

The rest of the chapter is organized as follows. In Section B, the drawback
of TPC/SPC codes is briefly discussed followed by the description of the system
model for PA codes, where two (slightly) different types, namely, PA-I and PA-II
codes, are compared. Section C discusses the decoding algorithm for PA codes and in
particular a graph-based sum-product algorithm is described and shown to be optimal
for the inner rate-1 convolutional codes, yet with low complexity. Section D analyzes
in detail some properties of PA codes, including upper bounds on the performance
under ML (maximum likelihood) decoding and thresholds of the codes under iterative
decoding. Section E discusses an algebraic construction which is useful in practical
implementation. Section F extends product accumulate codes (PA-I) to generalized

product accumulate codes, where similar properties as PA codes are discussed for

GPA codes. Section G presents simulation results for PA and GPA codes on AWGN
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channels to bench-mark their performance. Section H compares PA codes with other
good codes proposed recently, in an attempt to provide a unified viewpoint of the
recent advancements in codes and code graphs. Finally Section I summarizes the

chapter.

B. Structure of the Proposed Product Accumulate Codes

1. A TPC/SPC Code by Itself Is Not a “Good” Code

As introduced in Chapter I, single parity check turbo product codes, or TPC/SPC
codes, have several inviting properties including intrinsically high rate, simplicity and
soft decodability, and, hence, seem a viable candidate for low-cost, high-rate appli-
cations. The simple and regular structure of a TPC/SPC code makes it possible to
analyze the code properties. In particular, the weight spectrum of a 2-dimensional
TPC/SPC code with parameter C ~ (nyng, (n; —1)(ng — 1)) (Figure 5) can be calcu-
lated by the following equation [20]

A(h) =2™™ i (m) [ i pm(a;nl)hm] m, (2.1)

=0 N/ [m=0m even

where

a\[n—a
P,(a;n) = ;(—1)’f(k) (m B k) (2.2)
As expected, A(h) is symmetric in n; and ny. It has been shown that the weight
distribution of TPC/SPC codes asymptotically approaches that of a random code
if the dimension of the code and the lengths of all component codes go to infinity
[20]. However, increasing the dimension decreases the code rate and, hence, makes

the codes less bandwidth efficient.

Although TPC/SPC codes have been considered for some high-rate applications,
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such as data storage systems, a TPC/SPC code by itself is not a “good” code. To
see why TPC/SPC codes are not “good”, note that an s-dimensional TPC/SPC code
always has minimum distance of 2° irrespective of the block size. Assuming maximum
likelihood decoding, the lower bound on the word error rate (WER) (also known as

frame error rate or FER) is

(2.3)

Pw(e)ZQ( ﬂ)

No

where R is the code rate. Obviously, the lower bound is not a function of block size.
In other words, unless the dimensionality of a TPC/SPC code, s, goes to infinity, its
WER performance is always bounded away from zero independent of the block size.
Hence, a TPC/SPC code alone is not good in the ML sense.

In an effort to improve the performance of TPC/SPC codes, some attempts have
been made to increase its minimum distance by carefully adding more parity checks
by increasing the dimensionality [45] [19]. However, adding dimensionality obviously
reduces code rate. Further, for any TPC/SPC code of a given dimensionality, the
minimum distance is fixed and does not improve with block size. In other words,
except for the asymptotic case where s — oo, multi-dimensional TPC/SPC codes are
still not “good” codes. Moreover, when s — oo, R — 0, and, hence, these codes are
not of much practical interest.

In this work we take a different approach which is to group several blocks of
TPC/SPC codewords together, interleave them and further encode them with a rate-
1 recursive convolutional code. The resulting serial concatenation brings a significant
improvement to TPC/SPC codes in their fundamental structural properties, for, as
will be explained in later sections, the resulting serial concatenated code now becomes

a “good” code with linear encoding and decoding complexity. Furthermore, we will
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Product Accumulate Code (PAI) Turbo Decoder ,
i Py L8
! : ' -1 !
—Teeisee | | TU »@Y D | | o Tip| MAP decoder [ TC ,’ TPC decoder | iy
S ! " ' i | (SISO inner (SISO outer | !
! . : ! decoder) =1 4| decoder) i
1 outer code inner code : T |

Fig. 8. System model for product accumulate (PA-II) codes and iterative decoder.
(The outer TPC/SPC code is presented in such a way to illustrate that although
there is only one TPC/SPC code, several blocks of TPC/SPC codewords are

combined before interleaving.)

discuss a modification to the interleaving scheme within the TPC/SPC code which

results in a better code structure.

2. Proposed Code Structure

Figure 8 shows the overall structure of the proposed high-rate code, which we call a
product accumulate code. Tt comprises a 2-D TPC/SPC outer code of rate (¢/(t+1))?
(t/(t + 1) in each dimension), a random interleaver, a rate-1 recursive convolutional
inner code of the form 1/(1 @ D) (also known as the accumulator). For a TPC/SPC
code of length (¢ + 1)?, P such codewords are taken and interleaved using a random
interleaver of size N = P(t + 1)?, and further encoded using a rate-1 recursive con-
volutional encoder to form a codeword of length N. Thus, the resulting code is a
(P(t+ 1)%, Pt?) code with rate (¢/(t + 1))?. The random interleaver works to break
up the correlation between the messages (extrinsic information) and, in conjunction
with the recursive inner code, to map low-weight error events to high-weight error
events, which results in a good distance spectrum.

Since P codewords of the TPC/SPC code are interleaved together before passing
through the accumulator, the input block length (and, hence, latency) is Pt* infor-

mation bits. A conventional TPC/SPC code itself is a 2-D code where the data is
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interleaved using a block interleaver. Therefore, the structure of the outer code is
equivalent to Pt? information bits being interleaved using P separate block inter-
leavers. Instead of this structure, it is possible to replace the interleaver within the
TPC/SPC with one random interleaver of size Pt? bits. When a random interleaver
is used, it is no longer trivial to add parity-on-parity bits and, hence, we do not use
parity-on-parity bits. The structure of the resulting code is shown in Figure 9. To
be precise, the resulting code (i.e., our proposed product accumulate code) is a serial
concatenation of an outer code, an interleaver and a rate-1 inner code. The outer
code itself is a parallel concatenation of two (t+1,¢) single parity check codes with an
interleaver between the two parallel branches. (For notational convenience, we still
refer to the outer code as a TPC/SPC code, and those that use block interleavers as
conventional TPC/SPC codes.) For an input of K = Pt?* bits, the outer codewords
(without parity-on-parity) are of length P(¢*>+ 2t) and, therefore, the rate of the code
is t/(t + 2). We refer to this structure as PA-I codes. The code using the conven-
tional TPC/SPC code as the outer code (introduced in the previous paragraph) can
be thought of as a special case of this PA-I structure where the interleaver in the
parallel concatenation is constrained to be P separate block interleavers and which
has parity on the parity bits (which leads the resulting rate to be (¢/(t + 1))? rather

than ¢/(t 4+ 2)). We refer to this special case as PA-II codes.

—> > any
EE_» SPC] 71, [ | N
SPC|—»
"TPC/SPC" 1/(1+D)

Fig. 9. System model of product accumulate (PA-I) codes.
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The idea of concatenating an outer code and an interleaver with a rate-1 recursive
inner code, particularly of the form of 1/(1@® D), to achieve coding gains (interleaving
gain) without reducing the overall code rate is widely recognized [17] [29] [46]. For
low rate codes (rate-1/2 or less), convolutional codes, and even very simple repetition
codes [22], are good outer code candidates to provide satisfactory performance. How-
ever, the construction of very high rate codes based on this concept poses a problem.
The key problem here is that, from Benedetto et al.’s result [25] [21], the outer code
must have a minimum distance of at least 3 in order to obtain an interleaving gain.
To obtain good high-rate convolutional codes through puncturing, and in particular
to maintain a d,,;, of 3 after puncturing, the original convolutional codes must have
fairly long constraint length, which makes it computationally inefficient. On the other
hand, 2-dimensional TPC/SPC possess several inviting properties for a concatenated
high-rate coding structure, such as high rate, simplicity and the availability of an
efficient soft decoding algorithm. Recall that for an interleaved serial concatenated
code (with a recursive inner code) to achieve interleaving gain in word error rate,
the outer code needs to have minimum distance d,,;, > 3 [21] [25]. For PA-II codes,
the outer code has d,,;, = 4 for any rate and, hence, an interleaving gain results. In
Section 2, we will show that although the outer code of PA-I codes has d,,;, = 2 in
the worst case, such an interleaving gain still exists for the ensemble of PA-I codes.

In the sections below, we will perform a comprehensive analysis and evaluation
of the proposed product accumulate codes. The focus is on PA-I codes, since they are
the more general case and since they generally achieve better performance than PA-II
codes (noticeably at medium rates around R = 0.5). However, with respect to some
interesting aspects, the special case of PA-II codes is worth a separate discussion. The
reason we would also like to specifically address PA-II codes is that PA-II codes are the

initial model of our construction, who are simpler to analyze and implement than PA-
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IT codes (block interleaver is usually cheaper and easier to implement in hardware).
Further, as we will show later, at rate R > 0.7, PA-II codes are sufficient to achieve

near-capacity performance, alleviating the need for another random interleaving in

the outer TPC/SPC.

C. Tterative Decoding of PA Codes

The turbo principle is used to iteratively decode a serially concatenated system, where
soft extrinsic information in log-likelihood ratio (LLR) form is exchanged between
the inner and the outer code. The extrinsic information from one subdecoder is
used as a priori information by the other subdecoder. The decoding of the outer
TPC/SPC code is using a message-passing algorithm similar to that of LDPC codes
as described previously. The inner rate-1 convolutional code is typically decoded
using a 2-state BCJR algorithm, which generates the extrinsic information for bit

x; in the ky, turbo iteration, denoted Lgke)wt(xl) The outer decoder uses Lgizct(xl) as
(k)

ocxt(Zi). However, a more

a priori information and produces extrinsic information L
computationally efficient approach is to use message-passing decoding directly on the
graph of the product accumulate code including the inner code, whose sub-graph has
no cycles.

It has been recognized that the message-passing algorithm is an instance of
Pearl’s belief propagation which converges to the optimal solution if the operating
graph is cycle-free. The basic idea of probability inference decoding is implied in Tan-
ner’s pioneering work in 1981 [30], and later studied by Wiberg [31], Frey [47], Forney
[48] et al., as it gained enormous success in the decoding of LDPC codes. However,

little has been reported for convenient application on convolutional codes. This is

because the code graph of a convolutional code is in general complex and involves
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many cycles which either make the message flow hard to track or make the algorithm
ineffective (due to the significant amount of correlation in the messages caused by
the cycles). Nevertheless, for the specific case of 1/(1 @ D) code, a cycle-free Tanner
graph presenting the relation of y; = z; @ y;—; (@& denotes modulo-2 addition) can
be constructed, using which the message flow can be conveniently traced. Below,
we describe in detail how the message-passing algorithm can be efficiently applied to
1/(1 & D) code. Recently, message-passing on the the graph structure of 1/(1 & D)
inner code has been used with irregular repeat accumulate (IRA) codes by Jin, Khan-
dekar and McEliece [22] and by Divsalar et al. [41] to analyze 2-state codes. Here,
we derive a message-passing algorithm from the BCJR algorithm and show the re-
lationship between the two. Specifically, we show that a serial update in the graph
(rather than the parallel update as used in [22] and [41]) is equivalent to the the BCJR
algorithm, but has an order of magnitude lower complexity. Similarly, we show that
the low-complexity approximation, the min-sum update on the graph, is equivalent

to the Max-log-MAP algorithm.

1. Message-Passing Algorithm

As shown in Figure 10(A), the combination of the outer code, the interleaver and the
inner code can be represented using one graph which contains bit nodes (representing
the actual bits) and check-nodes (representing a constraint such that connecting bit
nodes should sum up (modulo-2) to zero). Figure 10(B) illustrates how messages
evolve within the 1/(1 @ D) code. The outgoing message along an edge should con-
tain information from all other sources except the incoming message from this edge.
For example, the LLR of bit y; consists of L., (y;) from the channel, L, (y;) from
check i and L., (y;) from check i+1 (Figure 10(B)). When y; participates in check 1,

to calculate the extrinsic Lc(z;) for z;, the information content L., (y;), which was
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Fig. 10. Code graph and message-passing decoding algorithm. (A) Graph presentation

of PA codes. (B) Message-passing decoding for inner code 1/(1 & D).

Forward pass of message flow. (D) Backward pass of message flow.

(©)
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obtained from check 7 previously, should not be passed back to check 7. Similar rules
hold for all other bits. Hence the extrinsic messages sent out at bit z; at the k;, turbo

iteration, L (z;), should be computed as

LO@) = (Lanlyio) + LW (0-1) ) B (Lenlwo) + LO (1)), (2.4)

Pr(r;|y;=0)
1

where L., (y;) = log Pr(ri|yi=1)

denotes the message (LLR) obtained from the channel
(ri is the received signal corresponding to the coded bit y;), Le, (y;) and L, (y;) denote
the (extrinsic) messages passed “forward” and “backward” to bit y; from the sequence
of bits/checks before and after the iy, position, respectively. Superscript (k) denotes
the kg, turbo iteration between the inner and the outer decoders (as opposed to the
local iterations in the decoding of the outer TPC/SPC code) and subscript ¢ denotes
the 4y, bit/check.

Operation H refers to a “check” operation or the tanh operation. It can be shown

that if a and 3 are the LLRs passed along an incoming edge into a H operation, then

the out-going extrinsic information is given by

1+ eth
Y Q ﬁ Y 0g e + B ’ ( )
. o B
<= 7 =2tanh (tanh 5 tanh §> . (2.6)

Messages Le, (i) and Le,(y;) correspond to a forward and backward pass, re-
spectively, along the code graph. As illustrated in Figure 10(C)(D), at the ky, turbo

iteration (between the inner and outer decoder), they can be calculated as

L) = LE (@) 8 (L) + L win)), ¥2<i <N, (2.7

L) = L8 @) B (Lawlyiss) + L (411)), ¥LSiS N1, (28)

where LY (x;) is the message received from the outer TPC/SPC code in the (k—1)y,
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turbo iteration (between inner and outer codes). Clearly, LY (x;) = 0, Vi, since in
the first turbo iteration, the inner code gets no information from the outer code. The

boundary conditions are

Lg;)(%) = LIV (2)Boo = LIFV(2y), VEk>1, (2.9)

LP(yy) = 0, Vk>1. (2.10)

From the above computation, it can be seen that the outbound message at the
present time instance 1, Lgk) (z;), has utilized all dependence among the past and
the future (through Lg’;) (x;—1) and L (x;)) without any looping back of the same

information.

Lemma 1: The aforementioned message-passing (sum-product) decoder is identical

to the BCJR algorithm for a 1/(1 @ D) inner code.

Proof: For completeness, we first briefly describe the BCJR algorithm [6]. Due
to space limitation, we skip basic introduction to the BCJR algorithm. Interested
readers are referred to [6] [26]. We use x, y4, Si, ¢ to represent data bit, coded bit,
(binary) modulated bit (signals to be transmitted over the channel) and received bit

(noise corrupted), respectively. Their relations are illustrated as follows:

Yt =Yt—1Dx¢ BPSK +noise
T E(O/l) — Yt 6(0,1) - S E(:I:l) > Ty

The following definitions and notations are needed in the discussion:

e Pr(S; = m) — the probability decoder is in state m at time instance ¢, (m €
{0,1} in a 2-state case).

N .
o r/ = (r;,riy1, -+ 1) — received sequence.

e a;(m) 2 Pr(S; = m,r}) — forward path metric.
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Fig. 11. Trellis of 1/(1 @& D) code.
o 3;(m) 2 Pr(rp}|S; = m) — backward path metric.
e v (m\m) éPr(S,g:m, r¢|S;_1 =m') — branch metric.
o A 2 log Pr(e:=0r{’) output LLR of bit ;.

Pr(a:t=1|rf7)

The branch metric of 1/(1 @ D) code is given by (see trellis in Figure 11)

7(0,0) = Pr(z; = 0) Pr(ry = 0), (2.11)
7(0,1) = Pr(z; =1)Pr(ry, = 1), (2.12)
7(1,0) = Pr(z; =1)Pr(ry. =0), (2.13)
v(1,1) = Pr(z; =0)Pr(ry. =1). (2.14)

Note that in the symbol-by-symbol MAP decoding, we have the following forward

and backward recursive equations

D a (M) (m',m)
at(m) = (Y ) ; (2.15)
61&(777/) _ Zm/ ﬁt-ﬁ-l (m )%‘—i—l m,m ) (2.16)

Pr(yt+1|Y:ti)

Consider the ratio a;(0)/a:(1) in the forward recursion

aul0) _ au-1(0)3(0,0) + -1 (1)7(1,0)
(1) a1(0)7:(0, 1) + a1 (1)7(1, 1) (2.17)
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Substituting (2.11)-(2.14) to (2.17), and dividing both the numerator and the denom-

inator by a; 1(1) Pr(z;=1) Pr(ry,=1), we get

at—1(0) Pr(xz:=0) . Pr(re|y:=0)
a(0) (at-m) Prlec=1) T 1) Pr(relye=1)

- at—1(0 Pr(z:=0
at(l) atfiglg Prgwtzlg

Define
_ A at(o)
= 1
Oy og o (1)
Pr(rt|yt = 0)
L = SR UL LA S
R |
A Pr(z; = 0)
L = 1
O(ajt) Og Pr(xt )

Taking logarithm on both sides of (2.18), we get

e®i—1 . eLo(mt) +1

a; = log

ePt—1 + eLo(zt) + Lch(yt)a

= (a1 B Lo(1)) + Len(e)-

Likewise, in the backward recursion, we have

5:(0)
Gi(1)
Ye+1(0,0) 841 (0) + 7141(0, 1) Bry1 (1)

By = log

Yer1(1,0) 8141 (0) + Y41 (1, 1) By (1)

Pr(z¢41=0) = Pr(reilye+1=0) = Be41(0) +1
-] Pr(zt41=1) Pr(reqilye+1=1)  Big1(1)
- Pr(z¢41=0) | Pr(retilye+1=0) & Be41(0)
Pr(ze41=1) = Pr(retilye+1=1)  Bet1(1)

eLo(@e+1) . pLen(ye+1)+Bet1 +1

= log

eLo(@e+1) o eLen(yes1)+Bee1

= Lo(ze+1) B (Len(yes1) + Bryr).

Finally we compute the output (extrinsic) information using

(2.18)

(2.19)
(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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(2.29)

;, (2.30)

mr Ot 1( ’)%(fﬂt = me)ﬁt(m
(0) Pr(rely: = 0)3:(0) + a1 (1) Pr(rey: = 1)B:(1)
a—1(0) Pr(riy: = 1)Bi(1) + a1 (1) Pr(r]y, = 0)3,(0)

(2.31)

Dividing the numerator and denominator by a;_1(1) Pr(ryy; = 1)5:(1), we get

eat—l . eLch(yt)+Bt + 1
Ay = log

eft—1 + eLen(ye)+8: (2.32)

= dt—l H (Lch(yt) + Bt) (233)

It can then be seen that the message-passing algorithm described in the previous
section can be derived from the BCJR algorithm where a; = Lep(y:) + Le ; (ve), Br =
L., (y:) and Ay = L.(z;). For clarity, Table I summarizes the above results from the
BCJR algorithm and compares them with the message-passing algorithm described in
the previous section. The key advantage however is that the message-passing decoding
obviates the need to compute log(e® + €”) and the need to explicitly normalize at
each step. Instead, a single operation log(tanh %) is used which can be implemented
using table lookup. As such, a significant amount of complexity is saved. Hence,
the message-passing decoding of 1/(1 @ D) presents an efficient alternative of the
conventional BCJR algorithm. [J

The message-passing algorithm used by Jin et al. [22] and Divsalar et al. [41] is
a parallel version of the sequential update of L¢ k) and LY in (2.7) and (2.8). This

is desired in hardware implementation with one processing unit for each bit/check.
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Table I. Summary of sum-product and MAP decoding of 1/(1 & D).

BCJR Sum-product
forward | = (1 BLo(x¢))+ Len(ye) Le; (yr) =(Le; (Y1) + Len(yer))
pass HL,(x)
backward Bt: (Bt+1+Lch(yt+1)) B L,(ze1) Le, (y:) = (Leb (Ye41) + Len(Yes1))
pass BL,(7411)
extrinsic Ay = a1 B (B + Len(wr)) Le(wy) = (Ley (Y1) + Len(ye-1))
LLR B (Le, (yt) + Len(yr))

Equations (2.7) and (2.8) can be conveniently modified as

LY () = LIV (@) B (Len(yir) + LE D (yi)), (2.34)

LBy = LE () B (La(yirr) + LE D (yig)). (2.35)

Obviously, since the parallel version uses the information from the last iteration rather
than the most recent, the convergence may be a little slower. But for practical block
sizes and for moderate decoding time, simulations have shown that the compromise

in performance is very little, about 0.1 dB or so after 15 to 30 iterations.

2. Min-Sum Algorithm

The main complexity in the decoder comes from the H operation in both the outer
TPC/SPC and inner 1/(1 @ D) decoding. Each turbo iteration (composed of one
round of 1/(1 @ D) decoding followed by one round of TPC/SPC decoding' re-

'Simulation results show that the best performance/complexity gain is achieved

with only one local iteration of TPC/SPC decoding in each turbo iteration between
the inner and outer decoders.
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quires at least 5 H operations per coded bit. A straight-forward implementation
of B may require as many as 1 addition and 3 table lookups (assuming log(tanh(-))
and log(tanh™'(+)) are implemented via table lookups). Although this is already lower
complexity than turbo codes, it is possible and highly practical to further reduce the
complexity with a slight compromise in performance. Just like the Max-log-MAP

algorithm in turbo codes, the H operation has a similar approximation

v = afg, (2.36)
— 2tanh ™’ (tanh% - tanh g) (2.37)
14 et

= log—— 2.38
08— (2.38)

: : . 1+ eIt
= sign(a) - sign(B) - min(|al, |3]) + log ppp=r— (2.39)
~ sign(a) - sign(8) - minlal, |3]). (2.40)

If the approximation in (2.40) is used, i.e., a mere “min” operation is used instead
of H, then a considerable reduction in complexity is achieved, and the message-passing

algorithm, or the sum-product algorithm, is then reduced to the min-sum algorithm.
Lemma 2: Min-sum decoding of 1/(1&® D) is equivalent to Maz-log-MAP decoding.

Proof: Now that we have shown the equivalence of the sum-product decoding and the
MAP decoding for the code 1/(1@® D), it is straightforward to show the equivalence of
the min-sum decoding and the max-log-MAP decoding. Max-log-MAP decoding is a
suboptimal algorithm of the MAP or log-MAP, where the calculation of log(e® + €°)

is approximated as
log(e® + €”) ~ max(a, 3). (2.41)

Likewise, the only difference between the min-sum algorithm and the message-
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passing algorithm is that a simple “min” operation is used instead of H operation.

This approximation is in fact a direct derivation of (2.41)

vy = a@p, (2.42)
= log(e” + e**P) —log(e® + €°), (2.43)
~ max(0, a+ 3) — max(a, f), (2.44)
= sign(a) - sign(8) - min(a, B). (2.45)

It thus follows that the min-sum algorithm is a computationally efficient realization

of the Max-log-MAP algorithm for the decoding of 1/(1 @ D). O

D. Properties of Product Accumulate Codes

Before going through numerical results, we first show some properties of product
accumulate codes to facilitate the understanding of their performance. The proposed

product accumulate codes possess the following properties [23] [24]:

1. Property I: Product accumulate codes are linear time encodable and linear

time decodable.

2. Property II. They are “good” under ML decoding approach, which assures

their good performance asymptotically.

3. Property III: They are “good” under the practical iterative decoding ap-

proach.

To show Property I, we conduct complexity analysis for the encoding and de-
coding procedures. To show Property II, we quantify the interleaving gain whose

existence shows that the bit error rate vanishes as the block/interleaver size goes
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Code outer TPC/SPC inner 1/(1 @ D)
decoder | sum-pro. | min-sum | log-map | max-log-map | sum-pro. | min-sum
addition | 54 % 2 39/R 31/R 5/R 2/R
min - 5— % 8/R 8/R - 3/R
lookup | 2+ 2 - 8/R - 5/R -

R: code rate

to infinity. We will also compute the ensemble distance spectrum and derive tight
upper bounds to facilitate the understanding from the ML perspective. To show
Property 111, we will use density evolution to compute the thresholds which mark the

performance limit of PA codes using the existing iterative (suboptimal) decoder.

1. Encoding and Decoding Complexity

The encoding and decoding complexity for PA codes are linear in the length of the
codewords. The encoding process involves only parity check in each dimension of the
outer code (see Appendix A), interleaving and encoding of a rate-1 inner convolutional
code (see Figure 8), the complexity is linear in the block length. The decoding
complexity is proportional to the number of iterations of the outer TPC/SPC code
and the inner convolutional code, both of which have linear decoding complexity.
Table II summarizes the complexity of different decoding strategies for the inner
and outer code. We assume that in sum-product decoding, log(tanh §) is imple-
mented using table lookup. The complexity of the log-MAP and the Max-log-MAP
algorithms is evaluated using [26] (based on the conventional implementation of the

BCJR algorithm). As can be seen, the sum-product and the min-sum decoding of
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1/(1® D) requires only about 1/6 and 1/8 the complexity of their BCJR equivalents.
For a rate 1/2 PA code, message-passing decoding requires about 33 operations per
data bit per iteration, while min-sum decoding requires only about 15 operations,

which is significantly less than the number of operations involved in a turbo code.

2. Performance under ML Decoding

In the ML-based analysis of PA codes, we first quantify the interleaving gain and
then derive a tight upper bound on the word error performance. We show that under
maximum likelihood decoding, the probability of word error is proportional to P~1
for large Ej,/N,, where P is the number of TPC/SPC codewords concatenated before
interleaving. Further, we show that these codes can perform close to capacity by
computing thresholds for these codes based on the tight upper bound on the word

error rate due to Divsalar [41].

a. Ensemble Distance Spectrum and Interleaving Gain

Although Property III that the proposed codes are “good” under iterative decoding
implies that they are also “good” under ML decoding, it is instructive to study the
distance spectrum of PA codes. From the results of Benedetto et al. [25] and Divsalar,
Jin and McEliece [21], we know that for a general serial concatenated system with
recursive inner code there exists a threshold v such that for any FE,/N, > ~, the

asymptotic word error rate is upper bounded by

PUB — 0 (N—Ldg’é_lg , (2.46)

where d¢, is the minimum distance of the outer code and N is the interleaver size. Al-
though the above results offer a useful guideline for designing concatenated schemes,

it is well worth computing the exact interleaving for GPA codes since it reveals some-
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what important and interesting results that are not obvious from (2.46).

The result in (2.46) indicates that if the minimum distance of the outer code is
at least 3, then an interleaving gain can be obtained. However, the outer codewords
of PA codes (with random interleavers) have minimum distance of only 2. On the
other hand, if S-random interleavers are used such that bits within S distance are
mapped to at least S distance apart, then the outer codewords are guaranteed to
have a minimum distance of at least 3 as long as S > t. Since a block interleaver
can be viewed as a structured S-random interleaver, it follows that interleaving gain
exists for PA-II codes. Below we show that although the minimum distance of the
outer codewords is only 2 over the ensemble of interleavers, an interleaving gain
still exists for PA codes with random interleavers (PA-I codes). Since from (2.46),
outer codewords of weight 3 or more will lead to an interleaver gain, we focus the
investigation on weight-2 outer codewords only, and show that the number vanishes
as P increases. The all-zero sequence is used as the reference since the code is linear.

It is convenient to employ the uniform interleaver which represents the average

behavior of the ensemble of the codes. Let Ag’)h,

J = 1,2, denote the input output
weight enumerator (IOWE) of the jy;, SPC branch code (concatenated in parallel with

the outer code). The IOWE of the outer codewords, A averaged over the code

w,h’
ensemble is given as
AD 4@
40, =3 Aum i, (2.47)
h1 (w)

where K = Pt is the input sequence length.
Define the input-output weight transfer probability (IOWTP) of the jy, branch

code, PU(Jj ZL, as the probability that a particular input sequence of weight w is mapped
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to an output sequence of weight h

A

PY) = o8 (2.48)
Substituting (2.48) to (2.47), we get
o 1 2
AEU,)h - Z Afﬂ,)hl Pi,,i_hl- (2-49)

h1
For each branch where P (t+1,t) SPC codewords are combined, the IOWE

function is given as (assuming even parity check)

A (w h) = <1+<i) wh%(é) w2h2+<§> wiht - +<i) wthmm)izm)
_ (i G)wjhzwm)ID’ (2.51)

=0
where the coefficient of the term w"h" denotes the number of codewords with input
weight u and output weight v. Using (2.51), we can compute the IOWESs of the first
SPC branch code, denoted as Az(}% (= ASTY). For the second branch of SPC code,
since only parity bits are transmitted, Aq(f ) = Af}z) L

With a little computation, it is easy to see that the number of weight-2 outer

codewords is given by

Agzo:)2 - ZAEZ)}ZZQ; (2.52)
20
= P(2> @ (2.53)
= O(t?), (2.54)

where the last equation assumes a large P (i.e., large block size). Equation (2.54)
shows that the number of weight-2 outer codewords is a function of a single parameter,

t, which is related only to the rate of SPC codes and not the block length. Now
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considering the serial concatenation of the outer codewords with the inner 1/(1& D)
code, the overall output weight enumerator (OWE), AF4 | is computed as

1/(1+D)

o )
A0

- ZZAM h' ) (256)

where the IOWE of 1/(1 @ D) code is given by [21]

A= (Lora)) (g 1) >

In particular, the number of weight-s PA codewords produced by weight-2 outer

APA = ZA(O) (2.55)

codewords (for small-s), denoted as A2 is given as

t—1)2N—s
ape — 21 - (2.58)

2 ()

= O@tP™), (2.59)

where N = P(t + 2) is the PA codeword length. This indicates that the number
of small weight s codewords of the overall PA code due to weight-2 outer codewords
(caused by weight-2 input sequences) vanishes as P increases. When the input weight
is greater than 2, the outer codeword always has weight greater than 2 and, hence, an
interleaving gain can be guaranteed. Hence, an interleaving gain exists for PA codes

and it is proportional to P.

b.  Upper bounds

To further our insight into the asymptotic performance (N — oo) of PA codes under
ML decoding, we compute thresholds for this class of codes based on the bounding
technique recently proposed by Divsalar [41]. The threshold here refers to the capacity

of the codes under ML decoding, i.e., the minimum £, /N, for which the probability



46

of error decreases exponentially in N and, hence, tends to zero as N — oo.

Among the various bounding techniques developed, the union bound is the most
popular but is fairly loose above the cutoff rate. Tighter and more complicated bounds
include the tangential sphere bound by Poltyrev [49], the Viterbi and Viterbi bound
[50], Duman-Salehi bound [51], the Hughes bound [52]. These new tight bounds are

essentially based on the bounding techniques developed by Gallager [9]
Pr(error) < Pr(error,y € R) + Pr(y ¢ R), (2.60)

where y is the received codeword (noise-corrupted), and R is a region in the observed
space around the transmitted codeword. To get a tight bound, the above methods
usually require optimization and integration to determine a meaningful R.

Recently, Divsalar developed a simple bound on error probability over AWGN
channels [41]. The bound is also based on (2.60), but a simple closed-form expression
is derived and shown that the computed minimum SNR threshold can serve as a
tight upper bound on the ML capacity of nonrandom codes. The simple bound is
the tightest closed-from bound developed so far. It is also shown that, as block size
goes to infinity, this simple bound is equivalent to the tangential sphere bound [41].
Below we apply this simple bounding technique to the analysis of PA codes.

We first quote and summarize the main results of [41]. Define the spectral shape of

a code, yn (), as the normalized weight distribution averaged over the code ensemble
Cn
Al
7N(5) = Nln(Ah:L(SNJ), 0<od< 1, (261)

where N is the code length, and A, is the (average) output weight enumerator of the
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code. Further, define the ensemble spectral shape as

v(6) £ lim ry(8), 0<d<1. (2.62)

—00

It can be shown that the probability of word error can be upper bounded by
Py(e) <) e NEEMNoM), (2.63)
h

The threshold C3,; is defined as the minimum FEj/N, such that E(E,/N,, h) is
positive for all A and, hence, for all E,/N, > C%,;, P,(e) — 0 as N — oo. The

threshold can be computed as [41]

. 1
Cur = R 0<§2%{R) co(9), (2.64)

where R is the code rate. For the simple bound, ¢(d) is given by:

1—9

27 (]~ e
55 (1—e ). (2.65)

Simple: ¢y(6) =

Similar forms are also derived for Viterbi-Viterbi bounds, Hughes bounds, and

Union bounds [41]

Viterbi: co(6) = U - 2.6, (2.66)
Hughes: ¢y(9) = 2—15 (1- 6_2”’(5)) : (2.67)
Union: ¢o(0) = @ (2.68)

Since the above bounds are based on the ensemble spectral shape 7(9), they serve
as the asymptotic performance limit (i.e., N — oo) of the code ensemble assuming
ML decoding.

There is no simple closed form expression for the ensemble spectral shape of PA

codes. However, the spectral shape can be computed to a good accuracy numerically
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Fig. 12. The union bound and the simple bound of product accumulate codes (PA-T).

since the component codes of the concatenation are single parity check codes. Specif-
ically, using (2.49), (2.56) and (2.61) we can compute the spectral shape of PA codes,
which is a function of N, P,t. We approximate the ensemble spectral shape by choos-
ing a large N. Whenever possible, the input output weight transfer probability, P, »,
should be used instead of input output weight enumerator, A, 5, to eliminate numer-
ical overflow. The bounds for GPA codes are computed and plotted in Figure 12 (for
clarity, only the simple bound and the union bound are shown). For comparison, also
shown are the bounds for random codes and the Shannon limit. Several things can be
observed: 1) the simple bounds of PA codes are very close to those of random codes,
indicating that PA codes have good distance spectrum; 2) the higher the rates, the
tighter the bounds, indicating that GPA codes are probably more advantageous at
high rates than low rates (as opposed to repeat accumulate codes).

The implication of the above analysis is that PA codes are capable of performance

a few tenths of a dB away from the capacity limit with ML decoding. However,
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since there does not exist a computationally feasible ML decoder, it is desirable
to investigate iterative decoding to give a more meaningful evaluation of the code

performance with a practical decoder.

3. Asymptotic Performance under Iterative Decoding

In this section we show that product accumulate codes are “good” codes also in the
iterative sense. We show this by computing a threshold (minimum F,/N,) for this
class of codes, such that when the channel signal-to-noise ratio is higher than the
threshold the error probability goes to zero (with infinite block size). We compute
this threshold by means of density evolution. Density evolution has been shown
to be a very powerful tool in the analysis and design of LDPC codes [12] [14] [11]
[32]. Following the message-passing decoding on the code graph (Figure 10), we
will explain how the DE procedure can be applied to compute the thresholds for
PA codes. By examining the distribution of the messages passed within and in-
between the subdecoders, we are able to determine the fraction of incorrect messages
(extrinsic messages of the wrong sign). The basic idea is that if the fraction of
incorrect messages goes to zero with the increase of iterations, then the decoding
procedure will eventually converge to the correct codeword.

The analysis of product accumulate codes involves computation of the probability
density function (pdf) of the message flow within the outer decoder, the inner decoder
and in-between the two. However the unconstrained DE procedure is quite complex
since the pdf that evolves with iterations may not have closed-form expressions and
one must keep track of an infinite dimensional vector. It is worth mentioning that
a simplified approximation can be made by assuming that the messages passed in
each step follow Gaussian distributions. This Gaussian assumption trades a little

accuracy for a considerate reduction in computational complexity when combined
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with the consistency condition which states that the distribution f of messages w
passed in each step satisfies f(w) = f(—w)e” [32]. Here, to preserve the accuracy,
we perform the exact density evolution.

Exploiting the linearity of the code, we assume the all-zero codeword is transmit-
ted. It is convenient to use log-likelihood ratios as messages to examine the decoding
process. The threshold, which serves as the practical capacity limit for a given code
(given rate and decoding strategy), is thus formulated as

0

C;'kterative = é,%;% {SNR o lim lim fL(k)

k—oo N—oo oo o,ezt( )

(2.69)

?

dm—>oo}

where f, @) is the pdf of the messages evaluated at the output of the outer decoder,

o,ext(w)
(note that due to the ii.d. assumption, we have dropped the dependence i on x;,)
superscript (k) denotes the ky, iteration, and N is the block size. Before we describe
how DE is performed numerically for the case of PA codes, we first discretize messages.

Let Q(w) denote the quantization operation on message w with a desired quantization

interval (accuracy) A.

a. Message Flow within the Outer Decoder

The outer code of the general product codes (PA-I) consists of 2 parallel concatenated
branches where each branch is formed of P blocks of (¢t + 1,¢) SPC codewords. The
outer code (alone) can also be considered as a special case of LDPC codes whose parity
check matrix has 2P rows with uniform row weight of (¢ + 1), and (¢ + 1)? columns
with HLQ percent of the columns having weight 2 and the rest weight 1. Therefore, the
exact decoding algorithm for LDPC codes can be applied to the outer code. However,
for a more efficient convergence, we could make use of the fact that the checks in the

outer code can be divided into two groups (corresponding to the upper and lower

branch, respectively) such that the corresponding sub-graph (Tanner graph) of each



o1

group is cycle-free. It thus leads to a serial message-passing mode where each group
of checks takes turns to update (as opposed to the parallel update of all checks in
LDPC codes).

The fundamental element in the decoding of the outer code is the decoding of
SPC codes. Consider the upper branch. Suppose data bits d;1,d; 2, - - -, d;: and parity
bit p; participate in the iy, SPC codeword (1 < i < P). Then the messages (extrinsic
information) for each bit obtained from this check (during the ky, turbo iteration and
Ly, local iteration) are

databit:  L3"(diy) = ( >E (Lg'@(di,k)+L£’;’l‘”<di,k>)> B LY (1),

1<k<t,k#]

L5 (dy, LY (p; L (d; )+ L5

= tanh% = tanh& Htanh ( ’k)+2 2| ’k), (2.70)
1<k<t,k#j
parity bit: LV (p) = (2@ <L((Jk)(di,k)+L£’§’l_l)(di,k)>>7
1<k<t
(1=1) *) (g (ki=1), ;.
pz) Lo (dz k) + L 2 (dz k)
<= tanh <L~ — tanh ’ ¢ ’ 2.71
an 5 11;[<t an 5 , ( )

where L,(-) denotes the messages (a priori information) received from the inner code,
Le1(+) denotes the messages (extrinsic information) obtained from the upper SPC
branch to be passed to the lower branch and L (-) denotes the messages to be passed
from the lower branch to the upper branch. After interleaving, similar operations
of (2.70) and (2.71) are performed within the lower branch. We assume L.(-) and
Lo (+) to be independent and identical distributed (i.i.d) and drop the dependence on
d; ; and p;.

We use superscript (k,1) to denote the ky, turbo iteration between the outer
decoder and the inner decoder and the [y, iteration within the outer decoder (lo-

cal iterations). For independent messages to add together, the resulting pdf of the
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sum is the discrete convolution of the component pdf’s. This calculation can be effi-
ciently implemented using an fast Fourier transform (FFT). For the tanh operation

on messages, define

= R(a,8) 2 Q (2 tanh <tanh % tah g)) , (2.72)

where o, 8 and « are quantified messages. The pdf f, of v can be computed using
L= D falil- Sl (2.73)
(i,1): KA=R(iA,jA)

To simplify the notation, we denote this operation (2.73) as

fy = R(far [5). (2.74)

In particular, using induction on the above equation, we can denote

A5

R (fa) = R(fa, (R(far =+, Rfas fa) ). (2.75)

k leve‘lrs of »

It then follows from (2.70), (2.71) and (2.75) that the pdf of the extrinsic messages

obtained from the upper branch f;_, (-) and the lower branch, f;_,(-), are given by

Upper branch: data: f""(d) = R( B ), RE(FS(d) = fgz;l‘l)(d))>, (2.76)

parity: {0 (p) =R (@)« S0 (@)) (2.77)
Lower branch: data: i (d) :ﬁ(f<’j>(p),7él—1(fL(k>(d) g’“f)(d))), (2.78)
parity: 1) =R (d) + £ (). (2:79)

where f,gk)(-) denotes the pdf of the messages Lgk)(-) from the inner 1/(1 & D) code
in the ky, turbo iteration, f(kl (-) and f<kl () denote the pdf’s of the extrinsic in-
formation from the upper and lower branch of the outer code, Lg’l)(-) and Lg;’l)(-),

respectively, and * denotes discrete convolution.
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Since the systematic bits (data) and the parity bits of the outer code are treated
the same in the inner 1/(1 @ D) code, we have fgz) (d) = f(lz) (p) = f}jz)z, where fék)l
is pdf of the extrinsic information Lgk% obtained from 1/(1 @ D) (refer to the next
section for a detailed explanation). For PA-I codes, the local iterations within the
outer code only involve the exchange of messages associated with data bits (as can
be seen from the above equations). After L local iterations, the messages the outer
code passes along to the inner code include those of data bits (Le;(d) and Leo(d))
and parity bits (L.1(p) and Lea(p)), which leads to a mixed-Gaussian message density
with a fraction ¢/(¢ + 2) having pdf (fr,(d) * f1.,(d)) and a fraction 1/(¢ + 2) having
mean fr_, (p) and fr_,(p), respectively. This will in turn serve as the pdf of the a
priori information, fé’jf;”, to the inner decoder.

A similar serial update procedure can also be used with PA-IT codes, and the
message-passing analysis is much the same. For a PA-II code with the conventional
(K1 + 1, Ky) x (Ko + 1, Ky) TPC/SPC codes (with block interleavers and parity-on-
parity bits) as the outer code, the means of the extrinsic messages associated with

row code and column code, L.(-) and Les(-), can be computed using (also refer to

Appendix [ for the decoding algorithm of TPC/SPC codes)

)= R ). (2:80)
flED 7~zK2<f(iz>* ngn)_ (2.81)

Unlike PA-I codes, the data bits and the parity bits are treated exactly the same

in the outer code of PA-II codes. Hence, the pdf of the messages passing along to the

inner 1/(1® D) decoder is given by ( SZL) * g;L)) after L rounds of local iterations.
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b. Message Flow within the Inner 1/(1 & D) Decoder

Similar to the treatment of TPC/SPC code, we assume that messages (LLRs) are i.i.d.
in 1/(1® D) code also. From (2.34) and (2.35), it is obvious that for sufficiently long
sequence, messages L, (y) and L, (y) follow the same distribution and, therefore,
has the same mean value (denote it as M. ,). Note we are somewhat abusing the
notation here by dropping the dependencies on ¢, which denotes the transmission
at the iy, epoch. This is because on a memoryless channel, the pdf’s of L. (y;)
and L, (y;) are independent of i. Further as can be seen from the message-passing
algorithm, the forward and backward passes are symmetric and, hence, for large block
sizes, L, (y) and Le,(y) follow the same pdf’s. Thus we drop the subscript and use
Lc(y) to represent both L, (y) and Le,(y). It was verified by simulations that the
serial (see (2.7) and (2.8)) and parallel (see (2.34) and (2.35)) modes do not differ in
performance significantly (only about 0.1 dB as will be shown later), especially with
sufficient number of turbo iterations. It is convenient to use the parallel mode for
analysis here. Denote M, ,, M,, and M., as the mean value of L.(z), L,(z) and
Ly (y), which represent the messages passed from inner to outer code, from outer to
inner code, and from channel to inner code, respectively (also see Figure 10). Hence

messages (LLRs) as formulated in (2.4) and (2.34), (2.35) have their means evolve as

=R (fron, * [, (2.82)
where
P =R(ATD. fron, = £, (2.83)

The initial conditions are fi, = N(2/0° 4/0?) (Gaussian distribution of mean 2/0°

and variance 4/0?) and fg)z = g)y = §(0) (Kronecker delta function).
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c. Message Flow between the Inner and Outer Code

The message flow between the inner and the outer code is straight-forward. The pdf
of the outbound message, f ék)z in (2.82), becomes the pdf of the a priori information,

®(d) and [ (p) in (2.76) - (2.79) (PA-I code) and fi¥) in (2.80) and (2.81) (PA-II
code). Likewise, the pdf of the extrinsic information from the outer TPC/SPC code,
(e (LoD (@) 1P (@) + g il () + g /15 (p) for PA-Tcodes and (f{55+ £
for PA-1II codes, becomes the pdf of a priori information, fL E § n (2.83), for the inner
1/(1® D) code. For clarity, a complete procedure of the discretized density evolution
for product accumulate codes (PA-I) as well as the relevant notations are summarized
in Appendix B.

It should be noted that the assumption that all messages passed are independent
and identically distributed is required for the derivation of (2.70) and (2.71) for PA-
I codes. However, the same cannot be directly used to analyze PA-IT codes. Due
to the use of the random interleaver in the PA-I code structure, it is reasonable to
assume that the neighborhood of each node is tree-like. However, in the case of PA-II
codes, when a block interleaver is used in the TPC/SPC code, length-8 cycles are
unavoidable (even when N — 00). Hence, partial independence holds only when the
message flow in the decoding has not closed a length-8 cycle. In other words, the
number of times (2.80) and (2.81) can be applied consecutively is strictly limited to
be no more than log2§ = 2, before messages need to be passed to the 1/(1 @& D)
decoder [40]. In fact, as shown in [40], even 2 local iterations will incur the looping
of the same message and, hence, we take L. = 1 for analysis. Further, during every
global iteration (k), the extrinsic messages within the TPC/SPC code generated in
the previous iterations, Méf L5 and Mg 71’L), should not be used again since this

represents correlated information. Due to the above reasons, the resulting thresholds
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are an upper bound (pessimistic case).

Figure 13 illustrates how messages evolve with the number of iterations in a
product accumulate code. From the trajectories, we can determine the threshold to
be around 4.315 dB for a rate-0.94 PA-II code.

Figure 14 shows the thresholds for PA-I codes for several rates R > 0.5. It can
be seen that the thresholds are within 0.7 dB from the Shannon limit for BPSK on
an AWGN channel. The thresholds are closer as the rate increases, suggesting that
these codes are better at higher rates. The thresholds for PA-II codes are shown in
Figure 15. The plotted thresholds in Figure 15 are a lower bound on the capacity
(upper bound on the thresholds) since only one iteration is performed in the outer
TPC/SPC decoding in each turbo iteration (i.e., L = 1 in (2.81)) [40]. Note that at
high rates (R > 0.7), the capacity of product accumulate codes (both PA-I an PA-II)
is within 0.5 dB from the Shannon limit. However, at lower rates the gap becomes
larger especially for PA-1I codes. Simulation results for fairly long block sizes are also
shown in both Figure 14 and Figure 15. A block size of K = 64K data bits was
used for R = 1/2 and for the higher rates K = 16K was used and a BER of 107" is
taken as reference. It can be seen that the simulation results are quite close to the
thresholds. This shows that PA-I codes and PA-II codes are both capable of good

performance at high rates; however, at lower rates PA-I codes are significantly better.

E. Algebraic Interleaver

Observe that a rate-K/N PA-I code involves two random interleavers of size K and
N, where K and N are the user data block size and codeword block size, respectively.
Interleaving and deinterleaving using look-up tables can be quite inefficient in hard-

ware and, hence, we study the performance of PA codes under algebraic interleaving.
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That is, we use interleavers where the interleaving pattern can be generated on the fly
without having to store the interleaving pattern. We consider congruential sequence

generated according to [53]
Api1 = (a- A, +b) mod N. (2.84)

To assure that this generates a maximal length sequence from 0 to N—1, param-

eters a and b need to satisfy
1. a < N, b< N, bbe relatively prime to N,
2. (a-1) be a multiple of p, for every prime p dividing N; and
3. particularly, (a-1) be a multiple of 4 if NV is a multiple of 4.

It is also desirable, though not essential, that a be relatively prime to N; we consider

such an interleaver for both the interleavers in the proposed code. This can also be
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considered as an algebraic design of the code graph since the graph structure can be
directly specified by the interleaving sequence. Hence, given an N and ¢, the choice
of a and b completely specifies the code graph and, hence, the encoding and decoding
operations.

Another direct benefit of using algebraic interleavers is that it allows great flexi-
bility for PA codes to change code rate as well as code length. With LDPC codes, how-
ever, it is not easy to change code lengths nor code rates using one encoder/decoder
structure. Although LDPC codes can be defined with a bit/check degree profile and
a random interleaver, its encoding requires the availability of the generator matrix.
In other words, with LDPC codes, for each code rate and code length, not only does
the code structure (connections between bits and checks) need to be devised specif-
ically, but the generator matrix needs to be stored individually. Although possible,
it requires special treatment to accommodate several rates/block sizes in one LDPC

encoder/decoder pair.

F. Generalized Product Accumulate Codes

1. Motivation

Product accumulate codes as discussed so far are a class of promising high-rate codes
whose code rates are limited to R > 1/2. Although high rates are desirable for
bandwidth efficiency, some applications require relatively low rates (for stronger er-
ror protection) and/or flexible rate adaptivity. In this section, we extend product
accumulate codes to rates below 1/2; which lead to generalized product accumulate
codes or GPA codes.

Through similar analysis techniques from both the ML perspective and the iter-

ative perspective as we did for PA codes, we show that the same nice properties of PA
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codes also exist for GPA codes. The new aspect of GPA codes is that their richness
in code rate and code structure make it possible for several different constructions to
achieve one given code rate (and code length). By computing the thresholds using
density evolution for different constructions we not only illustrate the asymptotic per-
formance difference between ML decoding and iterative decoding, but also indicate

guidelines for choosing the best construction.

2.  Structure of GPA Codes

The outer code of product accumulate codes (PA-I) has two parallel branches of
single-parity check codes. In general, the number of parallel branches can be more
than 2. As shown in Figure 16, M > 2 branches of (¢t + 1,¢) SPC codes can be
interleaved and parallelly concatenated as the outer code. We call it generalized
product accumulate code or GPA code. From the analysis of PA-I codes in [24] [54], in
order to obtain interleaving gain, ¢ blocks of SPC codewords need to be combined and
jointly interleaved in each branch, since the block error rate is inversely proportional
to P rather than the interleaver size as is typically expected. This will be shown to
also hold for GPA codes. The resulting GPA code thus has rate R =t/(t + M) and
length N = P(t+M). It is interesting to note that in an extreme case when SPC codes
are reduced to (2,1) repetition codes, then the corresponding GPA codes are reduced
to regular repeat accumulate (RA) codes [21], which, despite their simplicity, have
demonstrated surprisingly good performance and are shown to have the potential
for achieving AWGN channel capacity [55]. This also holds for GPA codes. RA
codes achieve good performance primarily at very low rates; however, GPA codes
are capable of good performance for a wide rate range, like R = 1/3,1/2,2/3. The
capability to provide good performance for a wide range of rates using one simple

structure is very useful in a variety of practical applications.
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Fig. 16. System model of GPA codes.

The decoding of GPA codes is essentially the same as in PA codes, that is, an
iterative decoding employing the turbo principle (message passing decoding) is used
where soft information in log-likelihood ratio (LLR) form iterates among different
component codes. Specifically, the sum-product and min-sum algorithm [24], which
is described in a previous section to decode product accumulate codes, can be read-
ily applied to GPA codes. Hence, GPA codes are also linear-time encodable and
decodable.

3. ML-based Analysis for GPA Codes

a. Weight Distribution and Interleaving Gain

The weight distribution of GPA codes can be computed much in the same way as
that of PA codes (see (2.56)), except that the outer code now has M > 2 multiple
branches. Instead of (2.49), we have the average IOWE for the M-branch parallel

concatenation as

A= Y A PP, Pun, VM2, (2.85)
hi+ho+-+hp=h
where A() = ASC as defined in (2.51), and AZ) = AP, = ... = AQPD — A0
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The case of M = 2 was discussed in Section D. For M > 3, we obtain the number

of weight-2 outer codewords as

Ay = DAY, (2.86)
0 (POY

P<2> ( (P;)> , (2.87)

0, (@P‘W‘”) . VM >2, (2.88)

which suggests that the number of weight-2 outer codewords decreases at some power
of P when M > 3. In other words, when there are at least 3 SPC branches, weight-2
outer codewords vanishes with the increase of block size and, hence, an interleaving
gain exists. Substituting (2.85) and (2.57) in (2.56), the weight distribution of GPA
codes for M > 3 can be computed straightforwardly.

Equation (2.88) indicates that, the number of outer weight-2 codewords vanishes
(asymptotically) when GPA codes have M > 3. Similar behavior is observed for other
low weight outer codewords. For example, the number of weight-3 outer-codewords,
Ag):)éw = O(Pt), for M = 2, and A;LO:)’;W = 0,VM > 3. The number of weight-4 outer
codewords, Ag;);lM = O(@(%)M_Q),VM > 2. Tt is interesting to point out that
the observation that the number of low weight codewords of a parallel concatenation
with M branches of SPC codes does not decrease like any power of the block size
for M = 2, seems to have some bearing with Kahale and Urbanke’s result that the
minimum distance of a parallel concatenated code with M parallel branches grows
with the increase of block size only when M > 3 [56]. However, the case they studied
was for recursive convolutional component codes and they were able to give a much

stronger result that the growth rate of the minimum distance therein is N "3 [56].

For the 1/(1& D) code, the output weight is at least half of the input weight (the worst
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case happens when input weights are paired in such a way that the two weights in
each pair are consecutive). Since high-weight outer codewords (pM-codewords) tend
to produce high-weight GPA codewords, we can thus draw the following conjecture
from (2.54): GPA codes with a large number of SPC branches in the outer code have
better weight spectrum than codes with a smaller number of branches. In other words,
if ML decoding were used, GPA codes with larger M are expected to outperform
those with smaller M at the same rate. This is confirmed by the MIL-based bounds

computed immediately below.

b. ML Decoding Based bounds

Similar to the treatment of PA codes, we quantify the asymptotic performance of
GPA codes with ML decoding by examining several upper bounds, and in particular
the union bounds and the simple bounds.

Given the weight distribution of GPA codes as discussed above, the spectral
shape can be conveniently obtained for GPA codes, which is a function of all the
parameters of the code, including P,t, M. Figure 17 compares the spectral shape of
rate 1/2 GPA codes with M = 2,4,8 and N = 400, respectively. As expected, for
GPA codes of the same rate, larger M leads to better spectral shape (and therefore
better code in the ML sense).

The union bound and the simple bound for GPA codes are computed and plotted
in Figure 18, together with the Shannon limit and the bounds for random codes and
RA codes. For clarity, we have only plotted the curves for GPA codes with M = 2, 4.
Similarly to what we have observed with PA codes, we see that the simple bounds are
very close to those of the random codes (i.e., GPA codes are good) and that the higher
the code rate the closer the bounds (i.e., GPA codes are best at high rates). Further,

from the plot, we see that the larger the value of M, the closer the bound, which



Code rate

Weight Spectrum of rate 1/2 GPA codes

o©
[EY
T

rate 1/2 GPA Codes:
M=2
M=4
M=8

|
©
[N

Spectral shape: rN(6)
o

-0.2
-0.3
_04 1 1 1 1
0 0.2 0.4 0.6 0.8
Normalized codeword weight: d=h/N
Fig. 17. Spectral shape of GPA codes.
Bounds for GPA codes (ML-based)
1 T T T T T
Shannon limi _
0.9+ S
sl Simple bounds Random codes
0.7t
Union bounds
0.6
=2
051 ©
0.4r
0.3r
*——*k - GPA: M=2
0.2r
GPA: M=4
01 1 1 1 1

2 -1 o0 1 2 3 4 5 6 7
Eb/No (dB)

Fig. 18. The simple bound and the union bound.

64



65

matches with our analysis in the previous subsection. It is expected that as M — oo,
the simple bound as well as the distance spectrum of GPA codes will converge to
those of the random codes. In other words, like repeat accumulate codes, GPA codes
also have the potential for achieving AWGN channel capacity such that, as the rate
approaches 0, the average required Ej,/N, for arbitrarily small error probability with
ML decoding approaches log 2. This is obvious, for, as mentioned above, RA codes
are the special case of GPA codes where all the (t+1,t) SPC codes have parameter
t = 1. Further, it can be seen from the plot that, for an RA code of a given rate, we
can always find a better GPA code (in the ML sense) of the same rate by increasing
both ¢ and M (recall that GPA codes have rate R = t/(t + M)).

The implication of the above analysis is that GPA codes are by nature good
codes, and that larger M (i.e., more SPC branches) leads to better distance spec-
trum. However, due to the lack of a practical ML decoder, this behavior may not
be observable in practice. Since the performance of the suboptimal iterative decoder
is also a function of M, the analysis from the iterative perspective as shown below

actually reveals just the opposite.

4. Analysis of GPA Codes Using Density Evolution

Similar to PA codes, GPA code can be represented using a bipartite graph of bits and
checks, such that density evolution can be performed “analytically” (as opposed to the
Monte Carlo treatment of convolutional codes and turbo codes). The detailed steps
for PA codes are described in Section C and in [24] and can be extended straight-
forwardly to GPA codes. For simplicity, instead of using the exactly discretized
density evolution (without any approximation), we employ a Gaussian approximation
in the computation of the thresholds for GPA codes.

Recall that when messages are represented in LLR form, the outgoing message
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along an edge is simply the “sum” of the received messages which includes messages
from all edges (and the channel if applicable) except the message coming along this
very edge. For bit nodes, this “sum” is a regular sum in the real domain, and for
check nodes, it is a check sum denoted as B operation or tanh operation (see (2.5)
and (2.6)). Since no simple closed form is available on the relations of pdf’s under
the nonlinear check operation, discretized density evolution takes a numerical method
which can determine the threshold to a desired degree of accuracy. To further simplify
the computation, densities can be approximated as a mixture of Gaussian densities,
which leads to only a slight decrease in accuracy [32]. It has been shown that for
binary-input, output-symmetric memoryless channels and binary linear codes, the
distribution f of messages passed in each step satisfies f(z) = f(—=z)e” [14]. This
consistency condition, when applied to Gaussian distributions, leads to the constraint
that the variance of the message equals twice the mean. That is, the pdf of the
messages are approximated as N (u, 2% 1), where the mean of the message, u, becomes
the one single quantity governing the process. The complexity is then greatly reduced.

Figure 19 plots the thresholds of GPA codes computed using density evolution
with Gaussian approximation for M = 2, 3,4, respectively. As can be seen, at rates
R > 1/2, even with iterative approach, GPA codes can perform close to capacity. At
low rates, the thresholds are about 1 dB from the capacity. The plot shows that the
more the branches, the worse the thresholds (and the more the complexity). That
GPA codes with fewer SPC branches can perform better under iterative decoding is
just opposite to what is inferred from the weight spectrum analysis. This disagree-
ment indicates that the performance loss due to the suboptimality of the iterative
decoder may be quite severe in the presence of several component codes. Hence, in
practice, it is desirable to use a small number of SPC branches with more powerful

SPC codes in each branch, but at least M = 2 branches are needed in order to ob-



67

Thresholds (Density Evolution)

o
©
T

o
(o]
T

Code rate
o
()]

o
(61
T

GPA Codes: M=2,3.4

2 o 1 2 3 4 5 & 7 8
Eb/No (dB)

Fig. 19. Tterative thresholds for GPA codes.

tain the interleaving gain [24]. This way, the best performance is achieved with the
least complexity. However, with smaller M, the achievable rate range is also smaller
(357 <R <1).

The codes are hence best suited for practical applications which involve changing
the rate of the code constantly, where high rates (R > 1/2) are used most of the
time, whereas occasionally due to poor channel conditions, lower rates are required.

The regular structure of these codes makes it easy to change the rate at both the

transmitter and the receiver.

G. Simulation Results of PA and GPA Codes

1. Performance of PA Codes

We first investigate the performance of PA-I codes at medium rates. Figure 20 shows

the performance of a rate-1/2 PA-I code of data block size 64K, 4K and 1K, respec-
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tively. As can be seen, the larger the block size, the steeper the performance curve,
which clearly depicts the interleaving gain phenomenon. For comparison purposes,
the performance of a (2K,1K) turbo code from [22] and the most recently reported
irregular repeat accumulate (IRA) codes [22] of the same parameter are also shown.
As can be seen, (2K, 1K) PA-I codes perform as well as turbo codes at BER of 1077,
yet without error floors. From Table II, we can see that the decoding complexity of
rate-1/2 PA codes with 30 iterations is approximately 1/16 that of a 16-state turbo
code with 8 iterations. It is also important to note that the complexity savings are
higher as the rate increases, since the decoding complexity of punctured turbo codes
does not reduce with increasing rate; whereas the decoding complexity of PA codes
is inversely proportional to the rate. It should also be noted that the curve of PA-I
codes is somewhat steeper than that of turbo codes or irregular repeat accumulate

codes, and therefore may outperform them at lower BERs.
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10 . .
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10}
o _
w10
[an]
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10}
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Fig. 20. Performance of PA-T codes at code rate R = 1/2. (Data block size is 1K, 4K
and 64K, respectively.)
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Fig. 21. Performance of PA-I codes at code rate R = 3/4.

As indicated by both ML-based and iterative-based analysis, product accumulate
codes are most advantageous at high rates. Figure 21 compares the performance
of a rate-3/4 PA-I code at 154, and 20y, iteration with a 16-state turbo code of
polynomials (37, 23), at the 4, iteration. The data block size is K = 1002 for both
codes. Clearly, while the PA-I code is comparable to the turbo code (Figure 20) at
rate-1/2, it significantly outperforms turbo codes at rate-3/4 (much steeper curves
and no error floor). Further, the PA-I code at the 15;, and 20y, iteration requires only
about 23% and 30% the complexity of the turbo code at the 4, iteration, respectively.
Hence, PA codes are expected to find promising applications at high-rates with the
advantages of low-complexity, high-performance and no error floor.

The BER performance of PA-II codes at high rates is shown in Figure 22. The
codes simulated have rates 0.88, 0.94 and 0.97, which are formed from (16, 15)?,
(32,31)? and (64, 63)% outer 2-D TPC/SPC codes, respectively. Since interleaving

gain is directly proportional to the number of TPC/SPC blocks in a codeword, sev-
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eral TPC/SPC blocks may be combined to achieve a large effective block size when
needed. Corresponding threshold bounds calculated by density evolution are also
shown. Two things can be immediately seen from the plot. (1) Product accumu-
late codes demonstrate a significant performance improvement compared to plain
TPC/SPC codes (Figure 23). A 1 dB gain is achieved for rate-0.97 codes, while as
much as a 3 dB gain is achieved for rate-0.88 codes. (2) With a data block size of
K = 16K, the performance of PA-IT codes is as close as within 0.3 dB from the
capacity bound at BER of 107°, showing a very good fit. All curves shown are after
15 turbo iterations. Although not plotted here, a reduction from 15 to 8 iterations
incurs only about 0.1 dB loss.

Performance comparison between PA-I codes with PA-II codes is shown in Fig-
ure 24. As expected, PA-I codes tend to perform better than PA-II codes at higher
rates also, but the difference is relatively small, since PA-II codes are already close to
the Shannon limit at high rates. The codes simulated are of rate 0.94. As can be seen,
the difference seems more noticeable at a moderate size (16K) than either very short
block size (1K) where the random interleaver is too short to play a significant role or
very long block size (64K) where the performance is already close to the threshold.

We also compare the performances of PA codes using different encoding/decoding
strategies, including min-sum decoding vs (serial) sum-product decoding, S-random
interleaver vs algebraic interleaver, and parallel vs serial sum-product decoding. Fig-
ure 25 compares the performance of a rate 0.5 PA-I code with the sum-product
decoding to the low-complexity min-sum decoding. Performance at 5,10, 15, 20 iter-
ations is evaluated. At all those iterations, the min-sum decoding incurs only about
0.2 dB loss, while saving more than half the complexity. Hence, the min-sum algo-
rithm provides a good tradeoff between performance and complexity, and is thus very

appealing for simple, low-cost systems. Figure 26 compares the performance of PA-I
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Fig. 26. Min-sum decoding of PA-I codes.

codes using the min-sum decoding to the performance of a serial serial turbo of the
same code rate and block size. The serial turbo code is composed of an outer 4-state
and an inner 2-state convolutional code. It is interesting to see that even with the
low-complexity min-sum decoding, the PA-I code still outperforms the serial turbo
code. Comparing the performance of the PA-I code (using min-sum decoding) at
the 154, iteration with that of the serial turbo at 4, iteration, we see that a 0.4 dB
performance gain is achieved at BER of 10™° with only about 60% of the complexity,
which is impressive (see Table II for complexity analysis).

Figure 27 compares the performance of a rate-0.5 PA-I code with S-random inter-
leavers and algebraic interleavers. Interestingly, replacing S-random interleavers with
algebraic interleavers results in hardly any performance degradation. Since the length
of algebraic interleavers can be conveniently changed, using algebraic interleavers can
lend another degree of flexibility to PA codes.

Figure 28 compares the performance of a rate-0.5 PA-I code with serial sum-
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product decoding and parallel sum-product decoding. We see that the difference
between the two approaches is about 0.1 dB at a bit error rate of 107°. Hence, parallel

sum-product decoding serves as a good candidate for hardware implementation.

2.  Performance of GPA Codes

Figure 29 shows the BER curves of a rate 1/2 GPA code with 2 branches of (3,2)
SPC codes and a rate 1/3 GPA code with 4 branches of (3,2) SPC codes, both
employing the sum-product decoding. Interleaving gain is obvious from the plot, and
the performance is only 0.8 and 1.1 dB away from the Shannon limit, respectively.
The effect of the number of SPC branches on the performance of GPA codes is
investigated in Figure 30. The (2000,1000) GPA code simulated has two different
settings: 2 branches of (3,2) SPC codes with 500 SPC codewords combined in each
branch, and 4 branches of (5,4) SPC codes with 250 codewords combined in each
branch. We see that 2-branch GPA codes outperform 4-branch GPA codes in addition
to the saving of about 1/3 of the complexity, which confirms the results from the
iterative analysis. For comparison purpose, also shown is the performance of the
turbo code of the same parameter [22]. Clearly, the GPA code with M = 2 is as good
as turbo codes (yet with lower complexity). Further, there are no observable error

floor due to the serial concatenation with a 1/(1 @ D) inner code.

H. Comparison to Other Related Codes

Graphical representation of codes has shed great insight into the understanding of
many codes [30] [31] [47] [48], including turbo codes, LDPC codes and (irregular)
repeat accumulate codes [22] [21]. This section revisits PA codes from the graph per-

spective for a comparison and unification of PA codes and other capacity-approaching
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codes.

The Tanner graph structure shown in Figure 31(A) reveals that PA codes are
essentially LDPC codes with two levels of checks instead of one as in conventional
LDPC codes (see Figure 31(B) where small circles denote bits and small boxes denote
checks). However, the encoding complexity of PA codes is linear and the encoder is
easy to implement since it does not require explicit storage of a generator matrix.

Repeat accumulate codes [21], and their improved version, irregular repeat accu-
mulate codes [22], are a class of very nice codes which are linear time encodable and
provide near capacity performance. A careful study of the code graph shows an intrin-
sic connection between the structure of the proposed PA codes and RA/IRA codes,
although our initial motivation for PA codes is from the encouraging performance of
TPC/SPC codes over partial response channels in magnetic recording systems [27].
Figures 31(A) and (C) presents the Tanner graphs of the proposed PA and RA/IRA
codes. One difference is that a PA code is non-systematic whereas the systematic
bits are transmitted explicitly in RA/IRA codes. One major advantage of PA codes

is its regular code structure which facilitates implementation and further, the rate of
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the code can be easily changed at the transmitter and receiver, since the structure of
the codes is identical for all rates. For IRA codes, a different irregularity pattern and
associated graphs have to be designed and stored. Similarly, the length of PA codes
can be easily changed if algebraic interleavers are used since the structure remains
unchanged with length.

Recently, concatenated tree (CT) codes were shown to be a good lower complexity
alternative to turbo codes in [57]. Simulation results for rates 1/2,0.7 and 0.88 show
that the BER performance and decoding complexity of PA codes are similar to those
of concatenated tree codes. In fact, the decoding complexity seems to be slightly lower
for PA codes. Again, the advantage is in the ease of rate change at the transmitter
and receiver. It should also be noted that the performance of PA codes is on par with

finite-geometry LDPC based codes proposed by Shou, Lin and Fossorier [34].

I. Summary

A class of interleaved serially concatenated codes called product accumulate codes
has been constructed and shown to possess good BER performance, linear encod-
ing/decoding complexity as well as an efficient soft-decoding algorithm. The proposed
codes consist of an outer 2-D TPC/SPC code, a random interleaver, and a rate-1 re-
cursive convolutional inner code of the form 1/(1 @ D). The main advantages of the
proposed codes are very low decoding complexity compared to turbo codes especially
for high rates, good BER performance and ease of implementation. Through analysis
and simulations we show this class of proposed codes perform well for almost all rates
R > 1/2 and for long and short block sizes alike.

Generalized product accumulate codes are investigated and shown to be provably

“good” both in the ML sense and in the iterative sense. They have low complexity and
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the performance using sum-product decoding is close to the capacity over the entire
code range. Bounds and thresholds are examined from both the ML perspective
and the iterative perspective. Although the ML analysis indicates that more SPC
branches lead to better distance spectrum, iterative analysis as well as simulation
results reveal that, whenever possible, the number of SPC branches should be kept
small (but should be at least 2). This is the best choice in terms of both performance
and complexity. Many good features about PA codes as proposed in [23] [24] can be
conveniently adopted for GPA codes, like algebraic interleaving, which will make it
flexible for GPA codes to change rate and length adaptively. The regular structure of
GPA codes makes it appealing for hardware implementation particularly in adaptive
rate coding. GPA codes can conveniently adopt to the rate change by reducing the
rate of the SPC code and/or increasing the number of parallel branches.

As indicated by the research on irregular LDPC codes and RA/TRA codes, irreg-
ularity seems to be the key for a further improvement in performance. Irregularity
offers unequal error protection where highly protected bits tend to be decoded first
and then help with the less protected bits. With irregular GPA codes, input bits will
not uniformly participate in every SPC branch. Rather, the number of SPC branches
(checks) each bit is involved in, will follow a carefully-designed profile. It is interesting
to point out that irregular GPA codes thereby become irregular repeat accumulate

codes [22].
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CHAPTER III

PRODUCT ACCUMULATE CODES FOR WIRELESS COMMUNICATION

A. Introduction

In this chapter, we investigate the performance of product accumulate codes on flat
Rayleigh fading channels with both coherent and noncoherent detection. The moti-
vation is two-fold. First, the work of Chapter II has established them as a class of
low-complexity, capacity-approaching good codes on additive white Gaussian noise
channels [24]. Second, PA codes are inherently differentially coded which permits
simple noncoherent differential detection (that is desirable for wireless applications
especially in fast fading environment).

The performance of PA codes using coherent binary phase shift keying signaling
on independent and correlated Rayleigh channels either with or without channel state
information (CSI) is first investigated'. Divsalar’s simple bounds are computed to
mark the performance of PA codes with finite code length [58], and iterative thresholds
using density evolution are computed to mark the performance of PA codes with
infinite code length. Comparing the asymptotic threshold of PA codes with that
of LDPC codes, we see that PA codes about 0.6 to 0.7 dB better than the regular
LDPC codes but are about 0.5 dB worse than optimal irregular LDPC codes which
have maximum left degree of 50 (with The resulting optimal LDPC code shows a 1.04
dB gain over the existing PA code. coherent detection). Simulations of fairly long
block lengths show a good agreement with the analytical results.

One big motivation and advantage of considering PA codes for fading channels

By “coherent”, we mean the phases of the signal samples are perfectly estimated.

“Perfect CSI” means that fading amplitudes are also known to the receiver, and “no
CSI” means that fading amplitudes are unknown.
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is that they are inherently differentially coded. Coherent phase shift keying, although
a popular modulation scheme, requires coherent detection which may not always be
convenient or feasible, due to several practical issues like complexity, acquisition time,
sensitivity to tracking errors and phase ambiguity. The nice thing about differential
encoding is that it admits simple differential detection which solves phase ambiguity
and which requires only frequency synchronization (often more readily provided than
phase synchronization). The nice thing about PA codes is that a differential encoder
(the accumulator) is already part of the code structure. Hence, PA codes (and for
this purpose all “accumulated” codes such as nonsystematic regular /irregular repeat
accumulate codes [22] and convolutional accumulated codes) are intrinsically suitable
for use with binary differential encoding and differential detection (binary DPSK or
BDPSK).

A conventional differential detector operates on two symbol intervals and recov-
ers the information by subtracting the phase of the previous signal sample from the
current signal sample. Although cheap to implement, they could suffer as much as 4
to 5 dB in BER performance [59]. To fill the gap between the conventional differential
decoder and the differentially encoded coherent detection, researchers have generally
focused on the extension of the observation interval beyond two symbol intervals,
which results in block or multiple symbol (differential) detection, like maximum-
likelihood multiple symbol detection, trellis-based multiple symbol detection with
per-survivor processing and their variations (see, for example, [60] [61] [62] [63] [64]
[65] and the references therein). Maximum-likelihood multiple detection [62] assumes
that the phase are near constant over the observation interval and, hence, is most
suitable for static (or slow time-varying) channels where the performance has shown
to asymptotically achieve that of a coherent detection. Trellis-based multiple symbol

detection [63] [60], on the other hand, works for both stationary and time-varying
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channels. It expands the differential encoder to a super trellis with 2% states (IV,
being the observation window size). A posteriori probability decoding (like the BCJR
algorithm) is exploited together with linear prediction and per-survivor process tech-
niques to help estimate the channel. However, for both types of multiple symbol
detection, the complexity increases exponentially with the observation window size
and, hence, limits its use in practical applications. To preserve the simplicity of PA
codes, we propose and discuss a simple iterative differential detection and decoding
receiver, which can perform within 1 dB from the coherent detection on fast fading
channels with little additional complexity and bandwidth expansion. Different imple-
mentation strategies of the IDDD receiver is discussed and the impact of pilot spacing
and filter length is investigated. We show that the proposed receiver is robust for dif-
ferent Doppler spreads, and that the amount of pilot insertion plays an important
role in determining the overall performance especially on very fast fading channels.
We use extrinsic information transfer charts to facilitate the discussion of a num-
ber of interesting issues concerning differential encoding. First, we show that the
popular practice of inserting pilot symbols to periodically terminate the differential
trellis incurs an intrinsic loss in code capacity? due to a “trellis segmentation” ef-
fect. Hence, a better way of inserting pilot symbols should be to separate them from
the trellis structure. Second, in studying the convergence property of the iterative
process, we show that while a (high-rate) PA code yields desirable performance with
noncoherent (differential) detection, a general differentially coded LDPC code does
not (recall that the outer code of PA codes can be viewed as a special type of LDPC
codes with weight-1 and 2 variable nodes only). EXIT analysis reveals that the per-

formance/convergence behavior of a conventional LDPC code does not match with

2We use capacity to loosely denote information rate.
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an inner differential decoder in an iterative process. Consequently, for noncoherent
detection, conventional LDPC codes usually require more pilot symbols to estimate
the channel (since they should not be used with differential encoding) than PA codes.

To further our insight into what type of (outer) codes are good for differential
encoding and how to optimize them, a “convergence-constraint” design method is
proposed which uses Gaussian approximated density evolution on EXIT charts to
design and optimize good LDPC ensembles for differential encoding and iterative
differential detection and decoding. Unlike the conventional “threshold-constraint”
method that targets at the best asymptotic threshold, the convergence-constraint
method focuses on the convergence property of the iterative interaction between the
inner differential code and the outer LDPC code.

The proposed method provides an efficient means of optimizing the degree profiles
matched (in convergence) to a given receiver (provided that the EXIT curve the
receiver can be properly evaluated). Empirical results show that the (conventional)
LDPC codes that have minimum variable node degree of 2 and that are optimal for
nonrecursive modulations are not good for differential encoding (or more generally a
recursive inner code/modulation), and that the optimal degree profiles need to contain
weight-1 variable nodes also. Furthermore, We observe that at high rates, the degree
profile of the outer code of PA codes is near-optimal for differential encoding, yet at
medium rates, it can and should be optimized in order to achieve better performance.
Finally, examples are provided which show that an optimized differentially coded
LDPC code can outperform PA codes by more than 1 dB using noncoherent detection.

The rest of the chapter is organized as follows. Section B presents the system
model and a brief overview of PA codes. Section C analyzes the coherent performance
of PA codes on fading channels using the simple bound and iterative thresholds.

Section D discusses noncoherent iterative differential detection and decoding of PA
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codes on correlated fading channels and conducts EXIT analysis. Section E proposes
and discusses the convergence-constraint density evolution method for optimizing the
degree profiles of outer LDPC codes with inner differential encoders. Simulation

results are provided along with the discussion. Finally Section F summarizes the

paper.

B. System Model

We consider BPSK signaling (0 — +1,1 — —1) over flat Rayleigh fading chan-
nels. Assuming proper sampling of the outputs from the matched filter, the received

discrete-time baseband signal can be written as
e = e’ s, + ny, (3.1)

where s is the BPSK modulated signal, n is the i.i.d. complex AWGN with zero
mean and power spectrum density 02 = Ny/2 in each dimension. The fading ampli-
tude ay is modeled as a normalized Rayleigh random variable with E[a2] = 1 and
pdf pa(ay) = 2ap exp(—aj) for a > 0, and the fading phase 6, is assumed to be
uniformly distributed over [0,27]|. For coherent detection, 6 is perfectly known to
the receiver and for noncoherent detection, @, is unknown.

For fully interleaved channels, a;’s and 0;’s are independent. For insufficiently
interleaved channels, they are correlated. We use the Jakes’ isotropic scattering land
mobile Rayleigh channel model to describe the correlated Rayleigh process which has
auto-correlation Ry = %jo(ka faTs), where f4T; is the normalized Doppler spread,
and Jo(-) is the 0y, order Bessel function of the first kind.

As discussed in Chapter II, the decoding of PA codes is an iterative process

where soft extrinsic information is passed between component codes confirming to
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the turbo principle. The inner 1/(1 + D) code can be decoded using a conventional
BCJR algorithm, where the computation of the branch matrix v should be modified
to incorporate the appropriate channel statistics. Alternatively, an efficient message-
passing algorithm can be performed on the code graph, which, in addition to the
magnitude less of complexity, decouples the code structure (code graph) from the
channel [24]. In other words, the same message-passing decoding algorithm works
for all channels as long as the initial log likelihood ratio values from the channel are
properly computed. For Rayleigh fading channels with perfect CSI, i.e., ay is known

Vk, the initial LLRs from the channel can be computed using
LG (sk) = =7, (3.2)

and for Rayleigh fading channels without CSI

No

LY (sp) = Tk, (3.3)

where E[a] = /m/2 is the mean. The rest of the decoding algorithm can be found in

Chapter IT [24].

C. Coherent Detection

1. Ensemble-Average of Divsalar’s Simple Bounds

As mentioned in Chapter 11, simple bounds proposed by Divsalar is a tight bound that
can overcome the cut-off limitation [41] [58]. By using numerical integration instead
of a Chernoff bound and by reducing the number of codewords to be included in the
bound, Divsalar showed that the bound was tight when applied to repeat accumulate
codes and turbo codes on AWGN channels and independent Rayleigh fading channels

with channel state information [41] [58].
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In this Section, we apply the simple bounding technique to the analysis of PA
codes on independent Rayleigh fading channels. We first quote and summarize the
key point of [41] [58] where channel state information is known. A simple extension

is then made to include the case where channel state information is unavailable.

a. Independent Rayleigh Channels with CSI

Notice that for Rayleigh fading channels, the decision metric is based on the mini-

mization of the norm

|r —yas|], (3.4)

where s, r and « are the transmitted signal, received signal and the fading amplitude
in vector form, respectively, and 7 is the amplitude of the transmitted signal such
that L = E,/N,.

For a good approximation of the error using the Gallager bounds (2.60), and
for computational simplicity, the decision region R was chosen as an N-dimensional
hyper-sphere centered at nyas and with radius vV NR, where 77 and R are the pa-
rameters to be optimized.

For independent fading channels with perfect CSI, to compensate for the effect of
fading, a linear transformation can be performed on yas. In particular, it has been
shown that a rotation e/ and a rescaling ¢ yield a good and analytically feasible

solution [58]

R={r||r—(as|]’ < NR?}. (3.5)

Based on this choice of the decision region, and after some algebra, Divsalar has
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shown that the error probability of an (N, K, R) code can be upper bounded by [58]

2/ N—K+1 NE(edpbest) Ny (5)1 /2 SinQH h
< in { e NE(cSpB.k, N®) L
P(e) < hZ:; min ¢ e , € 7T/o [sin29+c} ao,, (3.6
where
P, B 1=p 10
E(Cﬂéapaﬂ:’{‘:qb) - 510g;+ 2 logl_ +p510g <1+C(1_2l€¢)>
1 — K2
s (6) + pl1 = )1 [1-+ (1 = 2 — L)
Lop1=20) (Lol
+(1—p)lo {1+c — . (3.7
(pog | 1e( = = gy ) 67
2
_ Y b ph
h
0 = 5 (3.9)
h ~log(Ay), for word error rate,
1) = Anla={ ¥ (3.10)

~log(}", LA,,), for bit error rate.

b. Independent Rayleigh Channels without CSI

Another simple and reasonable choice of the decision region (3.4) is an ellipsoid cen-
tered at nmys, which can be obtained by rescaling each coordinate of r so as to com-

pensate for the effect of fading:
R—{r|[la'r—ms|P < NR?}, (3.11)

where 1 and R need to be optimized. For independent Rayleigh channels without
CSI, since accurate information on « is unavailable, we resort to the expectation of

the fading coefficient (a similar philosophy as used in the decoding procedure), i.e.,

a loose approximation a '~ E[a™!|= 0.8%3621 is used in (3.11), where I is an identity

matrix.

By replicating the computations described in [41] [58], we obtain the simple



88

bound for the bit error rate on independent Rayleigh channels without CSI

2/ N—K+1 . BNy (6) 5 .
P(e) < min { e V) oxp ( —— A ) (] - ——— , 3.12
I e e v S
where
-1
E(e,0,p) = ¢ (1+1;5(1+ﬂe_2%v<5)>) 1 log (1—p+p627N(5)) ,(3.13)
0 p 2
-1
p = <1+%627N(5)> , (3.14)
1-6 2 1 (1=6\? Y2
— — o 2YN() 2
3 {2(: —(1-e ) ( - ) [a+0 1]}
1—-0
—(1+c) 5 (3.15)
2
E,
¢ = E’lo]l =0.8862°R—", 3.16
o2 v (3.16)
v = V(3?2?21 =V(RE,/No)> -1, (3.17)
h

=~ 1
0 N (3.18)

h L log(Ap), for word error rate,
Tn(6) = ’YN(N): N (3.19)

< log(Y", 2A,), for bit error rate.

We note that this is a simple extension of the bound to the fading case where no
CSI is available. It may not be as tight as in the case of AWGN channels, but it is
easily computable. It is possible that more sophisticated transformation will lead to

tighter bounds but may not render any feasible analytical expression.

¢. Evaluation of Simple Bounds for PA Codes

As an example, we examined the distance spectrum of a (1024,512) PA code and
computed Divsalar’s bounds on the BER performance of the code over independent
Rayleigh fading channels with and without CSI. As shown in Figure 32, the bounds

are fairly tight at SNRs below the cutoff rate. We note that we have used the ensemble
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Fig. 32. Divsalar simple bounds for PA codes on independent Rayleigh channels with
and without CSI. ((N, K) = (1024,512), R = 0.5.)

average distance spectrum in the computation. Hence, the bounds refer to the average
performance and may still not be an accurate indication for the specific PA code
that was used in the simulation. However, this is a shortcoming that can hardly be
overcome for the analysis of concatenated codes involving random interleavers, since

the specific interleaver in use is yet intractable even for moderate lengths.

2. Thresholds Using the Iterative Analysis
a. Computation of the Thresholds for Rayleigh Channels

As mentioned above, performance bounds assuming a maximum likelihood decoder
may be optimistic for the existing iterative decoder. To factor in the suboptimality
in the decoder, we use density evolution to compute the asymptotic thresholds of PA
codes on Rayleigh channels like what we have done with AWGN channels.

As discussed in Chapter II, by examining the probability density function of the
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passing messages in each step, the entire decoding process can be literally tracked
using density evolution. In general, we are more interested in the thresholds, or
the extrinsic information transfer chart, where the former denotes the asymptotic
performance limit given infinite code length and infinite number of iterations, and
the latter reveals the convergence property.

The computation of the thresholds of PA codes on Rayleigh fading channels is
much the same as that on AWGN channels, expect for the initial messages obtained
from the channel. We note that a Gaussian approximation can usually be used on
AWGN channels to simplify the computation (at the cost of slight loss in accuracy).
For fading channels, however, since the initial LLRs from the channel are very dif-
ferent from Gaussian distribution, exact density evolution should be used to preserve
accuracy.

Since density evolution evaluates the asymptotic performance of the code with
infinite block size and ideal interleaving, the fading parameters are therefore indepen-
dent. We consider BPSK modulation, the all-zero sequence as the reference sequence
and the LLRs as the messages, to compute the initial pdf of the messages from the
Rayleigh channel.

Rayleigh Fading Channels with CSI: As discussed in [66], for independent Rayleigh
channels, the conditional pdf, f(L.,,|c), of the initial message L., (which is ob-
tained from the channel and is to be passed from bit to check) follows a Gaussian

distribution with mean 4a?/N; and variance 8a?/N,. That is

plale) = oy 2 e (AN (3:20)

where « is the normalized Rayleigh fading factor and NNy is the variance of the complex

additive white Gaussian noise as defined before.

Hence, with perfect CSI (), the initial messages obtained from the fading chan-
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nel has the following pdf

hww‘Aﬂwwmwm (3.21)
. NO (Jo( N0+1—1) > (%—O&V N(]+1)2
=\ &P (— 5 >/Oexp — 4 No )da.(3.22)

Using integral from [67], (3.22) can be further simplified to

CSI (40) = No - exp 9o — |go[v1 + No
Leny 00 4 TF Ny 2 '

Rayleigh Fading Channels without CSI: Similarly, for Rayleigh fading channels

(3.23)

without CSI, with the assumption that the received signals are Gaussian distributed
in the most probable region, we can approximate the conditional pdf of the initial
message as a Gaussian distribution with mean 4(E[a])?/Ny and variance 8( F|a])? /Ny,

where F[a] &~ 0.8862. The pdf of the initial messages can thus be derived as [66]

CNYNAN (2 Age L Ago
Tra (@) = = <\/;)\+E[a]@( 2E[a]>>’ (3.24)

2.2

where A= /7000 X = exp (= o) and Q) = = [ ez,

2(No+1)” 8(E[al)?

To track the evolution of the pdf’s within the message-passing decoder, either
a Monte Carlo simulation can be used, or, more accurately and more efficiently, an
analytical form can be derived for the discretized density evolution on PA codes.
This has been discussed in detail in Chapter II and summarized in Appendix B. By
substituting (3.23) for perfect CSI case or (3.24) for no CSI case in (B.5) and (B.6) in
Appendix B, the thresholds of PA codes on Rayleigh channels can then be computed
through (B.4) to (B.13) (see Appendix B).
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Simulations and Thresholds of PA Codes
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Fig. 33. DE thresholds and simulations of PA codes on independent Rayleigh fading
channels. (Data block size K = 64K.)

b. Evaluation of the Iterative Thresholds

The thresholds computed using the density evolution technique discussed above in-
dicates the asymptotic performance of iterative decoding of PA codes on Rayleigh
fading channels. Figure 33 compares the thresholds and the simulation results for
independent Rayleigh channels with and without CSI. As can be seen, the analytical
results are consistent with the simulation results of fairly large block sizes (simulations
are evaluated at 50, iteration). We conjecture that as the block size and the number
of iterations go to infinity, the simulation results will converge to the thresholds.

In Table III we list the thresholds of PA codes of several code rates computed
using density evolution. We see that the thresholds are about 0.6 dB from the Shan-
non limit, and simulations of fairly large block sizes are about 0.3 to 0.4 dB from
the thresholds, which is a reasonably good fit. Thresholds of rate 1/2 LDPC codes

on Rayleigh channels were reported in [66]. Rate 1/2 PA codes are about 0.6 to
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Table III. Thresholds of PA Codes and (3,p)-regular LDPC codes on Rayleigh Chan-
nels (Ey/Ny in dB). ((3,p) LDPC data by courtesy of Hou, Siegel and Mil-

stein.)

flat Rayleigh with CSI (dB) | flat Rayleigh without CSI (dB)
Rate | Capacity | PA LDPC | Capacity | PA LDPC
0.5 1.8 2.42 3.06 2.6 3.33 4.06
0.6 3.0 3.56 - 3.8 4.48 -
2/3 3.7 4.24 4.72 4.4 5.15 5.74

0.7 dB better (asymptotically) than regular LDPC codes with column weight 3, but
are about 0.5 dB worse (asymptotically) than irregular LDPC codes with maximal

column weight of 50.

3. Simulation Results for Coherent Detection

This subsection provides simulation results to benchmark the performance of coher-
ently detected PA codes on Rayleigh fading channels. In each (global) turbo iteration
(i.e., iteration between the inner differential encoder and the outer code), two (local)
iterations of the outer decoding are performed. This scheduling is found to be a good
tradeoff between complexity and performance (with coherent detection).

We first investigate the performance using coherent BPSK on independent Rayleigh
fading channels. Figure 34 and 35 show the performances of rate 1/2 PA codes on
independent Rayleigh fading channels with and without channel state information,
respectively. Bit error rates after 20, 30 and 50 (global) iterations are plotted, and
data block sizes of 512, 1K, 4K, and 64K are evaluated to demonstrate the interleaving

gain. For comparison purpose, the corresponding channel capacities are also shown



94

R=0.5 PA, Indpt Fading, CSI

10
20,
-1| —— 30, |
10 \\‘x\\, 50 iterations
107} 3
@
w107t 1
o K=512
107} 1
5 Shannon limit
10 " f
K=1k"
6 K=64 K4k
10 1 1 1 1 1 1
1.5 2 2.5 3 3.5 4 4.5 5

Eb/No (dB)

Fig. 34. Performance of PA codes on independent Rayleigh fading channels with CSI.
(Rate 0.5, data block size 512, 1K, 4K, 64K.)
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Fig. 35. Performance of PA codes on independent Rayleigh fading channels without
CSI. (Rate 0.5, data block size 512, 1K, 4K, 64K.)
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for each case. The degradation in simulation performance due to the lack of channel
knowledge is about 0.9 dB, which is consistent with the gap between the respective
channel capacities.

Compared to the (3,6)-regular LDPC codes reported in [66], the performance of
a rate 1/2, codeword length N =128x1024=1.3x10° PA code is about 0.4 and 0.25
dB better than a regular LDPC code with length N = 10° and 10° on independent
Rayleigh channels either with or without CSI. It is possible that optimized irregular
LDPC codes will outperform PA codes (as indicated by their thresholds), but for
regular codes, PA codes seem one of the best.

The coherent performance of PA codes on correlated Rayleigh fading channels is
shown in Figure 36. A rate 1/2 PA code is simulated for data block sizes K = 1K and
4K. Perfect CSI is assumed on the receiver side, and two common fading scenarios
with normalized Doppler shifts f; 75 = 0.01 and 0.001 are evaluated. As expected, the
performance deteriorates rapidly as f;T, decreases, since slower fading process brings
less diversity order. Further, due to the interleaver between the PA code and the
channel, the impact of slow fading is less severe for larger block sizes than for smaller
ones. As can be seen, whereas K = 1K PA code loses about 7 dB at BER=10"% when
faTs is changed from 0.01 to 0.001, the loss with K=4K PA code is less than 5 dB.

To benchmark the performance of PA codes, Figure 37 compares the performance
of a rate 0.75 PA code and that of a 16-state turbo code with whose component
convolutional codes have polynomials (23, 35),.. Data block size is 4K and S-random
interleavers are used in both codes to lower the possible error floors. Solid lines are for
PA codes after 10 iterations and dashed lines are for turbo codes after 6 iterations.
We observe that turbo codes perform about 0.6 and 0.7 dB better than PA codes
for f;7s = 0.001 and 0.01, respectively. However, this performance gain comes at a

price of a considerably higher complexity. While the message-passing decoding of this
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Correlated Rayleigh Fading, R=0.5 PA Codes
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Fig. 36. Performance of PA codes on correlated Rayleigh fading channels with CSI.
(Rate 0.5, normalized Doppler shift 0.01, 0.001, data block size 1K, 4K.)
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Fig. 37. Comparison of PA codes and (23,35) turbo codes on correlated Rayleigh fading
channels with CSI. (Rate 0.75, data block size 4K, normalized Doppler shift
0.01, 0.001.)



97

(filter) —

i —= Conv. Diff. Detector,

ad® n | |

i i r —3 1/ (1+D ) 3
y—»@*@—/ : - Inner( DeC)Od =D X; T[—l »| Outer Decode =D e

! (Detector) !

Channel | | |

| _| Channel estimator | 1. =

Iterative Differential Detector and Decoder
Fig. 38. Structure of iterative differential detection and decoding receiver.

PA code at 10y, iteration requires about 267 operations per bit [24], the log-domain
BCJR decoding of turbo code at 6y, iteration requires as many as 9720 operations
per data bit [26], which is more than 35 times as complex. Hence, PA codes are a

good choice for providing reasonable performance at low lost.

D. Nocoherent Differential Detection

1. Tterative Differential Detection and Decoding

As mentioned before, PA codes are inherently differentially coded which makes it con-
venient for noncoherent differential detection. For complexity reasons, we consider a
simple iterative differential detection and decoding receiver, whose structure is shown
in Figure 38. The IDDD receiver is composed of a conventional differential detec-
tor, a phase tracking filter and the original (coherent) PA decoder. Trellis structure
is used for the detection and decoding of the inner differential code 1/(1 + D), but
unlike the case of multiple symbol detection, the trellis is not extended (i.e., having
2 states only). Soft information feeds back and forth among different parts of the

receiver according to the turbo principle to successively improve the estimation and
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decoding. We use x to denote the input to the differential code (or the output from
the outer code), and y the output from the differential code (or the symbol to be put
on the channel) (see Figure 38). The differential encoder implements y, = xyyx—1 for
x, yr € {£1} (BPSK signal mapping 0 — +1,1 — —1). The received symbols are
given by r, = ae’%y, + ny, where the channel amplitudes (az’s) and phases (6s)
are correlated, and the complex white Gaussian noise samples (n;’s) are independent.

Although in theory pilot symbols are not needed for differential decoding, in
practice, however, pilot symbols are inserted periodically (even with multiple symbol
detection) in order to avoid catastrophic performance caused by error propagation
in the phase tracking. This is particularly important on fast fading channels where
phases (0;) are changing rapidly (as will show later). Hence, some of the r;’s (and
yr's) in the received sequence are pilots symbols.

We use L to denote the LLR information, superscript (¢) the gy, (global) itera-
tion, and subscript ¢, o, ch and e the quantities associated with the inner code, the
outer code, the fading channel and “the extrinsic”, respectively. The IDDD receiver

operates as follows.

a. IDDD Receiver

In the first iteration, the switch in Figure 38 is flipped up. The samples of the received
symbols, 7, are fed into the conventional differential detector which computes u, =
Real(riry_;) (* denotes the complex conjugate) and subsequently soft LLR Ly ()
from ug. L.p(zy) is then treated as LSZ) (zy) and fed into the outer decoder, which, in
return, generates Lglg (xy) for use in the next iteration of the inner detection/decoding.
Starting from the second iteration, the switch in Figure 38 is flipped down, and a

channel estimation of «j and ék is performed before the “coherent” detection and

decoding of the inner and outer code. After () iterations, a decision is made by
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combining the extrinsic information from both the inner and outer decoders: z, =
sign(L(Q)(xk) —|—L(Q)( k). For ease of proposition, we have ignored the existence of the
random interleaver in the above discussion, but proper interleaving and deinterleaving

should be conducted whenever needed.

b. Conventional Differential Detector

With the assumption that the carrier phases are near constant between two neigh-
boring symbols, the conventional differential detector (in the first iteration) performs
up £ Real(ryr;_;) with the assumption that the carrier phases are near constant
between two neighboring symbols. Hard decision of z; can be obtained by simply
checking the sign of ug. In order to obtain soft information L., (z) from wug, pdf of

uy is needed. The conditional pdf of uy given aj and xy is shown to be [68]

Tu—a?/2 .
2N0 exp(T>, —o0 < zu < 0;

2N0exp<m a2/2) <,/]avz 1/‘%‘) 0 < zu < 00;

where Q(a, b) is the Marcum Q function. It is then possible to get the true pdf of uy

Juja,x (ula, z) = (3.25)

using

fuix(ulz) = / Juja,x (u|a, z) fo(a) da, (3.26)
0
= 2/ Juja,x (u]a, ) ae™ da. (3.27)
0
However, an exact evaluation of (3.27) is difficult, since the computation of Mar-

cum Q function can be slow and may not even converge at large values. This makes

it quite difficult to compute LLR information. A simple compromise is to evaluate
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(3.25) with «a substituted by its mean value E[a], which leads to

Lexp(“—”/g) —oo < au <0
N N g =
fowlulr) =4 50 0 ™ . (3.28)
mexp( No )Q(Mﬁ,,/l\%‘), 0 < zu < oo.
The corresponding LLR from the channel can then be computed by
Pr(ug|z = +1)

Pr(ug|z, = —1)

2 [72 |4
— sign(u) ﬁg'mg Q( 47T—%, K;(f') . (3.30)

A second treatment, which is more convenient, is to assume that u; is Gaussian

distributed as in [69] and other previous works. With this Gaussian assumption, we

have

Joix(ulz) =~ N(z,2Np+ Nj), (3.31)
2Uk
Len(zk) = N, + N2 (3.32)

Alternatively, instead of using the conventional differential decoding in the first
iteration, a channel estimation followed by the decoding of the inner 1/(HD) code can
be used, which makes the first iteration exactly the same as subsequent iterations.
This then becomes pilot symbol assisted modulation (PSAM), which has slightly
higher complexity than using differential detection in the first iteration.

To see how accurate the above treatments are, we plot in Figure 39 several curves
approximating the pdf of u;. From the most sharp and asymmetric to the least sharp
and symmetric, these curves denote the exact pdf of fyx(ulz = +1) from Monte
Carlo simulations (which should be the numerical evaluation of (3.27)), the “mean-a
approximated” pdf from (3.28) and the Gaussian approximated pdf from (3.31). We

see that the Gaussian approximation, although simple, does not reflect the true pdf
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Fig. 39. Distribution of uy = Re{yxy;_,} in a conventional differential detection (as-

suming “+17 is transmitted).

well. However, it is interesting to note that despite of its inaccuracy, simulations do
not show a noticeable degradation in performance compared to the other treatments
like mean-a approximation and PSAM (see Figure 45). Hence, Gaussian approxima-

tion seems a simple and viable approach for noncoherent differential decoding.

¢.  Channel Estimator

The channel estimator in the IDDD receiver can be implemented in several ways. We

use a linear filter of (2L+1) taps to estimate a’s and 6;’s in the ¢y, iteration

L
-5(9) _
e = 5" g gk e (3.33)

l=—L

where p; denotes the coefficient of the [y, filter tap, and Q,(f*l) denotes the estimate

on y from the feedback of the previous iteration. For soft feedback, this is computed

(=1 LY () (g=1) . (a-1)
using ¢, = tanh(—==5—), and for hard feedback, g," ' =sign(L;; ~(yx)). The
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LLR information Lgi_l) (yr) is generated together with Lé?i_l) (xx) by the inner decoder
in the (¢—1);, decoding iteration (please refer to [24] for the exact message-passing
decoding algorithm of 1/(1+ D) code). In the initial iteration, Lg)i) (yx)’s are set to
be zeros for code bits and a large positive number (denoting the point mass of LLR
messages) for pilot symbols.

For the choice of the filter, Wiener filter is used since it is optimal for estimat-
ing channel gain in the minimum mean square error (MMSE) sense, provided that
the correlation of the fading process, R;’s, are known to the receiver. The filter

coefficients are obtained from the Wiener-Hopf equation

Ro — No R4 o Rp j R_r
R4 Ro—No -+ Ri-o | Py | R_r-1 (330
Rr-1 Rr—o oo Ro— Ny pbL Re

where Ry, = %j0(2k:7r fdTs). Since the computation of p;’s from (3.34) involves an
inverse operation on a matrix (one-time job), it may not be computable when the
matrix becomes (near) singular. This happens when the channel is very slow fading.

In such cases, a low-pass filter, or a simple “moving average” can be used [59].

2. EXIT Analysis
a. EXIT Charts

We conduct EXIT chart analysis [70] to further our insight into iterative differen-
tial detection and decoding. In EXIT charts, the exchange of extrinsic information
is visualized as a decoding/detection trajectory, which allows the prediction of the
convergence and other performance behavior of the iterative process [71]. Several

quantities, like the bit error rate, the mean of the extrinsic LLR information and the
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equivalent SNR value, can be used to depict the characteristics and relations of the
component decoders. In this work, we use mutual information which is shown to be
more reliable than the others [71]. The mutual information between the transmit-
ted bit y, and the corresponding LLR value of the a priori or extrinsic information

Lo(yr)/ Le(yx), denoted as I(Y, Lq/e(Y')), is defined as

a1l °° 2frw (1Y)
1v.Ly) 2 2gi/mﬁ@WWM%gﬁ@mHU+ﬁ@w%4ﬂmwa

= 2 (1] +1)
_.KmﬁMWﬂ+Db&meM+U+h@GWH1)

= 1—/ frory(n|+1) logy(1 +e™") dn, (3.37)

dn,  (3.36)

where fryvy(n|Y =y) is the conditional pdf of the LLR messages of y;. The sec-
ond equality holds when the channel is output symmetric, i.e., fry,)(n]Y =—y) =
Jr) (= |Y =y), and the third equality holds when the received messages satisfies
the consistency condition (also known as the symmetry condition), i.e., frq)(n]Y =
Y) = fre) (—n|Y =y) e’". It should be noted that although the consistency condition
is an invariant during the message-passing process on a number of channels including
the AWGN channel and the independent Rayleigh fading channel with perfect CSI,
it is not preserved on channels with no CSI or with estimated CSI, since the initial
density function in these cases is an approximation of the actual pdf of the LLR mes-
sages. Hence, (3.36) should be used to compute the mutual information in such cases.
We use X-axis to denote the mutual information to the inner code (a prior) or from
the outer code (extrinsic), denoted as I,;/I.,, and Y-axis the mutual information

from the inner code or to the outer code, denoted as I, ;/I,,.
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(B)

Fig. 40. Trellis diagram of B-DPSK with pilot insertion. (A) Pilot symbols periodi-
cally terminate the trellis. (B) Pilot symbols are separated from the trellis

structure.
b. Pilot Insertion

We investigate the issue of pilot insertion. It is well-known that while the amount of
pilot symbols inserted should be sufficient to track the channel, it should not be in ex-
cess so as to cause a waste of bandwidth and energy. Many researchers have reported
that excessive pilot symbols could cause a noticeable performance degradation. The
explanation was that pilot symbols had averaged down the energy per transmitted
symbol too much for a good channel estimation and detection, or equivalently, that
the performance gain obtained in channel tracking was not enough to compensate for
the energy/rate loss caused by pilot symbols. While this is true, little attention has
been paid to the fact that in the case of differential coding, improperly inserted pilot
symbols could cause an inherent loss in code capacity. As shown in Figure 40, there
are different ways to pilot symbols in a differential code. The most popular approach
has been to periodically terminate the trellis (Figure 40(A)) [60], where pilot symbols
assume a dual role of channel estimation and 1/(1¢D) decoding. Unfortunately, this
is in fact not a good strategy since segmenting the trellis into small chunks causes a

significant amount of short error events (an “inverse” effect of spectrum thinning),
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Fig. 41. The effect of pilot symbols segmenting the trellis on the performance of the
differential decoder. (Normalized Doppler rate 0.01, E;/Ny=4.75 dB and 0
dB, perfect CSI.)

and consequently a loss in capacity.

This “segmentation effect” can be best illustrated in Figure 41, where EXIT
curves for the differential decoder with 0%, 4%, 10% and 20% pilot insertion are
plotted for two different SNR values. We assume that the four curves in each family
have the same energy per transmitted symbol and that perfect channel information on
the fading phase and amplitude is known to the receiver (irrespective of the amount
of pilot symbols). Hence, the difference of the curves in each family is only due

to the difference in pilot spacing. At the left end of the curves (i.e., input mutual
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information is small), we see that the curves with more pilots are slightly better than
those with fewer pilots. This is because when there is little feedback from the outer
code, pilot symbols are the major contribution to a prior: information. However,
at the right end, when there is sufficient information provided by the outer code,
the curves behave just the opposite to the left, since pilot symbols are no longer an
important source of a prioriinformation. Rather, their negative impact of segmenting
the trellis and shortening the (average) error events becomes dominant, causing a
considerable performance loss. The performance degradation is more severe when
more pilot symbols are inserted and when the code is operating at a lower SNR level.
As can be seen, with 20% of pilot insertion (pilot spacing 5), even when “perfect”
input mutual information I, ; is provided, the inner code is unable to produce sufficient
output mutual information I, ;. The inner EXIT curve tends to intersect the outer
EXIT curve at a very early stage of the iterative decoding process, causing the PA
decoder to fail at a high BER level. (This is in addition to 20% more of energy
consumption than the non-pilot case!)

The immediate implications of the above plot are that, first, when pilots are
inserted to terminate the trellis, error free is not possible with PA codes and many
other serial concatenated schemes including nonsystematic IRA codes, convolutional
accumulated codes and the turbo coding schemes discussed in [60]). Specifically,
unless the outer code is capacity achieving at least at some SNR (i.e., the outer code
alone is a “good” code, like conventional LDPC codes), there will be error floors. In
such cases, the use of pilot symbols should be especially prudent, so that error floors
do not occur at a high BER level. Second, it suggests that a better way of inserting
pilot symbols is to separate them from the trellis as shown in Figure 40(B), so that
pilot symbols do not affect error events.

To verify the analytical results, we simulate the performance of a rate 1/2, data
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Fig. 42. Simulations of PA codes with different pilot insertion strategies. (Normal-
ized Doppler rate 0.01, code rate 0.5, data block size 32K, 0% or 10% pilot

insertion, 10 iterations.)

block size 32K PA code with different strategies of pilot insertion (Figure 42). The
normalized Doppler spread is 0.01, and error rate after 10 iterations are evaluated.
Solid lines represent the cases where perfect channel knowledge is known to the re-
ceiver, and dashed line the case where noncoherent detection is used. We observe a
drastic performance gap resulted from different strategies of pilot insertion. In this
specific case, by segmenting the trellis every 10 symbols, improper pilot insertion has
caused more than 3 dB loss at BER of 107, It is interesting to see that if we overlook
the impact of the different strategies of pilot insertion, we might get the “surprising”
result that noncoherent detection (dashed line) performs (noticeably) better than

coherent detection (rightmost solid line)!
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c¢. Code Matched to Differential Coding

As mentioned before, the outer code of PA codes is a special type of LDPC code.
Given PA codes perform well (especially at high rates), one tend to ask how a general
LDPC code will perform with differential coding. This is an interesting question,
since it directs to the solution of other interesting problems like how to perform
noncoherent detection with LDPC codes. Before we answer the question, we first
note two important facts about EXIT analysis. First, in order for iterative decoding
to converge successfully, the outer EXIT curve should be strictly below the inner
EXIT curve, so that there is an open passage between the two curves. Second, it
has been shown in [70] that the area under the EXIT curve, A = fol I.dI,, is closely
related to the code rate. When the a priori information is coming from the erasure
channel and when the decoder is an optimal decoder, the area is exactly the code rate.
For other channels, this may not be exact, but is nevertheless a good approximation
as verified by empirical results. The implication of the above two facts is that, in
order to fully achieve the capacity provided by the inner differential code, the outer
code needs to have an EXIT curve closely matched in shape and in position to that
of the inner code. Unfortunately, this is not the case of a conventional LDPC code
(outer code) and a differential code (inner code).

In Figure 43, we plot a set of three outer EXIT curves corresponding to a regular
LDPC code, an irregular LDPC code and the outer code of a PA code, and a set of
two inner EXIT curves corresponding to a differential code (on correlated Rayleigh
channel) and the plain Rayleigh fading channel. The normalized Doppler rate is
faTls = 0.01, all outer codes have rate 3/4, and perfect channel fading information is
assumed to all the receivers. The regular LDPC code in the plot is (3,12)-regular, and

the irregular one is optimized with check node degree profile p(x) = 2% and variable
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Fig. 43. EXIT curves of LDPC codes, PA codes (outer code only), Rayleigh channels
and differential codes. (Normalized Doppler rate 0.01, E,/Ny=5.32dB, code
rate 3/4, (3,12)-regular LDPC code and optimized irregular LDPC code with
p(x) = 2% and y(x) = 0.15102 + 0.197822 + 0.220125 + 0.03537 + 0.39582%.)
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node degree profile y(z) = 0.15102 +0.19782% 4 0.22012° + 0.03537 + 0.39582%°, which
has a threshold of 0.6726 (about 0.0576 dB away from the AWGN capacity) [72]. We
observe that while the outer code of (high-rate) PA codes shows a good match with
an inner differential code, a conventional LDPC code (regular or irregular) will either
intersect with the differential code (decoder failure) or leave a huge area between
them (a waste in code capacity). The observation that LDPC codes match better
with a plain channel than with a differential code indicates that, unless specifically
designed, LDPC codes should not be used with a differential code (or more generally
with any recursive inner code/modulation [73] [74]). Put another way, an LDPC
code that is optimal in the conventional sense (i.e., BPSK modulated on memoryless
channels) is not optimal when combined with an inner recursive code/modulation.
However, not using differential coding typically requires more pilot symbols in order to
track the channel well (especially on fast fading environments). Hence, it is expected
that on (fast) fading channels where only limited bandwidth expansion is allowed,
(conventional) LDPC codes do not perform well with noncoherent detection (whether
or not differential coding is used). On the other hand, (high-rate) PA codes are able
to make use of the (intrinsic) differential code for noncoherent detection, and hence
are a better choice for bandwidth-limited wireless applications. This is confirmed by

simulations shown later.

3.  Simulation Results of Noncoherent Detection

The performance of noncoherent detected PA codes on fast Rayleigh fading channels
are presented below. Unless otherwise indicated, the BER curves shown are after 10
global iterations, and in each global iteration 4 to 6 local iterations of the outer code
are performed. We have chosen these parameters on the basis of a set of simulations

which show that they are the best tradeoff.
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Fig. 44. Comparison of BER performance for several noncoherent receiver strategies
on correlated Rayleigh channels with f;7,=0.01. (Code rate 0.75, data block
size 1K, 4% of bandwidth expansion, filter length 65.)

We first compare the BER performance of 4 types of iterative differential de-
tection and decoding strategies for a K = 1K, R = 3/4 PA code on a f;Ts = 0.01
Rayleigh fading channel in Figure 44. Curve labeled with IDDD-1 uses conventional
differential detection with Gaussian approximation (3.32) to compute L., (zx) in the
first iteration, and soft feedback of ¢, in all iterations to assist channel estimation;
IDDD-2 uses conventional differential detection with “mean-a” approximation (3.30)
in the first iteration and soft feedback in all iterations; IDDD-3 is PSAM with soft
feedback; and TDDD-4 is PSAM with hard feedback. In all case, 4% of pilot symbols
are inserted and curves shown are after 10 iterations. It is interesting to see that,
in this case different decoding strategies in the first iteration does not make much

difference, and the performance is not very sensitive to whether the feedback is hard
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Fig. 45. Comparison of BER performance for several transmission /reception strategies
for PA codes of large and small block sizes on correlated Rayleigh channels
with f;T,=0.01. (Code rate 0.75, data block size 48K and 1K, 4% of band-
width expansion, filter length 65.)

or soft information. Although not shown, simulations of a long PA code (K=48K) of
the same (high) rate (R=3/4) reveal a similar phenomenon. It is possible, however,
that the difference in decoding strategies especially the difference in the feedback
information, will cause difference in performance in other cases [59)].

Figure 45 compares the coherent and noncoherent performance of rate 3/4 PA
codes after 10 iterations on fast Rayleigh fading channels with Doppler rate T, f; =
0.01. Both short block size of 1K and large block size of 48K are evaluated. In each
case, a family of 5 curves showing BER versus FEj/N, are plotted (rate loss due to
pilot symbols are accounted for). The leftmost three curves are the ideal case where
fading amplitude and phase is known to the receiver (coherent detection) and the

two right curves are the noncoherent case where IDDD is used. First, we observe
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Fig. 46. Comparison of PA codes and LDPC codes on fast fading Rayleigh channels

with noncoherent detection and decoding. (Solid line: PA codes, dashed lines:
LDPC codes. Code rate 0.75, data block size 1K, filter length 65, normalized
Doppler spread 0.01. The degree profiles of the regular and irregular LDPC

codes are the same as in Figure. 43.)

that there is slight performance degradation caused by pilot symbols terminating the

trellis, both in the coherent case and the noncoherent case, but the effect is not as

drastic as the case in Figure 42. Second, due to the imperfect channel estimation, we

see that the noncoherently detected codes are about 1 dB and 0.55 dB away from the

ideal (coherent) detection at BER of 10~ for block sizes of 48K and 1K, respectively.

Considering that only 4% pilot symbols are inserted to tract the channel, and that

the IDDD receiver is very low-complexity, this performance is quite satisfying.

Figure 46 compares the performance of PA codes and LDPC codes using nonco-

herent detection on Rayleigh channels with normalized Doppler spread of 0.01. All

codes are of data block size 1K and code rate 3/4. Soft feedback is used and either 2%
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or 4% pilot symbols are inserted. LDPC codes are evaluated either with or without
a differential code and their degree profiles are the same as specified in Figure 43.
From most power efficient to least power efficient, the curves shown are 1) PA codes
with 4% of pilot symbols, 2) PA codes with 2% of pilot symbols, 3) BPSK-coded
irregular LDPC codes with 4% of pilot symbols, 4) BPSK-coded regular LDPC codes
with 4% of pilot symbols, 5) BPSK-coded irregular LDPC codes with 2% of pilot
symbols, 5) differentially-coded (BDPSK-coded) irregular LDPC codes with 4% of
pilot symbols. We see that with 4% of bandwidth expansion, BPSK-coded irregular
and regular LDPC codes are about 0.5 and 1 dB worse than PA codes at BER of
10~%, respectively, yet the differentially-coded irregular LDPC code is more than 2.2
dB worse. This confirms that (conventional) LDPC codes suffer a performance loss
when used with a differential code. Further, while the performance gap between ir-
regular LDPC codes and PA codes is acceptable (0.5 dB) with 4% of pilot symbols, it
becomes quite significant when pilot symbols are reduced in half. For PA codes, 2% of
pilot symbols are still sufficient to yield desirable performance. However, 2% of pilot
symbols are insufficient for LDPC codes (without a differential code) to estimate the
channel, thus causing a considerable performance loss and an error floor as high as
BER of 107%. This shows the advantage of PA codes to (conventional) LDPC codes
when noncoherent, detection is required and when only limited bandwidth expansion
is allowed.

We investigate how the number of pilot symbols and the length of the estimation
filter affect the performance of noncoherent detection. Figure 47 illustrates the im-
pact of the pilot spacing on the BER performance on fast fading channels where the
normalized Doppler spread is either 0.05, 0.02 or 0.01. We observe the following: 1)
The IDDD receiver is robust for different Doppler rates. 2) In any case, pilot spacing

should be at least 6 symbols, since further increasing the number of pilot symbols



115

fdTs=0.01, Eb/No=10dB

107} .
fdTs=0.05
4 —A— fdTs=0.02
\ —— fdTs=0.01
}F —+- fdTs=0.01, segment trellis
14
-3
10t ]
107} :
0 10 20 30 40 50 60 70

Pilot Spacing

Fig. 47. Effect of the number of pilot symbols on the performance of noncoherent
detected PA codes on correlated Rayleigh channels with f;7,=0.01. (Code
rate 0.75, data block size 1K, filter length 65.)

would have consumed unnecessarily large portion of the overall energy without being
able to compensate for it. 3) The code performance at high Doppler rates is more
sensitive to pilot spacing than that at lower Doppler rate. At the normalized Doppler
rate of 0.01 (although already fast fading), we see noncoherently detected PA codes
can tolerate pilot spacing as small as 6 symbols and as large as 45 to 50 symbols (put
aside the bandwidth issue); yet at extremely fast Doppler rate of 0.05, pilot spacing
beyond 7-9 symbols will soon cause drastic performance degradation. Also shown
in the plot is a case where pilot symbols periodically terminate the trellis (dashed
line), and again we observe the performance loss caused by trellis segmentation. The
effect of the length of the estimation filter is also studied. We observe that although

the filter length also plays a role in the overall performance, the impact is limited
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compared to pilot spacing. Similar results have been reported by other researchers

[59] and, hence, we omit the plot here.

E. Code Design from the Convergence Property

1. Convergence-Constraint Design Method

The above EXIT chart analysis and computer simulations show that a conventional
LDPC code is not suitable for differential coding, and that the outer code of PA codes
seems to be a better match. This raises more interesting questions: How well does
the outer code of PA codes match with the inner differential code? What types of
degree files are good for differential coding and how to optimize them?

To the solution of the above questions, the work of Richardson, Urbanke, et al.,
serve as the important ground stones. In [14], the nonlinear optimization problem
of the irregular LDPC degree profiles is formulated on AWGN channels and the
method of density evolution is introduced to solve the problem. In [32], a Gaussian
approximation is applied to the density evolution method, which reduces the problem
to be a linear optimization problem. The work of [75] [66] and [73] have further
combined density evolution with differential evolution in the design of good LDPC
ensembles for the erasure channel, the independent Rayleigh fading channel and the
minimum shift keying (MSK) modulation, respectively. Observe that the above works
on the optimization of LDPC ensembles have all aimed at the asymptotic threshold,
where the cost function is set such that, for a fixed code rate, the corresponding
SNR. threshold is minimized, or equivalently, for a given SNR value, the code rate is
maximized (call it “threshold-constraint” method). This is justified, since in all the
aforementioned works, the only involvement of the channel is to provide the initial

LLR information to trigger the start of the density evolution process. However, the
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problem we consider here is somewhat different. Our goal is to design codes that can
fully achieve the capacity provided by the given inner receiver. The key here is to
control the interaction or the convergence behavior between the inner and outer code?,
which is reflected in the shapes and positions of the corresponding EXIT curves.

b2

Below we propose a “convergence-constraint” method which is a useful extension
of the conventional threshold-constraint method. The idea is to “sample” the inner
EXIT curve and design an EXIT curve that matches with these sample points (or the
“control points”). Mathematically, if we choose a set of M control points in the EXIT
chart, denoted as (vy,wy), (va, ws), - -+, (var, wpr), and if we use 7,(-) to denote the
input-output mutual information transfer function of the outer LDPC code (exact

expression of 7, will be defined later in (3.50)), the optimization problem can be

formulated as

De ,
. max {Rzl—w ’];(wk)ZUk,k:LQ,...,M}. (3.38)
> =1 3 pi=1 Zi:vl Aifi

where R denotes the code rate, A\; and p; denote the fraction of edges in the bipartite
graph that are connected to variable nodes and check nodes of degree i, respectively.
To ease the computation, we assume that the LLR messages are Gaussian or
mixed Gaussian distributed, and that the output extrinsic mutual information of an
irregular LDPC code is a linear combination of those from the regular codes. We note
that whereas the Gaussian assumption for LLR messages is not far from reality on
AWGN channels, it is less accurate for Rayleigh fading channels [66]. Nevertheless,

Gaussian assumption is used since tracking the exact message pdf’s involves tedious
computation and may not render any feasible analytical expression. Further, the use
3It is true that whether or not the iterative process will converge successfully is

also reflected in the final threshold value, but the primary concern here is on the
interactions between the component codes.
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of EXIT charts has already assumed a Gaussian approximation in the first place.

Let us first recall the main steps of code optimization using the conventional
threshold-constraint density evolution with Gaussian assumption [32]:

Notation — Conforming to the notations and graphic framework presented in [32],
we use A(z) = 320 Nz and p(x) = 321, pir'~! to describe the degree profiles from
the edge perspective, where \; and p; denote the fraction of edges in the bipartite
graph that are connected to variable nodes and check nodes of degree i, respectively,
and D, and D, denote the maximum variable node and check node degrees. Similarly,

N(z) = S22 Na=t and o (z) = 27, pia=" are used to describe the degree profiles

from the node perspective. We have the following relations (R is code rate)

No— (3.39)
Z - )‘J/.]
P (3.40)

Zg QPJ/]

We use superscript (1) to denote the Iy, LDPC decoding iteration, and subscript v and
¢ to denote the quantities pertaining to variable nodes and check nodes, respectively.

Further, we define two functions that will be useful and convenient for the discussion

< 1 =)
T(x) = 1— - log(1 + e )dz, 3.41
@ = 1= [ = gl ) (341
1— ftanhz —7 dz x>0,
b(z) = Vire (3.42)
1, x=0.

Function Z(x) maps the message mean x to the corresponding mutual information
(under Gaussian assumption), and ¢(x) is useful in describing how the message mean
evolves in tanh(%) operation, where y follows Gaussian distribution with mean x and
variance 2.

The complete design process is in fact a dual constraint optimization process that



119

progressively optimizes variable node degree profile A(z) and check node degree profile
p(x) based on the other. It is interesting to note that although the optimization of
A(z) and p(x) are duals to each other, experiments show that the optimality of A(x)
has a larger impact on the asymptotic performance than that of p(z). In many cases,
since the optimal check node degree profile are known to follow the concentration
rule [32], i.e., p(x) = Az* 4+ (1 — A)z**1) one can make a reasonable prediction on
p(x) and optimize for A(x) only. Below we focus our discussion on the optimization
of A(z) for a given p(x). The optimization of p(x) for a given A(x) can be derived
similarly.

Threshold-constraint method (optimizing A\(x))— Under the assumption that the
messages passed along all edges are i.i.d. and Gaussian distributed, the average
messages variable nodes receive from their neighbors are mixed Gaussian distributed.
From (I—1)y, iteration to Iy, local iteration (in the LDPC decoder), the mean of the

messages associated with the variable node, m,, evolves as

v

Dy
ml = Z i ./\/'(mq(f,)i, QmS){)i), (3.43)
i=2

Dy De
= > o <mo+<z'—1>ij¢—1<1—(1—m§-1>>j-1>, (3.44)
1=2 j=2

where m denotes the mean of the initial messages received from the channel (or the

inner code). Let us denote

bl r) 2 6(mo+(i-DY o (1= (1= )), (349
h(mo.r) = Zv:)whi(mo,r), (3.46)

Equation (3.44) can then be rewritten as r, = h(mg,7—1) = S.12% Aihi(mo, m1_1).

The conventional threshold-constraint density evolution ensures that the optimized
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degree profile, if successful, will converge to the zero-error state (asymptotically) at
the given initial message mean mg. This is achieved by enforcing r > h(mq, ) for all
r € (0,¢(mp)] [32]. Viewed from the EXIT chart, the threshold-constraint method
has implicitly used a control point (v, w) = (1, [(my)) such that that resulting EXIT
curve will stay below it.

Convergence-constraint method (optimizing A(x)) — In the general case, a control
point (v, w) can choose any value from 0 to 1; that is, for the given a priori mutual
information w, we need the extrinsic mutual information at the output of the LDPC
code to be better than v, but not necessarily to reach the point mass of 1. The
constraint is correspondingly changed to r > h(my,r) for all r* € (0, ¢(myg) | where
r*(> 0) is the critical value to ensure that 7y(w) > v is satisfied. Formally, the
problem can be formulated as follows: given a control point of (v,w), where 0 <

v, w, < 1, and check node degree profile p(x),

Dy
max i/, 3.47
B ; / (3.47)
Dy
subject to: (i) Z)‘i =1, (3.48)
=1
Dv
(i) > N (hi(mo,r) —7) <0, Vre(r,¢(mo)]. (3.49)
i=1

T,(w) & Z \; I(z’ iqublu —(1- r*)j*1)> > . (3.50)

When v = 1, we see from (3.50) that r* = 0, which is the special case of threshold
constraint design.
Hence, for a set of M control points, (v, w;), (ve,ws), -+, (var,wpr), where

0<vyy << ---<vy<land 0 <w <wy <--- <wy <1, we can combine
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the constraints associated with each individual control point and perform a joint
optimization on all of them. When the control points are properly chosen along the
inner EXIT curve and when the initial p(z) is properly set, we expect the resulting
EXIT curve to stay closely below the inner EXIT curve. That it, the resulting (outer)
code to match closely with the inner code/receiver in convergence behavior.

Linear programming — Note that the above constraint (i7) is a nonlinear function
of A;’s, and that the computation of r* from (3.50) requires the knowledge of A(z),
which is yet to be optimized. To get around with this, one possible approach is to
consider an approximation of A(x) in (3.50) to compute r*. Specifically, we consider
only the two lowest degree variable nodes \;; and \;,, and approximate the degree

profile as A(z) = \i, 2" 1 + Xz 1+ O( Ny ) & Az 1+ (1 — Ny, )™,

1. In a conventional LDPC ensemble, i; = 2, i.e., degree-1 nodes are not al-
lowed, since the outbound messages from these variable will not improve in
the message-passing decoding. In such cases, we consider only degree-2 and 3
nodes. We use an upper bound \j for degree-2 nodes, and treat all the rest
as degree-3 nodes. The value of \* can be derived from the stability condition
[14] [32]. Stability condition states that there exists a value & > 0 such that if
density evolution is initialized with a symmetric message density P, satisfying
ffoo Py(x)dx < &, then the necessary and sufficient condition for the density
evolution to converge to the zero-error state is A (0)p' (1) < €7, where 2
—log ([~ Po(z)e "/*dz). Applying the stability condition on Gaussian mes-
sages® with initial mean value mg, we get v = ¢ and \j = e™/*/ ZJD:CQ( i—1)p;,

or equivalently, \j(w) = eZ '(®)/4/ ZfZCQ( j — 1)p;. Tt should be noted that not

4The extrinsic information output from the inner differential code is in fact not
Gaussian distributed, and we did not use an Gaussian approximation in computing its
extrinsic mutual information. However, the outer LDPC code has no means of know-
ing the exact pdf of the mutual information passed from the inner code and, hence,
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all values of wj, can be used in the above equation to compute A\5. Recall that
the stability condition is to ensure that the code will converge (asymptotically)
to the zero-error state for the given input messages. Hence, Ay < Aj(w*) is valid
and is required only when the output mutual information will approach 1 at
the input mutual information w*. When we sample the inner EXIT curve, we
can always choose one sample point, say the rightmost point to roughly satisfy
the requirement, i.e., (var,wpr) & (1,wyr). We can then use wy, to compute
A5 = \j(wyy), and subsequently use A(z) & Nz + (1 —\3)a2 to compute 7* from

(3.50) for all control points from 1 to M.

2. In a nonconventional case when an LDPC code is used together with a differ-
ential code (or other inner code and/or modulation with memory), the inner
code imposes another level of checks on all variable nodes. Hence, weight-1
nodes in the outer LDPC decoder will get extrinsic information from the inner
code as the iteration progresses and their estimates will improve accordingly
[73]. In this case, the first and the second nonzero A;’s are A; and Ao. An
analytical bound on )] is difficult, but empirical results show that \] < 1—R
is a reasonable assumption®. This is because, otherwise there are at least two
degree-1 variable nodes, say the p;, node and the ¢, node, connecting to the
same check. When the LDPC code is considered alone, these two variable nodes
are apparently wasteful and can be removed altogether. When the LDPC code
is combined with the inner differential code, they result in a minimum distance

of 4 for the overall codeword. As shown in Figure 48, when the four bits that are

it interprets it as Gaussian distributed. This discrepancy may lead to inaccuracy in
the EXIT analysis.

®The exact code rate is dependent on the optimization result, but we know of the
target code rate which is in the vicinity of the final code rate.
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LDPC  differential encoder
Fig. 48. Defect in code structure when A} > 1 — R.

denoted by solid circles flip altogether, another valid codeword results and the
decoder is unable to detect. In other words, for any finite length construction,
the minimum distance of this LDPC ensemble is (at the most) 4, which is not
desirable. Using the approximation \(z) = (1—R) + Rz in (3.50), we are able
to compute (a lower bound of) 7* to be used in constraint (iz). Code design
for differential coding is thus solvable using linear programming. Experiments
show that the optimized EXIT curve has a shape as desired, but the position
is slightly lower, i.e., code rate is slightly pessimistic. This can be compensated
by pre-setting the control points slightly higher than we actually want them to
be.

2. Optimization Results

In this subsection, we discuss some observations and findings from our optimization

experiments.
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First, we find that the LDPC ensemble optimal for differential encoding always
contains degree-1 and degree-2 variable nodes. For high rate codes above 0.75, these
nodes are dominant, or in some cases the only types of variable nodes in the degree
profile. For medium rates around 0.5, there are also a good portion of high-degree
variable nodes. Hence, getting back to the question how well the outer code of PA
codes matches with differential encoding, it is fair to say that, at high rates, they are
(near-)optimal, but at medium or low rates, they are not. Viewed from the EXIT
chart, we see that at high rates, the area between the outer code of the PA code
and the inner differential encoder is small (see Figure 43), leaving not much room
for improvement. At rates around 0.5, however, the area is big (see Figure 49),
which indicates that an optimized outer code could acquire more information rate
for the same SNR threshold, or, for the same information rate, achieve a better SNR
threshold.

The optimization result of the target rate 0.5 is shown in Figure 49. The resulting
LDPC ensemble has code rate R=0.5037 and degree profile A\(z) = 0.0672+0.4599x +
0.0264z® + 0.04952° 4 0.07202° + 0.0828x!* + 0.08552*2 + 0.0807x% + 0.0760z* and
p(z) = 2°. We see that it matches closely with an inner differential decoder operating
at 0.25 dB on a f;T, = 0.01 Rayleigh fading channel using 10% of pilot symbols for
noncoherent detection (Figure 49). Accounting for the rate of the outer code, we
see that the resulting LDPC ensemble requires 0.25 — 101log,,(0.5037) = 3.2283 dB
(asymptotically) in order for the iterative process to converge successfully. Compared
to a rate 0.50 PA code which requires 1.26 —101og,,(0.5) = 4.2703 dB (Figure 49), the
optimized LDPC ensemble is about 1.04 dB better asymptotically. However, when
the passage between the inner and outer curves is very narrow, more iterations are
needed in order for the message-passing decoder to proceed to the zero-error state.

This requires more computing complexity and processing time, which are the price
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Fig. 49. EXIT chart of a rate 0.5 LDPC ensemble optimized using conver-
gence-evolution for differential encoding. (Normalized Doppler rate 0.01, 10%
of pilot symbols inserted to assist noncoherent differential detection. Degree
profile of the optimized LDPC ensemble: p(x) = 2°, A(z) = 0.0672 + 0.4599x
+ 0.02642® + 0.04952° + 0.07202' + 0.0828z'" + 0.0855z'% + 0.0807z" +
0.0760z'.)
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we pay for stretching to the limit. Further, since the inner code is operating on a
correlated fading channel using noncoherent detection, the messages it produces are
approximations of the actual LLR information and, hence, the accuracy of the EXIT
curve may be questionable. Nevertheless, simulation of a fairly long code shows a
good agreement with the analytical result, which indicates that the design method is
effective (Figure 50).

We point out that the optimized LDPC ensemble is good in the asymptotic
sense, i.e., with infinite code length. In practice, we are also concerned with finite
length implementation or individual code realization. From the concentration rule,
we know that for long codes, all realizations perform nearly the same, and they tend
to converge to the asymptotic threshold as length increases. For short block sizes,
however, the variation in the code performance can be large, which means that there
are good realizations and bad realizations. The reason why one realization is better
than the others is a complicated problem that involves various factors that are not
yet fully understood. One basic guideline for a good realization, however, is to avoid
short cycles or to enlarge the girth (the length of the shortest cycle) in the code graph.
In the actual construction, this can be a tedious task. A simpler practice is to focus
on degree-2 variable nodes and try to eliminate (short) cycles among them. This
is because experiments show that when degree-2 variable nodes form cycles among
themselves, a deeply faded node would, with high possibility, flush all the edges in
the cycle with erroneous messages, causing an “avalanche” effect that is difficult for
the decoder to correct. Further, from the complexity point of view, if the portion of
degree-1 and degree-2 variable nodes is close to or more than 1— R (which is like to
be case for codes optimized for differential encoding), these degree-1 and 2 nodes can
be lined up in a stair-case like manner to make the corresponding parity check matrix

diagonal or sub-diagonal. This results in an realization that is linear time encodable
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Fig. 50. Simulations of optimized LDPC code with differential encoding and iterative
differential detection and decoding. (Code rate 0.5037, normalized Doppler
rate 0.01, 10% pilot insertion, the degree profile of the optimized LDPC code

is the same as in Figure. 50.)

using back substitution [33] [73].

Figure 50 shows the simulations of a rate 0.5037 differentially coded LDPC code
with the aforementioned optimized degree profile on a correlated Rayleigh fading
channel. We have chosen a long codeword length of N = 64K to test how well it
matches with the analytical threshold. As mentioned before, a large number of it-
erations (like 100 iterations) are probably needed in order to fully deploy the code
capacity. However, due to the limit in time and computing power, we simulated for
only 15 iterations. In the figure, the leftmost curve correspond to the ideal cases
(perfect knowledge on the fading phase and amplitude) with 10% pilot symbols.

The circled curves correspond to the noncoherent performance using 10% of pilot
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symbols and using iterative differential detection and decoding at the 5;,, 10;,, and
15y, iteration. For comparison purpose, we also plot the curves of noncoherently
detected PA codes and conventional LDPC codes (not combined with a differential
encoder) with the same parameters. The conventaional rate 0.5 LDPC code (right-
most curve) has degree profile of p(z) = 0.00102° + .951927 + 0.04722% and \(z) =
0.2465x +0.230622 +0.002023 4-0.04652° 4-0.150225 4 0.035327 +0.00482 8 4-0.2840219,
which is optimal for coherent detection (without a differential encoder) on Rayleigh
fading channels [66]. We see that the performance of this differentially coded LDPC
code using noncoherent detection is only about 0.3 dB worse than the coherent detec-
tion. Compared to the asymptotic threshold of 3.23 dB, the simulation performance
of is about 0.75 dB away at BER of 10~%, which is in plausible agreement. Further,
the optimized differentially-coded LDPC code reveals an encouraging performance
gain of about 1.4 dB over the PA code and 2.9 dB over the “conventionally optimal”
LDPC code! This clearly shows the benefits of using differential encoding when non-
coherent detection is performed, as well as the importance of designing codes matched

to the specific receiver.

F. Conclusion

We have conducted a comprehensive investigation on the performance of product ac-
cumulate codes on flat Rayleigh fading channels with either coherent and noncoherent
detection. Related issues concerning differential encoding and noncoherent differential
detection, as well as code design to be matched with inner code/modulation are also

studied. Below summarizes the major conclusions and contributions of this paper:

1. For coherent detection of PA codes, we have used Divsalar’s simple bound to

evaluate the performance of finite length codes and density evolution to compute
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the thresholds of infinite length codes. Comparing PA codes with LDPC codes
(for long lengths), we show that PA codes perform slightly better than regular
LDPC codes but slightly worse than the optimized irregular LDPC codes with
similar decoding complexity. Comparing PA codes with 16-state turbo codes
(for short lengths), we show that PA codes are somewhat worse in performance,

but are significantly lower in decoding complexity.

. For noncoherent detection, we present and discuss a low-complexity iterative
differential detection and decoding receiver. The IDDD receiver is shown to be
robust for different Doppler rates and can perform within 1 dB from the coherent
case on fast fading channels using little additional complexity and bandwidth.
For normalized Doppler spreads of 0.01, 0.02 and 0.05, We show that as few
as 2-2.5%, 5-6% and 12% pilot symbols are needed to achieve good channel
estimation, respectively. We also show that the performance of noncoherent
detection becomes more sensitive to pilot spacing when the channel fade rate

becomes faster.

3. In terms of pilot insertion, we show that the popular practice of periodically

terminating the trellis incurs an intrinsic loss in code capacity and is likely to
cause high error floors and severe BER performance loss to the overall code per-
formance. A better way of inserting pilot symbols is suggested which separates

pilot symbols from the trellis structure.

. It is well-known that coherently detected LDPC codes perform remarkably;
however, little has been reported on the performance of noncoherently detected
LDPC codes. This paper answers in part the above question. For noncoherent
detection, a differential encoder may or may not be used. Through EXIT analy-

sis and simulations, we show that conventional LDPC codes suffer a performance
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loss when used with differential encoding and iterative detection/decoding, yet
without differential encoding, they require a good number of pilot symbols in
order to estimate the channel. Hence, it is fair to say that conventional LDPC
codes using noncoherent detection do not perform as desirably as the coherent

case (whereas PA codes perform equally well in both cases).

5. Finally, we propose a convergence-constraint method to design good LDPC
ensembles matched with differential encoding/decoding (and in general any
receiver). We observe that the LDPC ensemble optimal for differential en-
coding always contains degree-1 and 2 variable nodes, and that for high code
rates, these nodes are dominant. The resulting optimal LDPC code shows a
1.04 dB gain over the existing PA code. It is worth mentioning that optimal
differentially-coded LDPC codes are in fact (optimal) nonsystematic irregular
repeat accumulate codes [22], but the proposed optimization procedure has a
far-reaching implication and application since it can explicitly take into account

the property and the imperfectness of the receiver.

We conclude by proposing product accumulate codes as a promising low-cost
candidate for wireless applications. The advantages of PA codes include 1) they per-
form equally well with coherent and noncoherent detection (especially at high rates),
2) the performance is comparable to turbo and LDPC codes, yet PA codes require
far less decoding complexity than turbo codes and far less encoding complexity and
memory than random LDPC codes®, and 3) the regular structure of PA codes makes
it possible for low-cost implementation in hardware. However, we point out that the

major drawback of PA codes is its relatively slow decoding convergence as compared

6The generator matrix of a random LDPC code is random and dense, and requires
K(N — K) storage space for a (N, K) code.
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to turbo codes. Whereas turbo codes require 6 to 8 iterations to converge, PA codes
require some 8 to 25 iterations to converge depending on channel conditions and ap-
plication requirements. It would thus be a useful project to improve the convergence
of PA codes. Possible solutions include to use PA-IT codes rather than PA-I codes
(which is what we typically refer to as PA codes) at high rates (see Chapter 1I) [24],

and to use a set of interwoven short interleavers instead of one big interleaver.
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CHAPTER IV

PRODUCT ACCUMULATE CODES FOR LONG-HAUL OPTICAL FIBER
COMMUNICATIONS

A. Introduction

The wide distribution of Internet, multimedia transmission and various interactive
services has generated a tremendous increase in data bandwidth to be transported
through telecommunication networks, thus leading the research for high capacity and
high data rate in optical fiber communications. While dense wavelength division
multiplexing (DWDM) technology with 10 gigabits/second (Gb/s) channels has con-
tinued to enable multi-terabits/second (Th/s) capacity over transoceanic distances,
in oder to reduce the physical space needed at the system terminals and to make
optimal use of long-haul amplifier bandwidth, data rates higher than 10 Gb/s are de-
sirable. One of the major challenges is to effectively mitigate the fiber nonlinear effects
and the increased sensitivity to dispersion and dispersion slope. Among the various
technologies deployment in the fields of optical amplification, fiber, transmission bit
rate and digital signal processing, forward error correction remains an important re-
search focus. Most modern transoceanic systems use the Reed-Solomon (255,239)
code, which yields about 6 dB of coding gain. However, to further increase amplifier
spacing, transmission distance, data rate and system capacity for the next generation
of DWDM transoceanic systems, more bandwidth- and power-efficient FEC codes are
needed.

In addition to the hard decision decoding of RS codes [76] [77] [78], forward error
correction codes that have been applied to or proposed for the long-haul OFC systems

include concatenated RS/convolutional codes [79], concatenated RS/RS codes [80]



133

[81] [82], and soft-decision iterative decoding block turbo codes [80]. It shows the
trend of improving the code performance by utilizing code concatenation, soft-decision
decoding, and iterative decoding techniques. In particular, the breakthrough in the
recent coding research has opened up possibility for potential capacity-approaching
coding schemes like low density parity check codes, turbo codes, turbo product codes
and product accumulate codes. These codes are able to achieve impressive coding
gains at the cost of coding complexity and/or structural complexity.

Among the state-of-the-art advanced coding schemes, product accumulate codes,
as a class of good high-rate codes with low-complexity!, seem a more viable candidate
than turbo or LDPC codes for potential use in optical fiber communications. As
discussed in Chapter II and III, PA codes are capable of near capacity performance
on AWGN channels and land-mobile Rayleigh fading channels. In this chapter we
investigate the performance of soft-decision iterative-decoding PA codes based on
different optical fiber channel models.

We consider optically amplified fiber communication systems using on-off keying
modulation where the signal is modulated to be either 0 (also known as space) or
an optical pulse of duration Ty (also known as mark). Under low-power operations,
amplified spontaneous emission noise from optical amplifiers is the dominant source
of noise in the system. The Chi-square model is by far the most accurate model of
the ASE noise statistics, which gives closed form probability density functions for
the marks and spaces after passing through a photodetector and an electrical filter
[83] [84]. Since Gaussian densities can be handled more conveniently than Chi-square

densities, the system model can be simplified by approximating the noise as Gaussian

IThis is in comparison with turbo codes which require magnitude more decoding
complexity than PA codes. However, compared to the hard-decoding of RS codes
which can be implemented very efficiently in tap-delayed lines or linear shift register,
the complexity of the soft-decoding of PA codes is still quite high.
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distributed. In this work, we consider three memoryless channel models [85]: (1)
asymmetric channels with uncorrelated Chi-square distributed noise, (2) asymmetric
channels with Gaussian noise (an approximation to the Chi-square model), and (3)
symmetric channels with Gaussian noise (i.e., AWGN) which is a further simplification
and approximation of the channel model and which is widely employed in coding
research.

At low signal-to-noise ratios, due to the lack of tight bounds, performance evalua-
tion uses simulations of typical PA coding schemes. For high SNRs beyond simulation
capabilities, we derive the pairwise error probability of the aforementioned channels
and evaluate an average upper bound on the performance of the ensemble of PA
codes. It is interesting to observe that AWGN channels, although fundamentally dif-
ferent from Chi-square channels, can serve as a convenient reference to approximate
the performance of high-rate PA codes on Chi-square channels. In all the test cases,
we assume that the decoder knows the perfect channel state information (i.e., the
channel model and the relevant SNR parameters) and, hence, the soft information is
set to match the particular channel model under investigation.

The rest of the chapter is organized as follows. Section B presents the three
channel models under investigation. Section C discusses product accumulate codes
and the iterative soft decoding that is used. Section D derives and computes the
average union bounds for PA codes on different channels. Section E presents analytical

and simulation results, and Section F summarizes the Chapter.
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B. System Model

1. Channels with Chi-square Noise

Denote M = B,/B. > 1 as the number of modes per polarization state in the received
optical spectrum, where B, and B, are the optical and electrical bandwidth of the
system at the detector, respectively. As discussed in [84], prior to the square-law
detection, the noise n; can be mathematically represented as a Fourier series expan-
sion with Fourier coefficients that are assumed to be independent Gaussian random
variables with zero mean and variance Ny/2. After passing through the optical am-
plifier, the received signal (the integral of the output of the photodetector) over one

bit interval is given by

2M

T = Z(SZ + ’I”LZ')Q, (41)

i=1
where s; and n; denote the signal and the ASE noise projected to 2M orthonormal
basis. Signal energy is Z?Ml s? = 2F, for transmitting “1” and ZfMl s? = 0 for
transmitting “0”, where Ej is the average energy of the transmitted signals (assuming
equal probability of “17s and “0”s).
Completing the square in the integral, the first order statistics of the optical
channel (after the photodetector) can be modeled as the Chi- square distribution
with 2M degrees of freedom [84] [83]. The closed-form probability density function

of the received signal “1” and “0” after square-law detector are given by (z > 0) [84]

filz) = NLO(szTe%IM_l (%ﬁﬂs» (4.2)
1 (z/No)M~texp(—z/Ny)
fO(x) FO (M _ 1)! ’ (4'3)

where Iy/_1(-) denotes the (M — 1), modified Bessel function of the first kind. The
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means and variances of signal “1” and “0” can thus be derived as

p = MNy +2E,, o} = MN§ + 4FE,Ny, (4.4)

Mo — MN(), O'g = ]\4]\[02 (45)

The (un-normalized) signal-to-noise ratio Eg/Nj can be regarded as the number
of signal photons at the input of the ideal high gain optical amplifier that produces
the noise. However, it is conventional to use the () factor to measure the channel

condition where @ is defined as

Q= =l (4.6)

o1+ 0y

This @ factor in dB (20log;, @) is sometimes referred to as the gross @, since the
coding overhead is not taken into consideration. Otherwise, we get the net Q,.,

where Qnet = Q — 101logo(R).

2. Asymmetric Channels with Gaussian Approximation

Observe that x is the sum of 2M independent random variables, the application of
the central limit theorem (for large M) yields Gaussian approximation for both signal
“1” and signal “0”. Using the definition of @) factor as in (4.6), and normalizing N,
in (4.2)-(4.5) to 1 , the noise parameters can then be rewritten as functions of the

system parameters, B,, B, and Q, as [80]

| B,

o= 20\ 27 o= 5 120, (4.7)
B,

po =5, 0=1\g (4.8)

When the Chi-square distributed noise in (4.2) and (4.3) is modeled using a

Gaussian approximation with the same mean and variance, we have the asymmetric
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Chi-square and Gaussian approximation

=
o

=
I
.

=
[N
T

[ERY
T

Chi—sqﬂare

- Gaussian approximation |

o
o))
.

pdf of received signals
o
(o]

o
~
.

0.2

-1 0 1 2 3 4 5 6
Received signals (O2 =5.00 dB)

Fig. 51. Comparison of Chi-square and asymmetric Gaussian channels. (M=4, Q?=5.0
dB.)

Gaussian channel model as follows

A) =N, 0?) =N (% o0\ B age [P 2@) )

fol@) = No, o2) w(%} %) (4.10)

In Figure 51, we have plotted the pdf’s of the received signals for the Chi-
square channels and the asymmetric Gaussian channels with parameters M = 4 and

Q? = 5.00dB. The curves give a feel of how close the Gaussian distribution has

approximated the Chi-square distribution.

3. Symmetric Channels with Gaussian Approximation

Since AWGN channels are the most popular channel model in a conventional com-

munication system, and since most of the coding research is done on this channel, we
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have also included it in our study so as to facilitate comparison. Since on-off signaling
is used in fiber communications rather than antipodal signaling (as is generally used
in coding research), there is a 3 dB difference with the conventional results using

BPSK modulation on AWGN channels.

C. Iterative Soft-Decoding for PA Codes on Optical Fiber Channel Models

For simple hard detection, an optimal threshold v can be found numerically by letting
fo(v) = fi(y) in each received bit (see Figure 51). To obtain a feel of how much
error correction power PA codes can provide, we consider in this work soft detection
and decoding of PA codes. As discussed in Chapter IT and III, the message-passing
decoding has decoupled PA codes (the code structure/graph) from the channel model.

For the aforementioned three channels, the initial LLR (from the channel) of a received

signal z, defined as L.,(x) = gg?}g, can be computed as (assuming equally probable
“1”8 a,nd “077 S)
(22 E,)M=1/2 exp (o)
Chi-square:  Lgy(z) = - R (4.11)
NI M — 1)1 gy ()
Asymmetric Gaussian:  Lgp(z) = log%—(a—ﬁ)((a+ﬂ)x—2a62)x, (4.12)
AE, — 4/ E
Symmetric Gaussian:  Lg,(z) = Tx, (4.13)
0

where G = %2 and a = B+ 2Q). With this initial LLRs properly set, the iterative
decoder can follow exactly the same steps as described in Chapter II and [24] to
yield soft output information. We note that the symmetric Gaussian channel here
uses on-off signaling instead of the conventional antipodal signaling (i.e., BPSK). A
convenient alternative to (4.13) is to assume antipodal signaling with L., (x) = %x,

and then to shift the performance curve rightward by 3 dB.
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D. Analytical Bounds

1. Union Bounds

We evaluate the performance of a (N, K) PA code in optical fiber communications
using the union bounds. The ensemble average bounds on the word error rate and

bit error rate are given by

N N K
Py < Y Ap(h)= ) > AuuPa(h), (4.14)
h=hmin h=hmin w=1
K w N _
B < 174 Z ApnPa(h), (4.15)

where Aj, is the output weight enumerator, A, is the input weight enumerator,
and Py(h is the pair-wise error probability of the channel. The computation of the

(ensemble average) IOWE of PA codes can be found in (2.56) in Chapter II.

2. Pair-Wise Error Probability P (h)

Pair-wise error probability P,(h) is in general a function of the channel characteristics,
the modulation scheme and the decoding strategy. Below we derive the average pair-
wise error probability PEP of the aforementioned channels, respectively. Average in
the sense that we assume that equal probability of “1”s and “0”s are transmitted
and that they are equally likely to be in error. Throughout the discussion, unless
otherwise stated, we assume OOK modulation (signal energy either 0 or 2F;) and

soft decoding.

a. Symmetric Gaussian Channel Model

For OOK signaling on symmetric Gaussian channels with noise variance 02 = NJW&N /2,

the average Euclidean distance of two codewords with Hamming distance h apart is
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given by v/2hFE;. It thus follows that the pair-wise error probability of soft decoding

Py(h) =Q < W) ; (4.16)

where Q(z) = &= [ e 2z,

b.  Asymmetric Gaussian Channel Model

With asymmetric Gaussian channels, the optimal decision threshold v for a transmit-
ted bit should satisfy fo(v) = fi(y) in (4.9) and (4.10) [85]. To simplify computation,
the threshold can be customarily set such that probabilities of bit “0” in error and
bit “1” in error are the same (i.e., P(1|0) = P(0[|1)) [84]. It is then convenient
to approximate the two codewords within h Hamming distance apart as Gaussian

distributed

flco) = N(MNyWh, MNZ), (4.17)

flcn) = N(MNoVh+2VhE, MN2+4E,N,). (4.18)

The customary threshold v* for estimating codewords can be obtained by letting

Q V= MNVR\ 9 MNoVh+ 2VhE, — v*
V/MNZ VMNZ + 4E,N, ’

which yields the threshold as

2VhE,/MN?
v* = MNyVh + vh 0 , (4.20)
VMNE + /MN; +4E,N,

(4.19)

and the corresponding pair-wise error probability Pa(h) as

2vhE, /N,
VM + /M +4E,/N, )

Py(h) = Q ( (4.21)
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It should be noted that we have simplified the computation of pair-wise error
probability by evaluating only the typical all-zeros codeword and a weight h codeword.
Although this is not exact due to the asymmetry of the channel [86], it is a reasonable
approximation when the code space is linear, when all codewords are equally probable,

and when the customary threshold criterion is used.

¢. Chi-square Channel Model

Similar to the asymmetric Gaussian case, we use the all-zeros codeword and a weight
h codeword to approximate the average pair-wise error probability Py(h) for Chi-
square channels also. Unlike Gaussian distribution which is symmetric and which has
a characteristic bell-shaped probability density curve, Chi-square distribution does
not possess such properties to be conveniently exploited for a soft-decoding PEP.
Thus we turn to hard-decoding PEP, which is an upper bound for a soft-decoding
PEP.

For each noise-corrupted bit of energy 0 or 2F;, the receiver makes decision by
comparing it with a threshold ~. The probabilities that a “1” is decided when a “0”

is sent, and “0” is decided when a “1” is sent, are given by [84] [87] [88]

M—-1

PJ0) = /fo )z = e %Z%(AZO)’C (4.92)

POl = [ las=1-0u (=, [, (4.23)

where Qu/(a, b) is the generalized Marcum Q function of order M defined as

o0 M 22 &
Qun(a,b) —/ T exp(— 5 V1 (az)dz. (4.24)
b

There is no simple, closed form expression for calculating the generalized Marcum

Q function, but highly reliable and efficient numerical methods can be found in [87]
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and the references therein. The optimum threshold 7 can also be solved numerically

by letting fo(z) = fi(x) in (4.2) and (4.3), or
(2E5y)MD/2 = e=2Bs/No NM=L(N — 1)U 1 (24/2E57/No). (4.25)

Using the asymptotic expansion of Ij;(-) reveals that the optimal normalized threshold

approaches 1/4 for large E,/(NoM?) [83] [84]

— MN, 1
lim L0 2 (4.26)
Es/(NoM2)—oo 2B, 4

Under the assumption of equal prior probabilities, the average probability of a

bit in error is given by

p= PO PO wam

Combining (4.22), (4.23) and (4.27), we get the pair-wise error probability for
the Chi-square channel with two codewords of length N and Hamming distance h

apart as (hard decoding)
Py(h) = p"(1 = p)¥ "~ p" (4.28)

where the approximation in (4.28) is justified for small p or large SNRs.

E. Simulation and Analytical Results

As mentioned before, in all the simulations provided, we assume perfect channel
knowledge on the receiver side; in other words, there is no concern about channel
mismatch. Figures 52, 53 and 54 plot the simulations of a rate 0.8, block size 16K PA
code on AWGN, asymmetric Gaussian and Chi-square noise channels, respectively.

We use M = 4 and OOK signaling. Channel conditions are measured using gross
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Fig. 52. Performance and bounds of high-rate PA codes on symmetric Gaussian chan-
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Fig. 54. Performance and bounds of high-rate PA codes on asymmetric Chi-square

channels with on-off signaling.

@Q? (in dB) as defined before. For AWGN channels, the conventional E,/Ny of BPSK
signaling and the gross Q? in our simulations are off set by 3 dBs. The observations are
made over 3 x 10! bits for high SNRs, so the results are fairly reliable?. BER curves
after 5, 10, 15, 20, 25 iterations are shown. As can be seen, PA codes yield impressive
performance for all three channels, with error floors as low as BER of 107 to 107,
Comparing to the uncoded OOK systems which require Q? of 15 dB to achieve BER
of 107® on AWGN channels, the rate 0.8 PA code can achieve as many as 9 dB gain
(after the code rate penalty). Although not shown in the plots, comparison to turbo
codes reveals that a 16-state turbo code with parameters (21, 35), and with the same
code length and code rate at the 8, iteration performs about 0.1 dB better than PA
codes at the 20y, iteration. However, to achieve that gain, the turbo code requires

?Thanks to the powerful computing facility in Tyco Telecommunications (formerly

known as TyCom) that we were able to run extensive simulations to benchmark the
performance of PA codes.
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about 12960 operations per data bit (log-domain BCJR decoding) [26], whereas the
PA code requires only about 540 operations per data bit (log-domain massage-passing
decoding) [24], which is less than 5% in complexity. We point out that it is a rough
comparison though, since we have counted all operations which include min/max,
table-lookup and addition/subtraction as of the same complexity, and have ignored
the effect of interleaving. Nevertheless, how simple PA codes are as compared to
turbo codes are obvious.

To facilitate the evaluation, analytical bounds are computed and presented along
with the simulations. Since the bounds assume ML decoders (rather than the practical
iterative decoders), and since they are averaged over all possible interleavers (thus may
well be dominated by the interleavers that have the worst performance ), the accuracy
of the bound for a PA code with a specific interleaving scheme is questionable. In fact,
the performances are seen to be slightly better than the average bounds. Nevertheless,
they give useful indication on what to expect of PA codes in general for regions beyond
the simulation capability.

Since Q? represents different channel conditions for different channel models, for
a fair and accurate evaluation, we compare the performance on different channels in
terms of BER-in vs BER~out. Asshown in Figure 55, the performances on asymmetric
Gaussian channels appear worse. It is interesting to observe that the performances
on the Chi-square and AWGN channels match quite well at code rate 0.9 and show
slight difference at code rate 0.8. This shows that a conventional AWGN channel can
be used as a convenient reference to give indications of the performance of high-rate
PA codes on a Chi-square channel, given the decoder is perfectly matched with the

channel model.
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data block size K = 16K, 20 turbo iterations.)

F. Summary

Product accumulate codes have been investigated with three different channel mod-
els for use in long-haul optical fiber communication systems. Extensive simulations
down to quite low BERs provided benchmarks of the performance of high rate PA
codes. Theoretical analysis provided insight into the regions that are beyond sim-
ulation capabilities. We have shown that a 9 dB gain over an uncoded system can
be achieved for a rate 0.8, length 16K PA code, and that it can achieve essentially
the same performance as turbo codes with less than 5% the decoding complexity.
Hence, PA codes represent a promising prospect for error control coding for optical
fiber communications, where high-rate and high-performance codes are needed and
yet high complexity can not be afforded. We have also shown that the conventional
AWGN channel can be used as a convenient reference to give indications of the code

performance on Chi-square channels at high code rates. For future research, the rea-
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son behind the observation that the PA code does not perform as well in asymmetric

Gaussian channels as in Chi-square channels need to be investigated.
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CHAPTER V

ITERATIVE DECODING FOR IST CHANNELS WITH APPLICATIONS TO
DIGITAL DATA STORAGE SYSTEMS*

A. Introduction

The increasing demand for vast, inexpensive and reliable data storage to satisfy the
explosive growth of digitally stored information has resulted in vigorous research for
ever increasing recording densities. Future generation of high-density digital magnetic
recording has aimed at packing gigabits per squared inch, which requires the full
technological deployment in recording media, head, servo and control, and signal
processing and error correction coding. Toward satisfying this demand, in addition
to technology advances in recording heads, media, and servo control, to mention a few,
signal processing and coding play an important role. A digital magnetic recording
channel can be modeled as a noisy, dispersive communication channel with colored
noise where many of the advanced techniques in signal processing, telecommunication
and information theory can be used. Magnetic recording channels present various

challenges for telecommunication researchers due to many unique features, including

1. Binary input: Since the magnetic media requires that it be polarized entirely
one way or the other (saturation recording), the channel input is constrained to
be binary. Hence high-order modulation schemes cannot be used in magnetic

recording systems to improve bandwidth efficiency.

I* © 2002 IEEE. Reprinted, with permission, from J. Li, K. R. Narayanan, E.
Kurtas, and C. N. Georghiades, “On the performance of high-rate TPC/SPC codes
and LDPC codes over partial response channels,” IEEE Transactions on Communica-
tions, vol. 50, no. 5, pp. 723-734, May 2002, and J. Li, E. Kurtas, K. R. Narayanan,
and C. N. Georghiades, “On the performance of turbo product codes over partial
response channels,” IEEE Transactions on Magnetics, vol. 37, no. 4, pp. 1932-1934,
July 2001.
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2. Heavy inter-symbol interference: There is significant amount of inter-symbol
interference in the channel, especially in high-density recording systems where
read-back pulses are extremely close to one another. In partial response max-
imum likelihood (PRML) systems, the channel is equalized to a well-chosen
PR polynomial to approximate the spectrum of the channel. Non-linearities
in the inter-symbol interference may require special handling of the channel
equalizer. Conventional techniques like signal-space approaches and decision-
feedback equalization (DFE), and the more recent approaches like turbo equal-

ization (also known as iterative decoding and equalization), are to be exploited.

3. High code rate and short code length: Future high-density recording systems
require high-rate short-length codes. The downsides of lower code rates as
affecting most transmission channels include increased bandwidth and clock
rates. In addition, magnetic recording channels are particularly sensitive to the
code rate R in that coding overhead also leads to a substantial increase of ISI.
It has been shown that the rate loss is of the order of 101log;,(R?) rather than
10log(R) as in AWGN channels [89]. Particularly in high-density recording
systems, ISI could be magnified to the point that it overwhelms any coding gain
offered by the code. Further, due to the limitation on the recording sector, the

code length is constrained to be no more than 512 bytes or 4096 bits.

4. Extremely low error probability: Data storage systems typically require bit error
rates to be of 1071* or lower. Since the majority of codes reach an error floor
far above this point, such low error rates are realized by serial concatenation
of two error correction codes, where the outer code is to clear up the residual
errors left over by the inner. A typical implementation of the outer code is an

RS code (known as RS-ECC) working on the byte level, capable of correcting
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a few tens of errors, and typically interleaved to avoid error bursts.

5. Colored noise: With the existence of electronic noise, media noise and other
impairments in the channel, such as timing jitter and inter-track interference
from off-track reading, the noise presented in a magnetic recording channel is

not white, and in fact, not even Gaussian.

6. Bursty errors: Due to thermal asperities, errors in a digital magnetic recording
channel tend to come in large bursts which may easily exceed the capability of

the error correction code and thus lead to loss of the entire block data.

7. Other issues to be taken care of include typical error pattern elimination, paral-
lelization, complexity and latency, run-length limit (RLL) constraint and timing

recovery, direct current (DC) balance, and physical restrictions.

The recent breakthroughs in the design of error correction codes which use code
concatenation, random interleavers and iterative probabilistic decoding have had
great impact on a number of applications including high-capacity digital data storage
systems. Soft iterative decoding is being seriously considered for application in future
digital magnetic recording systems. After being precoded, filtered and equalized to
some simple partial response target, the magnetic recording channel appears much
like an intersymbol interference channel to an outer code and, hence, many of the
techniques used in concatenated coding systems can be adopted. In particular, the
observation that an ISI channel can be effectively viewed as a rate-1 convolutional
code leads to the natural format of a serial concatenated system where the ISI chan-
nel is considered as the inner code and an error correction code like an LDPC code
or a punctured convolutional code acts as the outer code. With reasonable com-

plexity, iterative decoding and equalization can be used to obtain good performance
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gains (due to the interleaving gain). This is the motivation for considering iteratively
soft-decodable codes.

Several researchers have shown that turbo codes based on punctured recursive
systematic convolutional codes [90] [91] [92] [93] and low density parity check codes
[94] [95] can provide about 4-5 dB of coding gain over uncoded partial response
maximum likelihood systems at bit error rates of around 107> or 107%. However,
since the actual BERs that are of interest in magnetic recording applications are
of the order of 107'*, and since the performance of these codes cannot be easily
evaluated at such low BERs, significant coding gains cannot be guaranteed at such
low BERs. Therefore, a t-error correcting Reed-Solomon error correction code (RS-
ECC) is typically assumed in addition to the LDPC code or turbo code, which is to
clear up the residual errors. As such, it is important to ensure that the output of the
LDPC or turbo decoder will not contain more than ¢ byte errors that may cause the
RS-ECC decoder to fail.

Due to the high decoding complexity of turbo codes, current research focuses
on lower complexity solutions that are easily implementable in hardware. Iterative
decoding of turbo product codes, also referred to as block turbo codes [18] [19] [39]
[38], and low density parity check codes in particular [9] [94] [95], seem to be potential
solutions. An LDPC code exhibits similar performance to that of a turbo code, yet
with considerably less decoding complexity (about 1/10 that of a turbo decoder). A
randomly constructed LDPC code has quadratic encoding complexity in the length N
of the code (O(N?)). It has been shown in [33] that several greedy algorithms can be
applied to triangulate matrices (preprocessing) to reduce encoding complexity, where
the required amount of preprocessing is of order at most N*/2. With the exception
of a few LDPC codes that have cyclic or quasi-cyclic structures [34], large memory

is generally required (for storage of generator and/or parity check matrices), which
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could be a concern in hardware implementation. Furthermore, it has been reported
that bursty errors tend to occur with LDPC codes [94] [95], which may cause failure
of the outer RS-ECC code.

Single-parity check turbo product codes are a very simple class of turbo prod-
uct codes, which possess many desirable properties for data storage systems, such
as high-rate, linear encoding/decoding complexity and a highly parallelizable encod-
ing/decoding process. While turbo codes and LDPC codes have been under exten-
sive investigation for use in digital magnetic recording, little has been reported about
TPC/SPC codes in this area. In this paper, we undertake a comprehensive study of
the properties of high rate TPC/SPC codes and their applicability to digital magnetic
recording using precoded partial response channels.

We first show that although TPC/SPC codes have a very small minimum dis-
tance, if several codewords are combined and used with an interleaver and a precoded
PR channel, the distance spectrum improves significantly due to the interleaving gain.
This makes the performance of TPC/SPC codes comparable to LDPC codes of the
same rate while maintaining the advantage of a slightly lower decoding complexity
and linear encoding complexity. Next, we compute the thresholds for iterative de-
coding of TPC/SPC codes (and LDPC and turbo codes) using density evolution [14]
[12] [40] [32] [42] [11]. Finally, we study the distribution of errors at the output of the
decoder (i.e., at the input to the RS-ECC decoder) and show that TPC/SPC codes
have better error distribution (than that of the LDPC codes), making them more in
harmony with the recording system (in the presence of an outer RS-ECC code).

We have also included (random) LDPC codes in the analysis and evaluation
for two reasons. First, from the graph perspective a TPC/SPC code can be viewed
as a structured LDPC code. Second, with their known powerful error correction

capability, LDPC codes serve as a good benchmark in judging the performance of
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a code. Through the comparison in decoding complexity, bit error rate and error
statistics, we show that structured TPC/SPC codes seem a better candidate than
random LDPC codes for use in future digital recording devices.

Although PR channels (or more generally ISI channels) are a widely used chan-
nel model for recording systems especially at the first stage of coding research, for
practical purpose, a more realistic Lorentzian channel model with electronic circuitry
noise as the dominant noise is also studied. In this situation, the performance of
the code is not only a subject of code rate or block size, but is also affected by the
normalized areal recording density and the equalized PR target. Several practical
issues are investigated concerning the choice of the PR target, the code rate and the
performance to provide a guideline for the choice of the TPC/SPC code.

The rest of the chapter is organized as follows. The system model is pre-
sented in Section B, where both the ideal PR channel model and the more realistic
Lorentzian channel model are discussed. Section C analyzes the distance spectrum
of the TPC/SPC-coded PR system. Section D calculates the thresholds of both
TPC/SPC, LDPC systems (as well as turbo systems) using density evolution with
Gaussian approximation. Certain interesting issues in the optimization of the decod-
ing process are addressed in Section E. Section F evaluates the performance of both
systems, including bit error rate and bit/byte error statistics on PR channels. Finally,

Section G summarizes the chapter with a discussion of future work in this area.

B. System Model

1. PR Channel Model

In this ideal PR channel model, the channel impulse is modeled as a perfectly equal-

ized partial response polynomial with additive white Gaussian noise. As shown in Fig-
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Fig. 56. System model of LDPC and TPC/SPC codes over PR, channels.

ure 56, in the ideal PR channel model, the data is first encoded using a Reed-Solomon
code, which is referred to as the error correction code or RS-ECC. The output of the
RS-ECC code is encoded using an outer code. We consider TPC/SPC codes, LDPC
codes, and punctured convolutional codes as outer codes. The reason for referring to
these codes as outer codes is that we consider the ISI channel as the inner code in the
concatenated scheme. When TPC/SPC codes or punctured convolutional codes are
considered as the outer codes, the outer codewords are interleaved and then encoded
by a rate-1 recursive precoder before being recorded onto the disk. The random inter-
leaver in the above systems works to break the correlation among neighboring bits, to
eliminate error bursts, and (in conjunction with the precoder) to improve the overall
distance spectrum by mapping low-weight error events to high-weight ones (spectrum
thinning). Since the LDPC codes we investigated are constructed randomly using the
computer (i.e. there is an embedded random interleaver within the code), an explicit
random interleaver is thus not necessary. (Although not shown, simulations show
that adding a random interleaver does not improve the performance of our LDPC

systems.) Further, for LDPC codes which have quite good distance spectrum, no
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effective spectrum thinning results by concatenating a rate-1 inner code. As has been
shown in [74], no precoding represents the best case for LDPC codes. In fact, the
use of precoder results in about 1 dB loss on EPR4 channels with the suboptimal
iterative decoding. The channel is modeled as an ISI channel with AWGN. The im-
pulse response of the ISI channel is assumed to be a partial response polynomial with

additive white Gaussian noise (Figure 56)

TE = Zf;olhixk,i + ng. (5.1)
In this study, we primarily consider the PR4 channel ( channel polynomial H (D) =
1 — D?), EPR4 channel (H(D) = 1+ D — D? — D?*), E?PR4 channel (H(D) =
5+4D—3D?—4D*—2D°) and ME?*PR4 channel (H (D) = 5+4D—3D?—4D3—2D%),
all of which are widely used PR targets for Magnetic recording.

Since an overall maximum likelihood decoding and equalization of the system is
prohibitively complex, the practical, yet effective way, is to use turbo equalization to
iterate soft outputs between the outer decoder and the equalizer, and then feed the
hard decision decoding to the RS-ECC code. Tllustration of message flow is shown in
Figure 57.

A TPC/SPC code, as introduced in Chapter I, is a multi-dimensional turbo
product code whose component codes are single parity check codes. Recall that
magnetic recording systems require a high code rate since for recording systems code
rate loss (in dB) is of the order of 101og;,(R?) rather than 101log;,(R) as in an AWGN
channel [89] (R is the code rate). Hence, we focus on 2-D TPC/SPC codes with code
rate R = (Ko/(Ko+ 1))% As discussed in Chapter I, the encoding operation involves
adding a single-parity check bit in each row and column which eliminate the need
for an explicit storage of the (dense) generator matrix (as opposed to random LDPC

codes) and, hence, is extremely simple. The decoding process of the 2-D TPC/SPC
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Fig. 57. Tlustration of message flow in the iterative decoding of LDPC-coded PR sys-

tem.

is essentially the same as that of LDPC codes except that for LDPC codes all checks
are simultaneously updated, whereas for TPC/SPC codes checks are grouped into
two groups (corresponding to component codes C; and C, respectively, see Figure 5)
and updated in turn (i.e. serially). Table IV compares the complexity of TPC/SPC,
LDPC and MAP decoders implementing the BCJR algorithm in the log domain [26]
(assuming that log(tanh(%)) and its reverse function 2tanh™'(e”) are implemented
through table lookup, and that multiplications are converted to additions in the log-
domain). We can see that the decoding algorithm for a 2-D TPC/SPC code requires
about 2/3 the complexity and about 1/3 the storage space of the decoding algorithm
for a regular column-weight-3 LDPC code in each decoding iteration. The decoding
algorithm for a punctured convolutional code is considerably higher, although the

actual number of iterations needed would be lower.
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Table IV. Decoding complexity of TPC/SPC- and LDPC-coded PR channels (number
of operations per bit per iteration). (d: dimensions of TPC/SPC code. s:
average column weight of LDPC code. m: memory size of the convolutional

code.)

Operations | TPC/SPC | LDPC | MAP for PR channel

addition 3d 4s 15-2m™+9
min/max 5-2m—2
table lookup 2d 2s 5.2m—2

2. Equalized Lorentzian Channel Model

A transition sequence in magnetic recording systems is described by a non-return-to-
zero inverted (NRZI) waveform, where bit “1” corresponds to a transition and “0” no
transition. The response of the head to a transition in magnetization along the track

is modeled as a step function or transition response with a Lorentzian pulse s(t)

B 1
O = TP e

(5.2)

where PWjy is the width of the pulse at 50% of its peak value. Since s(t) is a response

to NRZI dibit, the continuous time channel response is characterized by the dipulse
1
A(t) = ls(t) — s(t — ) (5.3)

where T is the channel bit duration.

The dipulse h(t) has a Fourier transform H(v) with a spectral null at v = 0
and when normalized linear densities D,,,.,, = PWso/T is greater than 2, most of its
spectral energy is within the frequency band [—1/27,1/2T]. This DC-free spectrum
and strong high-frequency attenuation validate the characterization of the channel in

its discrete time domain by sampling every T' seconds, ie: hy = h(kT).
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Fig. 58. System model for magnetic recording channels. (A) Ideal partial response

channels. (B) PR-equalized Lorentzian channels.

We consider electronic noise caused by the head circuitry in our system (denoted
by n. in Figure 58), which is modeled as white Gaussian noise with uniform two-sided
spectral density Ny/2. The read-back data is therefore a sampled sequence from a

linear dispersive channel with additive white Gaussian noise

r(t) = (Z si - ps(t — z’T)) « h(t) + ne(t), (5.4)
2

where s; denotes the binary input, p,(t) the write current pulse, n.(¢) the electronic

noise, and * denotes the convolution operation.

An optimal receiver would consist of a whitened matched filter followed by a
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Viterbi detector performing maximum-likelihood sequence estimation on the inter-
symbol interference trellis. For channels with long impulse responses, the complexity
of such receivers becomes formidable and thus leads to the development of suboptimal
receivers with substantially lower complexity.

As a practical treatment in the magnetic recording systems, a linear equalizer,
which is a finite impulse response filter, is adopted to first shape the channel response
to a desired target of acceptably short duration and with amplitude-frequency char-
acteristics closely matched to those of the channel. A Viterbi detector with greatly
reduced states is then applied to decode ISI. Reasonable PR targets take the form
of H(D) = (1-D)P(D), where P(D) =1+ pD + psD* + --- + p, D*. Although
it is expected that a generalized PR monic polynomial with real coefficients has a
more accurate match of the recording channel with less noise enhancement, in the
correlative coding literature, the coefficients are usually restricted to integer values
with a greatest common divisor equal to one. Some popular targets are the partial
response class IV family of the form H(D) = (1 — D)(1 — D)X, where L = 1 is called
PR4, L = 2 EPR4, L = 3 E?PR4, etc.

In this work, we adopt an adaptive FIR with blind start up using least means
square (LMS) training as the front-end equalizer to shape the channel. When the
read-back sequence sampled every T seconds, r, = r(kT'), is passed through this FIR
equalizer, correlation is introduced and the white electronic noise becomes colored.
Since the number of the coefficients is limited and the training sequence is also limited,
the output channel response shaped by this FIR equalizer is not perfectly matched
to the PR targets as in the ideal model, but this more realistic model allows us to
capture the effect of recording density dependencies, imperfect channel shaping as
well as noise coloring.

Although the successful introduction of the Viterbi algorithm for decoding ISI
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(i.e. PRML), among other factors, has led to great improvements in areal density
for the past decades, the current trend towards a further increase in storage densities
and reliabilities indicates an insufficiency of the use of PRML, for its hard outputs
fail to take advantage of the newly advancement in coding techniques such as soft
decoding and iterative approaches. Hence in this study, we use SISO MAP detector
implementing BCJR algorithm instead of Viterbi detector to decode the inter-symbol
interference. The MAP decoder is designed to match to the ideal channel PR target
as in the previous model, which will enable soft information to iterate between the
channel decoder and the outer TPC/SPC decoder.

Here are a few comments on this model: (1) In our systems, we do not take into
account the material dependent media noise, interference from adjacent tracks, off-
tack head registration and other non-linear factors. We consider only the electronic
noise, which is dominant in magnetic recoding systems; (2) In a practical system,
modulation constraints should be complied to ensure the sequence of bits recorded
satisfies certain restrictions for the purpose of timing recovery and synchronization.
This is usually done by a run-length limit code. Due to the SISO decoding feature
and the random interleaver in between, the conventional constraint coding structure,
in particular, the interface between the RLL code and the error correction code, is not
immediately applicable. This paper will not address modulation constraints, rather,
readers are directed to [96] [97] and the references therein, where new system configu-
rations are proposed for coping with the interleaved serial concatenated architecture.

In summary, with this Lorentzian channel model, we will investigate the per-
formance of TPC/SPC codes where LMS FIR equalization and iterative decoding of
code and channel are employed. Such factors as the channel recording density effects,
the FIR equalizer length effects, the equalized PR target pattern, and the noise col-

oring caused by the equalizer are to be evaluated. For a comprehensive performance
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evaluation, not only the bit error rate, but the bit/byte error statistics will be exam-
ined to assess the overall error rate (or block failure rate) after the functioning of the

out-most RS-ECC code (RS-ECC is not shown in the system model).

C. Analysis of Distance Spectrum

The minimum distance of a randomly-constructed regular LDPC code with column
weight 7 > 3, depends on the actual construction and is hard to determine, but with
high probability increases linearly with block length N, especially for large N. Hence
it possesses good error detection capability and the decoding algorithm rarely con-
verges to a wrong codeword. On the other hand, the distance spectrum of a TPC/SPC
code is characterizable (see (2.1) in Chapter II). Since a 2-D TPC/SPC code has
many codeword pairs that have minimum distance of 4, it therefore encounters many
undetectable errors. In particular, all rectangular error patterns are undetectable.
Therefore, TPC/SPC codes by themselves are quite weak in error correction capabil-
ity, compared to LDPC codes of the same rate. To enhance the performance, instead
of increasing the dimensionality and/or adding more parities [45] which will incur
undesirable rate loss, we group P TPC/SPC codewords together and interleave them
before encoding by the precoder. Recall that this is the same philosophy that leads
to the invention of product accumulate codes (see Chapter II). As expected, this will
lead to significant improvement in distance spectrum and performance without sac-
rificing code rate. The spectrum analysis of such a system! has much similarity with
that of the PA codes. However, since an ISI channel is real-valued output and since

different input sequences result in different output Euclidean distance spaces (i.e. the

1As a clarification of our notation, we use “TPC/SPC codes” to mean plain
TPC/SPC codes (w.r.t. AWGN channels), and use “TPC/SPC systems” to mean
the combination of TPC/SPC codes and PR channels (which forms a serial concate-
nated code). Similar terms are used for “LDPC codes” and “LDPC systems”.
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all-zero sequence cannot be used as a reference for ISI channels), the evaluation of its
distance spectrum is nevertheless worth a separate discussion.

Below we compute the distance spectrum of a TPC/SPC system with a precoded
PR4 channel using the ideas in [25] [98] [99]. Since the precoder is a rate-1 recursive
convolutional code, the combination of the ISI channel and the precoder is a recursive
ISI channel. One approach is to consider the overall system as the concatenation
of the outer code and the precoded ISI channel (which acts as a recursive inner
code). Then, we can compute the distance spectrum of such a system over the
ensemble of all possible interleavers such as in [25] [98]. We show that caution should
be exercised in extrapolating the results of Benedetto et al., since the results are
somewhat unexpected. Hence, it is worth pursuing this exercise.

Let N denote the length of each codeword (effective block size) formed by group-
ing P TPC/SPC codewords of length (N/P) = (K, + 1)® each and interleaving
them. This length-/N codeword is then passed through a precoded PR channel. Each
TPC/SPC code has \/N/P rows and columns. Let A¢ denote the number of outer
codewords (TPC/SPC) of output Hamming weight [, and Aj ; denote the number of
inner codewords (precoded PR channel) of input Hamming weight [ and output Eu-
clidean weight dg. Assuming a uniform interleaver, the average number of codewords
of Euclidean weight dg, Aj_, over the ensemble of interleavers is

Ao = Z

o )
-
>4, 1 even (l )

(5.5)

The lower limit for the sum is [ = 4 because the minimum distance of the TPC/SPC

code is 4 and only even terms are considered since all codewords of the TPC/SPC are
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trellis error state diagram
state @ 0/0 XD4 XD*
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o @
state 1/2(1+le)

Fig. 59. Equivalent trellis for even/odd bits of precoded PR4 channels (ggz)

of even weight. The average word error rate is upper-bounded by the union bound

Po< a0 (5), 5.6
dp

2 is the variance of the noise. To argue that TPC/SPC codes are capable

where o
of interleaving gain on precoded PR channels, we need to show that Aj  for small
dp decreases with an increase in interleaver size, which in turn provides a reduction
in error rate. Since a precoded PR channel is in general non-linear, the all-zeros
codeword cannot be treated as the reference codeword. However, a full accounting
of error events pertaining to Af’ 4 18 prohibitively complex for an exact analysis. To
simplify this, Oberg and Siegel have made the assumption that the input to the
precoded channel is an i.i.d. (independent and identically distributed) sequence [98].
This assumption makes it easier to compute the transfer function of the precoded
channel, since an i.i.d. sequence of zeros and ones can be treated as the reference
sequence. In the following, we use this assumption to analyze the distance spectrum
of the combination of the TPC/SPC outer code and the precoded channel.

Let us consider a precoded PR4 channel as an example. The equivalent trellis

1-D?
1¢ D2

corresponding to odd/even bits of the precoded PR4 channel ( ) is shown in

Figure 59. Following similar derivations as in [99], the average error enumerating



164

function, where the average is taken over all possible input sequences, is given by

28
T(X,D) = 1_5212016)’ (5.7)
= X2D8[1+%(1+D16)+---+2ik(1+D16)’“+---}, (5.8)
= XQDS[(1+1+i+---)+D16(1+3+3+---)+O(D32)], (5.9)
2 22 222 23
= X’D*[2+2D" + O(D™)]. (5.10)

where the exponent of X is the input Hamming weight of the error sequence, and the
exponent of D is the output squared Euclidean distance of the error sequence. The
fractional terms in the branch weight enumerator such as 1/2(14 D) (Figure 59) are
a direct consequence of the assumption that the input corresponding to that branch
can be a 0 or 1 with equal probability 1/2 [99].

For the precoded PR4 channel, the independent (i.e., unconcatenated) input
error sequence always has input weight 2. This can be seen from the transfer function
since every term corresponds to X?2. Specifically, all input error sequences of the
form 1+ D?% result in an error event. The minimum Euclidean distance over all such
error events occurs when j = 1 and the minimum Euclidean distance is 8 (assuming
i.i.d inputs). Every finite weight codeword is the concatenation of k weight-2 input
error events for some k. For large N, let T (X?*, D) denote the truncated weight
enumerator truncated to length N, where each error event is the result of & input

error sequences each of weight-2. Then,
2k N 2k 18k 16 32\1k
Tn(X?, D) o h X?*D® [2+ 2D + O(D™)]", (5.11)

since there are approximately (]Z ) ways to arrange k error events in a block of length
N. For the least non-zero [ in the TPC/SPC system, namely | = 4 (i.e., Kk = 2 in
(5.11)), we see that Aj_, , _, ~4(}), and A7_, ~ P[(V ];/P)]Q, (there are [(V ];/P)P
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ways in which we can arrange a block of weight 4 within a TPC/SPC and there are
P blocks in a codeword of length N.) Substituting them into (5.5) and using the
approximation (]Z) ~ N™/n! for large N, we have

N2 A2

AG PT x P71 (5.12)

It should be observed from (5.12) that the reduction in word error rate is pro-
portional to the number of blocks P of the TPC/SPC that form a codeword, rather
than N, as would be expected from Benedetto et al.’s analysis [25]. This is especially
important for finite block lengths, since this means that an interleaving gain is limited
to the number of codewords of the outer code that are concatenated. Although we
have only discussed the error event corresponding to the least non-zero [ (i.e., [ = 4),
it can be shown that for other values of small [, similar arguments hold. Similar
results can be shown for EPR4 or other ISI channels also. To handle ISI channels
with more number of states, it is convenient to consider the precoder separately from
the channel. That is, we treat the concatenation of the TPC/SPC and the precoder
as a code whose codewords are passed through the ISI channel. Since the interleaving
gain is dependent only on the recursive nature of the inner code, an interleaving gain
will result regardless of the type of IST channel. This idea will be further addressed
later for the optimization of TPC/SPC systems.

It is important to note that the fact that the least non-zero [ is 4 (i.e., dypin =4
for the outer code) is crucial to the result in (5.12). It is shown by Benedetto et
al. [25] that the outer code should have a d,,;, of at least 3 in order to obtain an
interleaving gain in the word error rate. The key advantage of TPC/SPC codes is
that for any rate and any codeword length, d,., = 4, which enables an interleaving
gain. On the contrary, for punctured convolutional codes of high rate (0.9 or higher,

such as what is of interest), the constraint length of the code must be very large to
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obtain a minimum distance of 3 or higher. For example, even a 16-state punctured
convolutional code with generator polynomials (31, 33)g of rate 0.9 has a d,;,, of only
2. The obvious disadvantage is that the decoding complexity increases exponentially
with the constraint length. Therefore, TPC/SPC codes are a computationally efficient
choice for constructing a good class of high-rate outer codes which guarantee an

interleaving gain.

D. Threshold Analysis Using Density Evolution

1. Introduction to Density Evolution and Gaussian Approximation

Although distance spectrum analysis shows that TPC/SPC codes concatenated with
precoded ISI channels possess good distance spectra, the analysis is useful only if
a maximum likelihood decoder is used. For the analysis to be more precise and
convincing, we extend density evolution to compute the thresholds of the coded- PR
systems. The idea of general method of density evolution was discussed in Chapter
IT as well as in [14] [12] [40] [32] [42] [11]. Here, we go through the critical points
in the application of density evolution to TPC/SPC and LDPC systems [42]. For
comparison purposes, we extend it to include serial turbo systems (with punctured

convolutional codes) also.

2. Problem Formulation

The systems under investigation have a unified architecture in that the (precoded) PR
channel is modeled as an inner rate-1 convolutional code, with the outer code being
an LDPC code, a TPC/SPC code or a (punctured) convolutional code. A turbo
equalizer is used to iterate messages between the inner and outer decoders. During

the gy, iteration, the outer decoder generates extrinsic information on the j;, coded bit
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a;, denoted by qu)(aj), and passes it to the inner decoder. The inner MAP decoder

then uses this extrinsic information (treated as a priori) with the received signal and

(¢+1)

(a;). The extrinsic information LSQ)(aj) is a

random variable and, for an infinite block size, the random variables L5 (a;) are i.i.d.

generates extrinsic information, L

Vj. The idea in density evolution is to examine the probability density function of
L (a;) during the gy, iteration, denoted by f; @ (), and to compute the threshold

such that

0
n = é]I\lﬂf% {SNR: lim lim / Jr,@(@|yn,SNR)) — 0 }, (5.13)

q—o00 N—o0o

where yy denotes the observed sequence of length N, superscript (¢) denotes the gy,
iteration, and subscripts ¢ and o denote quantities pertaining to the inner and outer
code, respectively.

Since it is quite difficult to analytically evaluate ngn (x) for all g, we simplify
the computation by approximating f L) (x) to be Gaussian of mean m? and variance
2m§f”. Under i.i.d. and Gaussian assumptions, the mean of the messages, mﬁﬂ) then

serves as the sufficient statistic of the message density. The problem thus reduces to

n = é}l\lﬂf{ {SNR: lim lim m — oo} (5.14)

q—00 N—o00 o

3. Message Flow Within the Channel MAP Decoder

To evaluate the concatenated systems using density evolution, we need to examine

the message flow within the outer decoder, the inner decoder as well as in between the

(9) ()

two. Specifically, we need to evaluate m,~ as a function of m;” and vice-versa. For

(¢+1)

the inner MAP decoder (equalizer), since it is not straight-forward to derive m

)

as a function of my , Monte Carlo simulations are used to simulate the behavior of
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(g+1

the MAP decoder and determine a relationship between m; ) and mgq), denoted by

T = 4, (m). (5.15)

(g+1)

i

is evaluated at the output of the inner MAP decoder

given the input a prioriinformation isi.i.d. and Gaussian with mean mi? and variance

The mean of the message m

5‘”. Since ISI channels are generally non-linear, the input sequence is not assumed

2m
to be all zeros, rather a sequence of i.i.d. bits. Detailed description and figures of

Monte Carlo simulation technique for computing 7; can be found in [74].

4. Message Flow Within the Outer Code

This section describes how to compute m{? as a function of mgq) for different outer

codes.

a. LDPC Codes

The LDPC decoder itself is an iterative decoder which uses L iterations to update
extrinsic information passed between bits and checks. Since turbo equalization is also
an iterative process, we use superscript (¢) and (I) to denote quantities during the
¢, iteration of turbo equalization (outer loop) and Iy, iteration within the LDPC
decoder (local loop). Let £(by) and &(c;) denote the set of all checks connected to
bit by, and the set of all bits connected to check c¢;, respectively, in the LDPC code.
Assuming regular LDPC codes with |£(by)| = ¢, Vk, and |E(c;)| = s, Vj, we have
a code rate R = 1 —t/s. Message flow on the code graph is a two-way procedure,
namely, bit updates and check updates, which correspond to the summation in the
real domain and the so-called check-sum operation or tanh rule [32] [40], [42]. After
L local iterations of message exchange, the message passed over to the inner MAP

decoder is the LLR of the bit in the L, iteration after subtracting LZ(Q) which was
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obtained from the inner code and was used as a prior: information.

Under the Gaussian assumption, we are interested in tracking the means of Ll()q’l)

(2:0) (¢:0)

and LY given by m,”" and m¢", respectively. Treating extrinsic information as

independent, the means of the extrinsic information at each iteration can be shown

to be [32]
bit-to-check: m{® =md + (s — 1) - m@'™, (5.16)
check-to-bit:  m{ = ( m{ ) t 1), (5.17)
LDPC-to-MAP: m(()q =5 -m@P), (5.18)

where 1)(z) is the expected value of tanh(%), and u follows a Gaussian distribution

with mean x and variance 2z. () is given by

1)

\/ﬁ S5 tanh(%)e™ 3
0, = 0.

() = (5.19)

Function ¥ (z) is continuous and monotonically increasing on [0, co) with 1(0) = 0 and
¥(c0) = 1. The initial condition is méq’o) = m®” = 0. When z is large (corresponding
to low error probability), (1—1(z)) is shown to be proportional to the error probability
[32]. The above derivation is essentially an extension of Chung et al's work [32]
to the case of turbo equalization. For more detailed and thorough understanding,
readers are directed to [14] [12] [40] [32] [11] and the references therein. For the turbo
equalization case, after ¢ (big) iterations between the outer and inner decoder (where

each big iteration includes L local iterations within the LDPC decoder), the capacity

is evaluated as

NLppPc = é}%}f% {SNR : lim s - mgq’L) — oo} ) (5.20)

q—00

It is instructive to note that L is to be carefully chosen, since it affects the capacity
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of the resulting code?. Of particular practical interest is to find the best trade-
off between the resulting threshold and complexity, as will be addressed in a later

section.

b. TPC/SPC Codes

Although a TPC/SPC code can be viewed as a special type of LDPC code, the DE
procedure cannot be applied directly. This is because density evolution assumes that
there are no cycles in the code graph. For TPC/SPC codes, even as the length of the
code becomes very large, there are always cycles of length 4(k + 1), where k is any
integer. As mentioned before, this is due to the fact that a rectangular error pattern
always results in a loop of length 8. Consequently, the assumption that messages
being passed within the code are independent (loop-free operation) is no longer valid.

For this reason, we propose and discuss a slightly modified procedure. If the num-
ber of local iterations within the TPC/SPC code is restricted to be small, then, the
density evolution method would have operated on cycle-free subgraphs of TPC/SPC
codes. Put another way, the messages exchanged within TPC/SPC codes along each
step are statistically independent as long as the cycles have not “closed”. Here, we
restrict the number of local iterations within TPC/SPC codes to be one row up-
date and one column update. Any more updates in either direction will either pass
information to its source or pass duplicate information to the same node, which is
unacceptable. On the other side, due to the (perfect) random interleaver, infinite
number of turbo iterations can be performed between the inner and outer decoders
if the messages within the outer TPC/SPC code are reset to zero in every new turbo

iteration. In order to improve the convergence of the decoding algorithm, we consider

2The decoding strategy is considered part of the “code”, since different decoding
parameters lead to varying performance.
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Table V. Summary of density evolution procedure for (conventional) TPC/SPC codes
(upper bound).

Initialization:

Density Evolution:

forg=1,2,---
compute mgq) = (T, m(q—l));
mﬁ? =05

row-wise: bit to check: ml(;f) = mEQ);
check to bit: mg‘f) = [Q/J(mz(;?))]m%
col-wise:  bit to check: ml()z) = m{® +m?;
check to bit: m'? = i W(mz(,z))]KZ);
m{ = m'? + m,

end;

Target:

nrpc/spc = infgvg {SNR @ limg_ m(()‘l) ~ ool

= infgyp {SNR : lim,_, mgf) + mﬁZ) — 00}

a serial update - that is, the row update and the column update are not performed
simultaneously. Rather, the row update is performed first and the extrinsic informa-
tion from the row checks is passed to bits and later used in the column updates. The
resulting procedure to compute the densities can then be summarized as in Table V.

For an exact threshold, the density evolution procedure should, in addition to
avoiding looping messages, also ensure completeness in the sense that every bit should

have utilized all the messages (through dependencies) from all the checks. The pro-
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cedure discussed in the previous paragraph and tabulated in Table V., although stem-
ming naturally from the decoding procedure, is unfortunately not complete. This is
because only one row update followed by one column update is performed, which is
not sufficient to exploit the information from all the checks [40]. Hence, the resulting

threshold is an upper bound?.

c. Serial Turbo Systems

In the serial turbo system, the outer code is a punctured convolutional code with

a moderate constraint length. Treating it much the same way we treat the inner

convolutional code (the PR channel), a MAP decoder implementing the BCJR algo-

rithm is used and the same Monte Carlo method is adopted to track the mean of the
(@)

extrinsic information (of the outer code), my", during the g, iteration. The capacity

is computed using

Mueriat = inf {SNR: lim m{@ — oo}. (5.21)

q—00
5. Thresholds

The upper bound on the threshold for TPC/SPC codes, and the thresholds for LDPC
codes and punctured convolutional codes are shown in Figure 60 for PR4 and EPR4
channels. We consider regular LDPC codes with column weight 3, since regular LDPC
codes have slight advantage over irregular LDPC codes for short block sizes and high

rates as in data storage applications [35]. It can be seen that the upper bound for

TPC/SPC codes is about 0.5 dB away from that of LDPC codes for a code rate of

3By upper bound, we mean that the exact thresholds of TPC/SPC system should
be better than this. In other words, for a given dB, the achievable code rate (band-
width efficiency) could be higher, or equivalently, for a given rate, the required SNR
could be smaller.
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Fig. 60. Thresholds of TPC/SPC, LDPC and serial turbo systems over ideal PR chan-
nels. (The outer code in the serial turbo system is a systematic recursive con-
volutional code with generating polynomial (31, 33),., and the LDPC code is

regular with column weight 3.)

0.94. This shows that the performance of TPC/SPC is expected to be within a few
tenths of a dB from that of LDPC codes. Further, the thresholds for LDPC codes are
comparable to those of a serial concatenated code with a 16-state convolutional code.
Since the decoding complexity of LDPC codes and TPC/SPC codes is significantly
lower than that of 16-state convolutional codes for high rates, there seems to be little
advantage in using punctured convolutional codes.

Also presented are the corresponding simulation results that are evaluated at a
BER of 107°, with block size of 4K user data bits. It can be seen that for practical
block sizes the performance of TPC/SPC codes is actually slightly better than that
of LDPC codes for EPR4 channels and is comparable to that of LDPC codes for
PR4 channels. Due to the finite block size, the simulations are around 0.5 to 1 dB

away from the bounds. Nevertheless, this presents a reasonable match and indicates
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density evolution as a useful tool in the threshold analysis of LDPC codes, TPC/SPC

codes and serial concatenated codes for PR channels.

E. Optimization of Decoding Process

1. LDPC Systems

Each turbo iteration (outer loop) involves a pass of forward-backward decoding of the
inner MAP decoder (BCJR algorithm) followed by L rounds of bit-check/check-bit
updates (small loop) of the LDPC decoder. As mentioned above, with the assumption
of an infinite block size and a perfect random interleaver, the girth (shortest cycles)
of a LDPC code is unbounded, and thus L can be infinitely large. Perceivably, the
resulting thresholds are non-decreasing with L, but overly large L is computationally
inefficient. Hence it would be of practical interest to investigate how the value of L
affects performance, and in particular, to find an optimal balancing point where best
performance is achieved at the least decoding complexity. This can be done by calcu-
lating the thresholds of LDPC systems using density evolution with different values
for L. We examined a rate-16/17 and a rate-8/9 regular LDPC code (column weight
3) over PR4 and EPR4 channels respectively. As shown in Figure 61, increasing L
beyond a point brings only marginal improvement in the thresholds. Further, it is
interesting to observe that the optimal value of L is slightly different with different
channel coefficients. Whereas L = 4 or 5 seems a good trade-off on EPR4 channels,
L = 7 to 8 seems better for PR4 channels. Extensive simulation experiments show
that somewhere around 5 to 8 seems a good choice for L, corroborating this result.
It is also worth mentioning that the above results are for the LDPC code ensemble
where the column weights are uniformly 3 and the row weights follow the concentra-

tion rule (as uniform as possible). The optimal value of L might differ slightly for
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Fig. 61. Thresholds vs L in LDPC systems.

different designs of LDPC codes, but the difference should be small. Further, for a

fixed complexity, the value of L may be lower than the ones reported (which is for

unconstrained complexity).

2. TPC/SPC Systems

Most work on turbo equalization of partial response channels treats the combination
of the precoder and the ISI channel as the inner code [90][91] [92] [27] [94]. Therefore,
each iteration in the turbo equalization process involves decoding of the outer code
followed by a BCJR decoder for the precoded channel. Since most of the complexity
comes from the inner MAP decoder (Table 1V), it is desirable to reduce the number
of iterations ¢ involving the MAP decoder and, hence, to devise a decoding strategy

which minimizes ¢ with a fairly small sacrifice in performance. This is of particular in-
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terest to high-density recording systems where the appropriate PR targets correspond
to 8-state (like EPR4) or even 16-state trellis (like E2PR4 or ME2PR4).

Although it is important to exploit the memory in the ISI channel and the re-
cursiveness introduced by the precoder, the interleaving gain is dependent only on
the recursiveness of the inner code. With this observation, we propose an efficient
and effective modified receiver structure where the combination of precoder and the
TPC/SPC code is considered as an outer code and the non-precoded PR channel is
the inner code. As such, MAP equalization need not be performed at every iteration
stage. Rather, it can be done after every s iterations between the TPC/SPC code
and the precoder, as illustrated in Figure 62. The key advantage here is that the
precoder is often of the form 1/(1@® D) or 1/(1 @ D?), which can be represented by
a 2-state trellis rather than an 8- or 16-state trellis for an EPR4 or E?PR4 channel
and therefore saving considerable complexity without sacrifice in performance. The
complexity can be further reduced by using the sum-product algorithm on the graph
of the precoder [24] [54]. When the precoder is of the form 1/(1@& D™) (m an integer),
its corresponding code graph alone has no cycles and therefore sum-product decoding
is optimal. In particular, using the tanh implementation of the sum-product algo-
rithm results in approximately 1/5 the complexity of a conventional 2-state BCJR
algorithm for the precoder 1/(1 @ D™) (altogether 5 additions and 5 lookups per
encoded bit) [24] [54].

Given this set up, we now address two important questions in a practical imple-

mentation:

1. Given an overall allowable complexity, what are the optimum values of s (the
number of local iterations in TPC/SPC decoder) and ¢ (the number of turbo

iterations between the channel and the outer code)?
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2. What is the trade-off in performance vs overall complexity, given that we can

optimize the performance by answering question 1.

We answer these questions using density evolution with some modifications. For
a given ¢ and s, let A(q, s) denote the overall complexity, including additions, max
operations and lookups (see Table IV). Since we are interested in finite complexity
and, hence, finite number of iterations, we first reformulate the thresholds as the SNR
for which the mean reaches a threshold (Mresn) (a positive number serving as the

practical infinite point). For a given ¢ and s, the new threshold is thus given by
.s) = inf {SNR:m9 > pn, .1} 22
1(¢,5) = inf {SNR :mg" > tunresn } (5.22)

When the value of nyeqp is set large enough, the difference from the actual threshold
will be negligible. For a given overall complexity A, different values of ¢ and s will
produce different thresholds and we are interested in the best (least) value 1*(Ay)

given by

n"(Ag) = rl;}sn{n(q, s): Alg,s) < Ao} (5.23)



178

The cost function A(q,s) depends on the outer code, the actual channel and the

precoder. For a TPC/SPC code on an EPR4 channel, we have (see Table IV)
A(g,s) = ((10 + 10) s + 25 - 2° +5) ¢ = (20 s + 205) ¢, (5.24)

where 205 is the number of operations per encoded bit for a BCJR decoding of the
8-state EPR4 channel, and 20 is the number of operations per encoded bit for one
small iteration between the TPC/SPC code and the precoder.

Figure 63 shows a plot of n*(Ag) versus A for various values of s for a rate 0.94
TPC/SPC code over EPR4 channels, where 7,5, = 30. Obvious from the figure is
that, for a given Ay, the value of s has a significant impact on the resulting thresholds.
Also seen from the figure is that setting s around 3 optimizes the thresholds and
complexity consistently and, hence, is a good choice. This means that the equalization
procedure (with respect to the channel MAP) is used only once every 3 iterations and,
hence, results in complexity savings. It is interesting to note that the performance of
s = 40 is quite poor. That is, for a fixed complexity, if s is increased beyond 5, due
to the few stages of turbo equalization that are possible, the resulting thresholds are
weak. Depending on the exact complexity A that can be allowed, the procedure can

be repeated over that range to optimize s and g¢.

F. Simulation Results

1. Simulation Parameters

To be applicable to present day data storage systems, the 2-D TPC/SPC codes we
investigated have rate 0.89 and rate 0.94 which are formed from (17,16) and (33,32)
TPC codes, respectively. We combine sixteen (17,16)? TPC/SPC codewords and four

(33,32)%2 TPC/SPC codewords respectively to form an effective data block size of 4K
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Fig. 63. Optimization of TPC/SPC systems.

bits. The channel models we test are PR4 and EPR4 magnetic recording channels.
For comparison purposes, also presented are the results of a rate 8/9 = 0.89 and
16/17 = 0.94 regular LDPC codes with column weight 3 and data block size 4K. It
should be noted here that irregular LDPC codes of such high rates have been seen
to perform slightly worse than regular codes [35] and, hence, this represents the best
case for LDPC codes.

Being aware of the high data-rate and low cost required by data storage sys-
tems, complexity and latency is to be carefully watched for. At the current stage of
commercial hardware implementation, more than 10 turbo iterations are considered
intolerably slow and therefore impractical. Hence, unless otherwise stated, perfor-
mance curves presented employ no more than 3-8 iterations. In each iteration, the
turbo equalization procedure includes a forward-backward process in the channel

MAP decoder followed by 2 rounds of bit-check updates in the outer TPC/SPC de-
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coder or 4 rounds of bit-check updates in the outer LDPC decoder. Although this
leads to a decoding complexity of LDPC codes a bit higher than TPC/SPC codes, it
is a good compromise of complexity and performance for both codes.

For a fair comparison of the various schemes at different rates and normalized
linear densities D,,yq, adjustment of the normalized density for the rate loss is needed.

In other words, the physical recording density for a rate-R code is Dyser = Dyporm/ R.

2. SNR definition

For the ideal PR channels with additive while Gaussian noise, we define the signal to

noise ratio as

E E,
SNR =10 log,, (Fb) =10 - logy, (W) : (5.25)

where E; is the symbol energy, 02 = N0/2 is the noise variance, and R is the code
rate.

For the equalized Lorentzian channel model, we define SNR as
S

where S and N are the mean-square signal and noise values measured at the input

to the equalizer, respectively.

3. Results on PR Channels

Figure 64 shows the BER performance of LDPC codes and TPC/SPC codes over PR4
and EPR4 channels. It can be seen that gains of 4.4 to 5 dB over uncoded partial
response maximum likelihood systems are obtained for TPC/SPC codes at a BER of
1075, comparable to those of LDPC codes. All TPC/SPC codes are precoded with
1/(1 & D?) which is the best for PR4/EPR4 channels, as shown analytically in [74]
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Fig. 64. Performance of high-rate TPC/SPC codes and LDPC codes over ideal PR4
and EPR4 channels.
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and as shown empirically in Figure 65. LDPC codes are not precoded, for, as shown
in [74], their performances are better without precoding. We have confirmed this
through simulations also. Hence, the comparison is fair as it represents the best cases
for both codes.

Although both TPC/SPC and LDPC codes seem to offer significant coding gains
when the average BER is of the order of 1077, it is still unclear whether LDPC codes
and TPC/SPC codes may suffer from an error floor. Therefore, the conventional use
of RS-ECC is still necessary to reduce the BER to 107!° as is targeted for recording
systems. The RS-ECC code works on the byte level, capable of correcting up to ¢
byte errors in each data block of size 4K bits or 512 bytes (¢ is usually around 10
to 20). Hence, the maximum number of uncorrected errors left over in each block
after TPC/SPC or LDPC decoding has to be relatively small to guarantee the proper
functioning of the RS-ECC code. In other words, block error statistics are crucial
and closely relate to the overall system performance. Unfortunately, this has been
largely neglected in most of the previous work.

Figure 66 and Figure 67 plot the histograms of the number of bit/byte errors
for an effective block size 4K, rate 0.94 LDPC code and TPC/SPC code over EPR4
channels, respectively. The left column plots bit error histograms and the right byte
error histograms. The statistics are collected over more than 100,000 blocks of data
size 4K bits. At an SNR of 6.5 dB and after the 10y, iteration (outer loop), the
maximum number of symbol errors observed in a single block is less than 10 for
TPC/SPC codes (which would be corrected by the RS-ECC code), but around 50
for LDPC codes. We attribute this to the fact that TPC/SPC codes have quite
small minimum distance. It is perceived that when an error occurs, the decoder is
mostly likely to decode it to its nearest neighbor which fortunately is not different

in too many bit positions. If further iterations are allowed, error bursts in LDPC
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codes are alleviated. Nevertheless a block containing 25 symbol errors is observed

after 15 turbo iterations and this may still cause the RS-ECC code to fail. Unless a

more powerful RS-ECC is employed, LDPC codes are prone to block failure, where

all data in that block are presumed lost. It should be noted that although what we

have observed suggests that TPC/SPC codes may be more compatible with magnetic

recording systems than LDPC codes, the statistics are nonetheless insufficient. Due

to the random interleaver as well as the suboptimal iterative decoding, hardware tests

may still be needed before a convincing argument can be made.
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Fig. 67. Error statistics of TPC/SPC codes over EPR4 channels. (Code rate R = 0.94,

E,/Ny = 6.5 dB, collected over 165,000 blocks.)

4. Results on PR-Equalized Lorentzian Channels

Figure 68 plots the simulation results of rate-0.94 TPC/SPC codes over EPR4-

equalized Lorentzian channels at several normalized densities from low to high.

To examine the trade-off between code rate loss and coding gain, we compare a

rate-0.89 and rate-0.94 TPC/SPC codes at several normalized densities over a EPR4-

equalized Lorentzian channel. Note for a given normalized density in a given channel,

lower rate codes provide more error correction capabilities but encounter more ISI,

whereas higher rate codes are intrinsically weaker but encounter less ISI. Hence a

balance in choosing code rate for different areal densities must be maintained for a

best hit. The curves in Figure 69 clearly indicate that lower rate codes work better

at low densities, while higher rate codes are better at high densities.
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Fig. 68. Performance of TPC/SPC codes over Lorentzian channels. (EPR4 target,
TPC/SPC code rate R = 0.94, 3 turbo equalizations.)

EPR4-Lorentzian, R=.89 vs R=.94

BER

10 12 14 16 18 20 22
Eb/No (dB)
Fig. 69. Code rate loss vs coding gain on PR-equalized Lorentzian channels.

(EPR4-target, TPC/SPC code rate R = 0.89, 0.94, normalized density
D,, = 2.5, 3.0, 3.5, 3 turbo equalizations.)
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equalizations.)

For a given normalized areal density, the BER performance of the code is contin-
gent upon the equalized PR targets among other factors. Research work has indicated
that the conventional PR4 targets (H(D) = 1 — D?) are ineffective in shaping the
channel at high densities, introducing much noise enhancement. Higher order forms,
like EPR4, E?PR4 and ME?PRA4, are proposed as better targets under different con-
ditions. From a more systematic point of view, this optimization problem should not
be limited to searching for the best PR target that will match the recording channel
more accurately with less noise enhancement. Rather, the factors involved should
also include the specific error correction codes, in addition to PR targets and areal
densities. The argument comes from the observation that an error correction code
could be more sensitive to one type of channel than the other. An example of this can

be found in [94], where it is shown that while TPC/SPC codes perform almost the
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same as LDPC codes over PR1 channels, they offer a substantially better performance
over PR2 channels. From this aspect, we investigate the performance of a rate-0.94
TPC/SPC code over different PR targets at different normalized densities. From the
plot (Figure 70), we can see that E?PR4 seems to be a better target than EPR4 for
TPC/SPC codes at normalized densities of D, = 3.0, 3.2, 3.5, and ME?*PR4 seems
to offer even larger gains. The higher the density, the more the gain. However, be
aware that the gains come at the expense of increased complexity. In the E2PR4
and ME?PR4 cases, the channel trellis involves 16 states, doubling that of the EPR4
model.

Error statistics on ideal PR channels have revealed that TPC/SPC codes seem
better in error bursts. To facilitate the understanding of the effect of colored noise
and imperfect channel shaping, error statistics are examined for Lorentzian channels
also. As shown in Figure 71, the same good news prevails. After the 3,4 iteration, no
blocks containing more than 14 symbols* over 100,000 blocks transmitted. Although
not shown, we also examined a E?PR4-equalized Lorentzian channel. A similar phe-
nomenon is observed. This confirms that (1) TPC/SPC codes are quite insensitive
to colored noise (due to the random interleaver) and (2) TPC/SPC codes are able to

work in harmony with the out-most RS-ECC codes, maximizing the overall capacity.

G. Summary

This chapter investigates the potential of applying TPC/SPC codes to magnetic
recording systems, with LDPC codes as a comparison study. The main results from

this chapter can be summarized as follows:

1. In the application of TPC/SPC codes to PR magnetic recording channels, con-

“Here a symbol is equivalent to a byte, which contains 8 consecutive bits.
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Bit and byte error statistics of TPC/SPC code over Lorentzian channels.
(ME?PR4 target, TPC/SPC code rate 0.94, normalized density D,, = 3.0,
SNR=16 dB. The statistics are made from observation of 100,000 blocks,
each of data block size 4K bits. In the plot, “BER” stands for bit error rate,

“SER” stands for symbol/byte error rate and “M,” stands for the maximum

number of errors observed within a block.)
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siderable coding gains can be achieved by combining several blocks of TPC/SPC
together (since interleaving gain is proportional to the number of TPC/SPC
blocks combined in a codeword) and by choosing a proper precoder for the
channel. In particular, gains of more than 4.4 dB over uncoded systems are ob-
served on ideal PR4 and EPR4 channels, revealing a performance comparable
to that of LDPC codes. On Lorentzian channels, it is observed that the gains
seen for the ideal case are reduced somewhat, but they are still substantial, es-
pecially with a more properly equalization target such as E?PR4 and ME2PR4

at high densities.

. While the decoding complexity is slightly smaller than that of LDPC codes,
TPC/SPC codes are linear time encodable. Further, they are well-structured
and do not require large storage for the parity check and generator matrices.
The interleaving pattern should be stored - however, algebraic interleavers which
can be generated “on the fly” can be used which demonstrate reasonably good

“randomness” and which save precious storage in hardware implementation [24]

[53).

. In contrast to LDPC codes whose large error bursts are beyond the capacity of
the outer RS-ECC codes, TPC/SPC codes demonstrate error statistics favorable
to RS-ECC codes, which assures a comnsistent and quality performance of the

whole system.

. Density evolution is an effective tool in the analysis of iterative decoding pro-
cesses by taking into consideration both the code structure and the iterative fea-
ture of the decoding algorithm. Through its use in the calculation of thresholds
for TPC/SPC, LDPC and serial turbo systems, we demonstrate a framework

under which this useful method can be exploited for a variety of concatenated
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systems where iterative approaches are used.

To summarize, our work has indicated TPC/SPC codes as a promising candidate
in the application of future magnetic recording systems. However, further experiments
need to be conducted over more realistic channel models, like Lorentzian channels and,
hopefully, on real data collected in the lab. Other interesting problems include how
to achieve a good compromise among iterations, performance, complexity and delay
in a practical setting, as well as how to incorporate the run-length limit constraint

without affecting much complexity and performance.
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CHAPTER VI

RATE-COMPATIBLE LDPC CODES FOR USE IN HYBRID ARQ SYSTEMS IN
PACKET DATA NETWORKS

A. Introduction

Flexible rate is desired in the design of practical error control systems, especially on
time-varying channels, or in applications where adaptive error correction or unequal
error protection is required (like speech or image compression). Rate-compatible codes
are a family of nested codes where the codeword bits from the higher-rate codes are
embedded in the lower-rate codes and, hence, can be encoded and decoded using a
single encoder/decoder pair. They are of particular interest in packet data systems
that allow for retransmission requests such as automatic repeat request with forward
error correction systems to achieve desired throughput efficiency with a high degree
of flexibility.

Key elements concerning the throughput efficiency of an ARQ/FEC system in-
clude a wise ARQ) strategy and, perhaps more importantly, a powerful rate-compatible
code. Successful attempts in creating rate-compatible codes have used BCH codes
[100], convolutional codes [101] [102] and turbo codes [43] [44] [103] [104]. BCH codes
and convolutional codes are easily implementable but cannot provide near capacity
performance. Turbo codes have demonstrated impressive performance, but their high
decoding complexity results in high cost in a commercial system.

This paper focuses on low density parity check codes [9] [11] [10] [14] which have
been shown to provide performance comparable to turbo codes, yet with less decoding
complexity. In the search for simple constructions of efficient rate compatible LDPC

codes, two approaches are investigated: the conventional technique of puncturing and
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a special approach of extending. Through analysis on code ensemble and asymptotic
performance using density evolution (DE), we show that the efficiency of puncturing
is limited only to high rate range where the amount of puncturing is small. To extend
the dynamic range to low rates, we resort to the technique of extending. We propose
a special code structure where extending is exploited to design efficient RC-LDPC
codes at low rates. Combining both techniques, a systematic model is presented
to construct RC-LDPC codes that are potentially powerful to provide strong error
correction ability and high system throughput at a wide range of code rates.

A few examples of the proposed RC-LDPC codes are presented and their re-
markable performances (through computer simulations) have opened the possibility
for capacity-approaching throughput. A type II hybrid ARQ/FEC system using RC-
LDPC codes is investigated and is shown to achieve throughput at about 1 dB from
the capacity, which is comparable to turbo-ARQ systems in [43] [44], yet with less
decoding complexity.

The rest of the Chapter is organized as follows. Section B analyzes a type II
hybrid LDPC-ARQ system using code combining and packet combining and pinpoints
the importance of a strong FEC code. Section C discusses the construction of efficient
RC-LDPC codes exploiting both puncturing and extending. Simulations are provided

along with some discussion. Section D provides concluding remarks.

B. Hybrid ARQ/FEC Using RC-LDPC Codes

1. ARQ System Using RC-LDPC Codes

A typical ARQ/FEC system uses both error correction codes and error detection codes
(EDC, such as a cyclic redundancy check (CRC)). After the transmitted codeword

is decoded by ECC, it is examined by EDC. If the decoding is deemed in error, a
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negative acknowledgment (NACK) is sent as a retransmission request. When LDPC
codes are used in an ARQ protocol, their strong error detection ability enables them
to act as both error correction and error detection codes. This obviates the need
for another EDC, and thereby reduces the overhead. Whether the error detection
capability of LDPC codes can match that of a CRC is not fully discussed in this
paper, but nevertheless it is assumed that the error detection capability provided by
the LDPC code is sufficient for the application at hand.

The type-II hybrid ARQ/FEC system under investigation exploits the rate com-
patibility of RC-LDPC codes and uses code-combining and packet-combining to max-
imize the throughput efficiency and transmission reliability. A packet is first trans-
mitted using the highest rate code. If it is not deemed correctly decoded, a NACK is
fed-back and a new set of parity bits is provided by the transmitter (i.e. incremental
retransmission). This new set of parity bits, combined with all previous transmis-
sions, is treated as a codeword of a lower rate code in the family (code combining)
which provides stronger error correction capability [105]. This procedure continues,
until all supplemental parity bits are used up, and then the procedure restarts with
another “initial transmission”. When a new copy of the same coded bits (either data
bits or parity bits) are received, old copies are not discarded. Rather, they are all
combined together to facilitate decoding (packet combining). In general, packet com-
bining is done by averaging the soft decision values from the multiple copies, and on
AWGN channels, this is equivalent to maximum-likelihood diversity combining [106].
Specifically for LDPC codes with a soft message-passing decoder, the input message
to the decoder of a bit s; is obtained by Z?Zl 2r /o2 where vV r® o ™ are
the multiple copies received for the same bit s;. The above strategy is optimal for
achieving high throughput either in stop-and-wait ARQ or selective-repeat ARQ sys-

tems, under the assumption that the feedback channel is noiseless, that the buffer
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size is infinite, and that the transmission latency, the feedback channel traffic and the

decoding complexity are not a concern.

2. Throughput Analysis

A standard measure for the efficiency of an ARQ scheme is throughput, which is
defined as the average number of coded and modulated symbols that need to be
transmitted for a single data bit to reach the destination error-free. We define p;,7 =
0,1,---, as the probability that the decoder succeeds after the i, retransmission but
fails at all previous attempts (the initial transmission is considered 0y, retransmission );
K as the number of data bits in a frame/codeword; Nj is the packet size of the initial
transmission; and M;, 7 = 1,2,---, are the packet size of the iy, retransmissions. The

throughput, 7, is then given by

n = Ko/(No + ZpiMi)a (6.1)
i=1
where i1
pi=01-F)) F, i=12---, (6.2)
=0

where Fj is the word/frame error rate after the iy, retransmission. Substituting (6.2)

into (6.1), we have:

71—

U—Ro/(l‘FFoi%(l—E)ZFj), (6.3)

j=1
where Ry = Ky/Ny is the code rate of the initial transmission. It is apparent from
(6.3) that the error rate of the initial transmission, Fj, plays an important role in
the throughput efficiency, since subsequent transmissions occur only when the initial
transmission fails. If the initial word error rate is very small, in particular, if £y — 0,

then the throughput will reach Ry, the highest possible rate in the system. Further,
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M;

observe that the term N

, which represents the granularity of the retransmission, also
has an impact on the throughput. Smaller retransmission size M; means finer ad-
justment, which will improve the throughput efficiency and smoothen the throughput
curve, but may incur more delay and decoding complexity in practical systems.
Since the word error rate, F;, of the FEC code plays the key role in achieving

ARQ throughput efficiency, it is crucial to choose a strong code. The next section

focuses on the construction of good rate-compatible LDPC codes.

C. Constructing RC-LDPC Codes

A regular LDPC code has parameters (N, K, t, s), which denote the codeword length,
data block size, column weight and row weight of the parity check matrix, respectively.
We use a sequential design, the bit filling method, to obtain column-weight-3 regular
LDPC codes as the mother code for the RC-LDPC code family. To ensure decent
performance of the mother code, we have enforced the constraint that the girth (the
length of the shortest cycle in the code graph) be at least 6 in the construction.
We would like to mention that irregular LDPC codes (with nonuniform column/row
weights) have been shown to outperform regular LDPC codes in bit error rate [11] [14],
but the difference is very marginal for short to moderate code lengths (a few hundred
to a few thousand bits). Further, whether they are also better in word error rate
(which is the determining factor of ARQ throughput as shown in (6.3)) is less known
and needs to be bench marked. We note that the word error rate and error detection
capability depend on the minimum distance, d,,, of the code. For regular LDPC
codes with column weight ¢t > 3, the ensemble average minimum distance increases
linearly with code length N [9]. However, this may not be true with irregular LDPC

codes. Since we would like LDPC codes to assume the dual role of error correction
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and error detection, it is thus desirable to start with a regular code that typically has
large minimum distance (recall the number of errors a code can detect is < dypin—1).
Additionally, unlike irregular LDPC codes, regular LDPC codes have uniform row
weights and column weights and, hence, may be exploited for parallelization in the

decoder implementation.

1. Puncturing

Puncturing has been widely used in BCH codes, each of of which is a subcode of
the mother code and each of which is encoded and decoded ‘convolutional codes and
turbo codes to achieve rate flexibility [43]-[104]. It is also applicable to LDPC codes.
Through proper puncturing, a series of higher rate codes are obtained from the low
rate mother code. The encoder generates the full set of parity bits, but some parities
are not transmitted (punctured). The decoder inserts erasures to where parity bits
are punctured and then performs the decoding algorithm as in a non-punctured case.

An LDPC code can be viewed as a parallel concatenation where each row in the
parity check matrix H acts as a simple component code (a parity check). Consider an
(N, K) LDPC code where L (parity) bits/columns are punctured. Those rows/checks
that happen to have “1”s in the positions of the punctured bits are treated as being
erased. To see how puncturing impairs the code performance, we examine the effect of
puncturing on the ensemble of the LDPC codes and study the asymptotic performance

of the punctured codes.

a. Code Ensemble

Consider the ensemble of (N, K, t,s) LDPC codes. Randomly pick a parity check
matrix from the ensemble and puncture L = pN columns, where p = L/N is defined

as the puncturing rate. Assuming all rows are independent, the average portion of
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rows being affected by at least one erasure, A;(p), and by multiple (two or more)

erasures, \o(p), are given by

M(p) = 1_((;))7 (6.4)
N b Ry o=l -

(%)
We observe that large value of Ay(p) has a destructive affect on the decoder perfor-
mance. To see this, we need to get back to the message-passing decoding algorithm
of LDPC codes [10]. Suppose bits ji, jo, -, Js participate in check j, the extrinsic
information of bit ji, (in log likelihood ratio or LLR form), denoted as L. ;, (z), to be

obtained from check j is given by

s

Le,jk('r) = E Lji(x)’ k= 12* s Sy (66)
i=1,i2k

where Lj,(z) denotes the LLR message content of bit j;, and operation B is defined
as v = a BB =log((1+e“e”)/(e* + €”)). An erasure in position j; means its initial
message content is 0, i.e. Lj(z) = 0. When multiple erasures present in one check,
at least one term on the right hand side of (6.6) is 0. Since a B0 = 0, this leads to
L. (z) =0,Vke{1,2,--- ,w}. Inother words, no information is exchanged/obtained
from this row/check. When the percentage of such rows is large, message exchange
becomes quite inefficient and ineffective. Through simulations, we observe that, in
such cases, the decoding algorithm may get stuck in a “zero-trapping” state, leading
to poor performance.

Solid lines and dashed lines in Figure 72 plot Ai(p) and Aa(p) vs p for different
code rates. It can be clearly seen that puncturing has a larger adverse impact when the
mother code is of low rate than when the mother code is of high rate (the punctured

code having the same code rate), which matches our simulations.
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Fig. 72. Effect of puncturing on column-weight-3 LDPC code ensemble. (Solid lines:
percentage of rows affected by at least one erasure: from left to right: rate
4/5,2/3,1/2,1/3, 1/5. Dashed lines: percentage of rows affected by multiple
erasures: from left to right: rate 4/5, 2/3, 1/2,1/3, 1/5.)

b. Asymptotic Performance

To further understand the effect of puncturing, we use density evolution (DE) to
examine the asymptotic performance of punctured LDPC codes and to quantify the
performance loss caused by puncturing. Here asymptotic refers to an infinite code
length N and an infinite iteration number [ in the message-passing iterative decoding
process. The idea of density evolution is to track the distribution of the messages
passed along the code graph in each step, and to examine the portion of the incorrect
messages (i.e. messages leading to the wrong decision). Details of density evolution
on (non-punctured) LDPC codes can be found in [14]. Here we focus on the difference
in the computation between the punctured and the non-punctured case.

2

Assuming AWGN channels with noise variance o* and antipodal signaling with

unit energy (+1), the density of the initial messages (from the channel) of a non-
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Fig. 73. Thresholds of punctured/non-punctured LDPC codes using density evolution.
(regular LDPC codes, column weight 3.)
punctured LDPC code is given by a Gaussian distribution

o _ (z=2/c%)? 4

YV 2
fo,nonpunc(w) = 2\/% € 8/ = N(ﬁ, E) (67)

In the punctured case, the decoder inserts erasures (whose message content are
0) to where the bits are punctured. With puncturing rate p, the density of the
messages observed by the decoder is in the form of mixed Gaussian and Kronecker

delta function

o) = (1= p) - N (5. =5) + p - 6(). (6.9

The rest of the procedure is the same for both cases and can be found in [14].
Figure 73 compares the thresholds (asymptotic performance) computed using den-
sity evolution of regular (non-punctured) LDPC codes and punctured LDPC codes

with puncturing rate p = 10%, 20%, 30% (all with column weight 3). Apparently,



200

punctured codes suffer performance loss, and the effect is more evident as p increases.
That is, for a fixed desired rate (after puncturing), it is desirable to choose the mother
code such that the percentage of puncturing is as small as possible. However, this
will result in a limited range of achievable code rates. It can be seen from the plot
that if the desired code rate (after puncturing) is high (which is typically the case),
the performance loss suffered by picking a lower rate mother code is very large and
increases as the desired code rate increases. Since for an ARQ system, the probability
of error during the first transmission is very important, low rate mother codes are
not a good choice.

From the analysis of code ensemble and computation of the asymptotic perfor-
mance, we conclude that puncturing provides a viable solution to produce RC-LDPC
codes but the efficiency is limited at high rate range where the amount of puncturing

is not large. This is also confirmed by computer simulations.

2. Extending

Just opposite to puncturing, the method of extending builds RC codes from high
rates to low rates through the addition of more parity bits. A strong motivation for
extending comes from the observation that the quality of the initial transmission is
the most important to achieve high throughput in ARQ systems. In the proposed
RC-LDPC code structure, the initial transmission corresponds to an non-punctured
LDPC code. This optimizes the error probability during the first transmission Fj in
(6.3). Then, additional parity bits are added to reduce the rate in such a way that
the extended code provides sufficiently good performance at the lower rate. Another
motivation for using extending to build RC-LDPC codes is the decoding complexity.
Unlike puncturing where all parity bits are generated at the encoder regardless of

whether they will be used, extending allows bits to be generated only as needed, thus
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avoiding unnecessary computations at the encoder and the decoder.

Whereas this observation is not particularly new, it is not apparent how extending
can be used to realize rate compatibility for most of the block codes and trellis codes.
Nonetheless, researchers have successfully used repetition, which may be deemed as
the simplest type of extending, to construct rate-compatible convolutional codes [107]
[108]. Fortunately, the intrinsic randomness in an LDPC code makes it possible to
exploit the technique of extending. Figure 74(A) presents the proposed structure for
building RC-LDPC codes using extending. The parity check matrix of the highest
rate code has My= Ny—K rows and N, columns with column weight ¢ > 3 (upper-left
part in Figure 74(A)). The parity check matrix of each lower rate code is constructed
by padding M; rows and M; columns, until finally reaching a (N0+Zf:1 M;, K) code
after L levels of padding. A family of RC-LDPC codes of rates Ry > R; >---> Ry thus
results, where R; = K/(N0+Z§.:1 M;),1<i<L. To embed higher rate codewords in
lower rate codewords, the upper-right part of each padding must be “0”s as shown.
The squares in the bottom-right part (see Figure 74(A)) have column weight 3 to
ensure the resulting parity check matrix also has column weight of at least 3. The
bottom-left area is made reasonably sparse to ease the construction and to save the
decoding complexity, but at least one “1” is needed for each row in order to build
sufficient dependencies between the code bits of the mother code and the newly added
parity bits.

The encoder structure is shown in Figure 74(B)(C). Like a conventional LDPC
code, Gaussian elimination is used to derive generator matrix from the parity check
matrix. It is easy to see that the generator matrices corresponding to the initial and

subsequent transmissions take the form:

11Go |, [11Go|Gu], o, [11Go|Gal |Gy, (6.9)
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Fig. 74. Tustration of RC-LDPC codes by extending. (A). Format of parity check

matrix. (B). Parity check matrix in its systematic form. (B). Encoder struc-

ture.
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Table VI. Complexity comparison: puncturing vs extending.

Encoding

puncturing extending

XOR | (K2—K)(1/Ry—1) | (K2—K)(1/R;—1)

OR K2(1/Ro — 1) K2(1/R; — 1)

Decoding (per iteration)

puncturing extending
addition StK/RO 3t,K/RZ
table-lookup 2tK/ Ry 2t'K/R;

t=3, 3<t'<33, Ri=K/(No+Y._, M,).

where I is the identity matrix of size K, and G; has dimensionality K x M;. This
is important since this means that groups of parity bits can be generated indepen-
dently and parity bits from the ith group is not required to decode the any ju, < 24,
transmission.
The decoder of RC-LDPC codes (constructed by extending) implements the
structure of H,; matrix. When decoding the subcode with rate R; = K/(Ny +
z'-=1 M;),j = 0,1,---, L, only the relevant bits and checks (i.e., the top Zf:o M;
rows and the left Ny + Zf’zl M; columns) will be used for (extrinsic) information
exchange. As rate decreases, more parity checks and bits join the message exchange
process, and, through the increased information and enhanced dependencies, offer a
stronger error correction capability.
As mentioned above, one advantage of extending is its low complexity. Table VI
compares the encoding and decoding complexity of RC-LDPC codes constructed us-

ing puncturing and extending. As can be seen, puncturing requires a fixed complexity
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regardless of channel conditions, whereas the complexity of extending reduces as chan-
nel conditions improve. Most of the time extending involves less decoding complexity
than puncturing.

Figures 75 and 76 show the BER and WER performance of RC-LDPC codes
constructed using extending and puncturing, respectively. Simulation results match
well with the analytical result that puncturing constructs efficient RC-LDPC codes
at high rates and extending at low rates. In Figure 75, the performance of a set
of RC-LDPC codes of rates 5\5\75\1x\15 constructed by extending are plotted in
solid lines. The mother code has rate 1/2 and column weight 3, and performs on
par with any rate-1/2 regular LDPC code of the same parameters. The lowest rate
code in this case is an irregular LDPC code with average column weight 3.3. As
rate reduces, the performance improves steadily, until finally reaching the capacity

of the specific rate—% irregular LDPC code with an average column weight of 3.3.

1

1 1
3

Comparatively, a rate 3

LDPC code constructed through puncturing from a rate

mother code (dashed line) performs about 0.8 dB worse than its peer in the “extending

family”. This shows that extending should be used to construct good RC-LDPC

codes at low rates. The situation is just the opposite at high rates As shown in
16\ 16\ 16\ 16\ 16

Figure 76, a family of 55\ 57 23 \5; RC-LDPC codes constructed using puncturing

22

(solid lines) demonstrates encouraging performance, where those constructed using
extending (dashed lines) fail to offer incremental improvement in performance. We
observe that. at high rates, the parity check matrix of the “extending family” has
fairly large weights in the first M, rows (corresponding to the mother code), but
very low weights in the padded rows. It is shown that the row weight profile of
an LDPC code should be “concentrated”, i.e. all rows should have almost the same
weights, in order to achieve good performance [14]. This huge discrepancy among row

weights may be the explanation why extending leads to only marginal performance
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Fig. 75. Efficient RC-LDPC codes constructed through extending (at low rate range).
(Solid lines: RC-LDPC codes by extending; from right to left: a regular
column-weight-3 (2048, 1024, 4/8) LDPC mother code, 256 parities extended,
512 parities extended, 768 parities extended, 1024 parities extended (final
average column weight 3.3). Dashed lines: RC-LDPC codes by puncturing (for
comparison); from left to right: a normal column-weight-3 (3072, 1024, 4/12)
LDPC mother code, a (2048, 1024, 4/8) code by puncturing 1024 parities out
of the mother code.)
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Fig. 76. Efficient RC-LDPC codes constructed through puncturing (at high rate
range). (Solid lines: RC-LDPC codes by puncturing; from left to right: a
regular column-weight-3 (3072, 2048, 16/24) LDPC mother code, 128 parities
punctured, 256 parities punctured, 384 parities punctured, 512 parities punc-
tured. Dashed lines: RC-LDPC codes by extending (for comparison); from
right to left: a normal column-weight-3 (2560, 2048, 16/20) LDPC mother
code, 128 parities extended, 256 parities extended, 384 parities extended, 512

parities extended.)
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Fig. 77. Overall system model for RC-LDPC codes using both puncturing and extend-

ing.

improvement, since the padded rows apparently have little influence on the overall

code.

3. Overall Structure of RC-LDPC Codes

With the above discussion and simulations, it follows naturally that efficient RC-
LDPC codes could take advantage of both approaches. Figure 77 presents the overall
system structure, where the proper boundary rate guiding which of the two techniques
to use should be somewhere between rate—% and % As an example, we construct a
family of K = 1024 RC-LDPC codes with rates ranging from < to 28—0 (Figure 78). The
mother code is a column weight 3, rate—% regular LDPC code. Puncturing is used to
to get rates %\%\% and extending to get rates % 1% % 1% % 2%. As can be seen,
each individual code provides good error correction capability, and they collectively
offer a steady improvement in performance with code compatibility. For comparison
purpose, also presented are conventional LDPC codes of rate % and 2% (dashed lines).
As can be seen, each code in the family provide powerful error correction capability
and the performance increases steadily at each retransmission. In the extending case,

since the structure is devised aiming at rate-compatibility, no specific effort is made
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Fig. 78. Performance of RC-LDPC codes using both puncturing and extending. (User
data block size K=1024. Dotted line: a regular rate 8/14 LDPC code (mother
code). Solid lines to the left of the dotted line are codes constructed by
extending; from right to left: rate 8/15, 8/16, 8/17, 8/18, 8/19, 8/20. Solid
lines to the right of the dotted line are codes constructed by puncturing; from
left to right: rate 8/13, 8/12, 8/11. Dashed lines: rate 8/20 and 8/11 regular

(non-punctured) LDPC codes for comparison purpose.)
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to optimize the performance of lower rates. Nonetheless, simulations indicate that
the performance compromise is very reasonable. As shown in Figure 78, after 6 layers
of extending, the performance of the rate-8/20 LDPC code constructed by extending
(leftmost solid line) is only less than 0.2 dB worse than a normal LDPC code of the
same parameters (dashed line).

The encouraging performance of RC-LDPC codes has opened possibility for
capacity-approaching ARQ/FEC systems. As an example, we evaluate the proposed
ARQ/FEC system using the family of RC-LDPC codes presented in Figure 78. The
throughput as defined in (6.1) is computed and plotted in Figure 79. Also shown is
the throughput of ARQ systems using rate-compatible turbo codes in [43] [44]. We
see that the proposed LDPC-ARQ system has throughput efficiency around 1 dB
away from the capacity limit, which is on par with turbo-ARQ systems. Yet, rate
compatible LDPC codes have less decoding complexity than rate compatible turbo
codes. In our example, the retransmission packet size is pretty small (128 bits), hence
the reduction in rate required for adaptation is more gradual than most of the in-
cremental redundancy ARQ systems in literature, and the capacity line is therefore
quite smooth rather than “staircase-like”. This is desired for maximizing throughput.
However, in real applications, the retransmission sizes need to be balanced against
the overhead of decoding complexity, the volume of traffic on the feedback channel
and the delay caused by subsequent retransmissions. In case of need, several small

retransmission packets may be combined as one to speed the process.

D. Summary

Efficient rate compatibility and adaptivity can be achieved from LDPC codes if the

family of codes is carefully designed. The main result in this paper is that in order to
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Fig. 79. Throughput of the proposed ARQ system using RC-LDPC codes (with com-
parison to turbo-ARQ systems). (Throughput are presented at 0.25 dB incre-
ment of E;/N, for RC-LDPC, 0.5 dB increment for turbo-ARQ in [44] and 1
dB increment for turbo-ARQ [43].)

obtain a good RC-LDPC code with a wide range of rates R; < Ry < ... Ry, itisnot a
wise strategy to use a mother code with rate R; and puncture to obtain the other rates
(which is the conventional practice with BCH codes, convolutional codes and turbo
codes). A special construction for LDPC codes has been proposed which uses a mother
code of rate R; (closer to Rys); higher rates are obtained via puncturing and lower
rates through a novel extending technique that has been discussed. The proposed
LDPC-ARQ system can achieve near capacity throughput, and is appealing to a
wide variety of packet data applications, where powerful codes are required, feedback

channels are available and latency due to retransmission overhead is acceptable.
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CHAPTER VII

CONCLUSION
This dissertation is dedicated to the design, analysis and evaluation of high-performance
and low-complexity error correction codes. We are primarily interested in regular
codes whose structures can be represented in Tanner graphs and which can be de-
coded using soft iterative message-passing algorithms.

The first part of the dissertation is focused on coding theory and code de-
sign. Specifically, we have proposed, analyzed and bench-marked a class of simple,
bandwidth- and power-efficient codes named product accumulate codes or PA codes,
and have extended them to the generalized product accumulate codes or GPA codes
(Chapter 1I).

The second part of the dissertation is devoted to the application and evaluation
of PA codes to other high-performance codes like LDPC codes, TPC/SPC codes in a
variety of practical scenario covering wireless communications, optical fiber commu-
nications, digital data storage systems and packet data networks. For land mobile
wireless communications, we have investigated the coherent and noncoherent detec-
tion of PA codes on flat Rayleigh fading channels, and have extended the discussion
to the general case where the outer code can be any LDPC code. A simple joint differ-
ential detection and decoding receiver is discussed which is shown to perform within
1 dB from the coherent case with very little additional complexity and bandwidth
expansion. We conduct EXIT analysis on a couple of interesting issues concerning
differential coding. Furthermore, we have proposed a convergence-constraint method
that is useful for designing good LDPC ensemble matched to the differential code (or
in general any receiver) (Chapter III). For long-haul optical fiber communications,

we have investigated high-rate, long PA codes with parallel turbo codes as a compar-
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ison study. On-off signaling on three types of channel models is investigated, where
analytical bounds and simulations show that the bit error rate of PA codes is very
impressive with error floors as low as 1072 (Chapter IV). For high-density digital
data storage systems, we have investigated single parity check turbo product codes
and LDPC codes on ideal partial response and PR-equalized Lorentzian channels. A
number of issues concerning binary precoding, iterative decoding scheduling and opti-
mization, asymptotic thresholds of coded ISI channels, and recording density and PR
targets are investigated. Complexity, bit error rate and error statistics are evaluated
which shows that the simple, regular TPC/SPC codes seem a promising candidate for
future magnetic recording devices (Chapter V). For packet data networks, we have
investigated a hybrid automatic repeat request system using LDPC codes. We have
constructed efficient rate compatible LDPC codes using both puncturing and extend-
ing, and have shown that the resulting RC-LDPC coded ARQ system can achieve
throughput around 1 dB from the capacity, which is as good as turbo-AR(Q) system
yet with less decoding complexity (Chapter VI).

The major contributions of this work include:

1. We have invented a class of low-complexity, high-performance, high-rate, prov-
ably “good”, regular codes, named product accumulate codes, which are simple
to construct, simple to implement and simple to analyze. Computer simulations
show that this class of codes perform comparable to turbo or LDPC codes on
a number of communication channels including AWGN, flat Rayleigh fading,
Chi-square and asymmetric Gaussian channels. Analytical bounds and thresh-
olds show that these codes are capable of performance within a few tenths a dB
from the Shannon limit on AWGN and flat Rayleigh fading channels. In this,

we have shown PA codes to be a low-cost alternative to turbo or LDPC codes
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for a variety communication applications. We have also extended PA codes to
generalized product accumulate codes or GPA codes, and show that GPA codes

are most desirable in systems that require rate adaptivity.

2. We have proposed a convergence-constraint method to design good LDPC en-
sembles matched with differential coding (and in general any receiver). We show
that the proposed method is efficient and effective. The proposed method is a
useful extension of the conventional threshold-constraint design method, but
has a far-reaching implication and application since it can explicitly take into

account the property and the imperfectness of the receiver.

3. We have proposed a graph-based message-passing algorithm (or the sum-product
algorithm) for decoding the rate-1 recursive convolutional code 1/(1+ D). We
have shown that using a specific serial update procedure, the proposed sum-
product algorithm is equivalent to the conventional BCJR algorithm and that
its low-complexity approximation, the min-sum algorithm, is equivalent to the

Max-log-MAP algorithm, yet require only about one tenth the complexity.

4. We have proposed a systematic way of constructing rate compatible LDPC
codes for use in hybrid ARQ systems. We show efficient RC-LDPC codes of
large rate range can be constructed and, when used with smart ARQ systems,

can achieve near capacity throughput.

5. We have revealed that the popular practice of inserting pilot symbols to pe-
riodically terminate the trellis incurs an intrinsic loss in code capacity and is
likely to cause high error floors and severe BER performance loss to the overall
code performance. A better way of inserting pilot symbols is suggested which

separates pilot symbols from the trellis structure.
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APPENDIX A
DECODING ALGORITHM FOR TPC/SPC CODES

Assuming even-parity check codes, BPSK modulation (0 — +1, 1 — —1) and
AWGN channels, a 2-D TPC/SPC code formed from (N1, Ny —1) ® (N2, Ny — 1) has
the following SISO decoding algorithm (Tab. VII), where 7; ; denotes the bits received
from the channel, Li;; denotes the a priori information (obtained from the channel
or the inner code in a concatenated scheme), LLR; ; denotes the log-likelihood ratio,
and Leg’lj) and Leg? denotes the extrinsic information associated with component code

C; and Cy respectively.
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Table VII. Decoding algorithm for 2-D TPC/SPC codes.

Initialization:
for i =1 to Ny, for j =1 to Ny,
Liy; = Zrij,

Lt = e = 0,

1] hJ

Iterations:

Decoding row code C;: for i =1 to Ny, for j =1 to Ny,
1 _ Lii,t+Lel(.2)
Leg,j) = 2tanh I(ngtSNht# tanh(——5—%)).
Decoding column code Cy: for j =1 to Ny, for i = 1 to Ns,

)
Lefj) =2 ta’nh_l(ngthg,t;éi tanh(%)),

Soft output and decision:
for i =1 to Ny, for j =1 to Ny,
LLRZ'J' = Lii’j + Leilj) + Leg?,

§i,j = LLRiJ' >070: 1,

Iteration stop criteria:
Success: All rows and columns add up (modulo-2) to 0.

Fail: A max number of iteration is reached.
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APPENDIX B

COMPUTATION OF THRESHOLDS FOR PRODUCT ACCUMULATOR (PA-I)
CODES

Notation:

® fr.., — pdf of the messages of the received signals y obtained from the channel.

° fé’z)z — pdf of the (a prior) messages of the input z to the inner 1/(1+ D) code

in the ky, iteration (obtained from the outer code in the k—1y, iteration).

(k)

Leo DAfof the (extrinsic) messages passed from the inner code to the outer

code in the ky;, iteration.

° fék)l() and f ékz() — pdf’s of the extrinsic information computed from the upper
and lower branch of the outer code in the ky;, iteration, respectively. Subscripts d
and p denote data and parity bit, respectively. Obviously, f £0)2 L= S?Z , =0(0),

where §(-) is the Kronecker delta function.
e O — the quantization operation (on the messages).

e v =aH [ — (discretized) check operation defined as

g

7= Q(2tanh™ (tanh 7 tanh 7). (B.1)

o [, = R(fa, f3) — the operation of the resulting pdf from the check operation,

which can be computed as

HE= ) falil fali). (B-2)

(i,7): kA=iAH; A
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Further, for convenient notation, denote

R(fo) = Rlforr (R Rl fo fo) ) (B.3)

e

k—1

It then follows from [24] that the density evolution of a rate t/(t + 2) PA code

proceeds as:

Initialization:  f = f" = fi" = f2  =4(0), (B.4)
Inner Code:  f1 = R(S1", fra, * f1oy): (B.5)

W =R (fr,, < 7). (B.6)

Inner-to-Outer: gz)d = f(’z,)w (B.7)
e, =1, (B.8)

Outer Code:  f19 , =R(fF,, REV(FF s« 1)), (B.9)

W, =R ) (B.10)

i, —R(fL{,p, O D) B

1, =R 10) (B.12)

f(l::l) _ (fLel d fLez d) + fLel,p+ fLe2 P (B.l?))

Outer-to-I :
uter-to-Inner = T,

It is instructive to note that although the outer code (the parallel concatenation
of 2 single parity check codes) can be viewed as an LDPC code with column weight
2, it is desirable to take a serial update procedure as described above rather than a
parallel one as in a conventional LDPC code. In this way, the checks corresponding to

SPC1 and SPC2 take turns to update, which is expected to have a faster convergence

[24].
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AWGN
BCH
BCJR
B-DPSK
BER
BPSK
BTC
CRC
CSI

CT

DC

DE
DPSK
DFE
DWDM
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APPENDIX C

ABBREVIATIONS

a posteriori probability
automatic repeat request
amplifier spontaneous emission
additive white Gaussian noise
Bose-Chaudhuri-Hocquenghem
Bahl-Cocke-Jelinek-Raviv
binary differential phase shift keying
bit error rate

binary phase shift keying
block turbo code

cyclic redundancy check
channel state information
concatenated tree

direct current

density evolution

differential phase shift keying
decision feedback equalization

dense wavelength division multiplexing



ECC
EDC
EXIT
FEC
FER
FFT
FIR
GPA
HCCC
IDDD
IDE
IR
IOWE
IOWTP
IRA
IST
LDPC
LLR
LMS
MAP
ML
MMSE
MSK
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error correction coding

error detection coding

extrinsic information transfer

forward error correction

frame error rate

fast Fourier transform

finite impulse response

generalized product accumulate

hybrid concatenated convolutional codes
iterative differential detection and decoding
iterative decoding and equalization
infinite impulse response

input-output weight enumerator
input-output weight transfer probability
irregular repeat accumulate
inter-symbol interference

low density parity check

log-likelihood ratio

least mean square

maximum a posteriori

maximum likelihood

minimum mean square error

minimum shift key



NASK
NRZI
OFC
OOK
OWE
PA
PEP
PCCC
pdf
PR
PRML
RA
RC
RLL
RS
RSC
scce
SISO
SNR
SOVA
SPC
TPC
WER
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negative acknowledgment
non-return-to-zero inverted

optical fiber communications

on-off keying

output weight enumerator

product accumulate

pair-wise error probability
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probability density function

partial response

partial response maximum likelihood
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rate compatible

run-length limit
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recursive systematic convolutional
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signal-to-noise ratio

soft-output Viterbi algorithm
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turbo product code

word error rate
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